1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
|
# This file is a part of Julia. License is MIT: https://julialang.org/license
## type join (closest common ancestor, or least upper bound) ##
"""
typejoin(T, S)
Return the closest common ancestor of `T` and `S`, i.e. the narrowest type from which
they both inherit.
"""
typejoin() = (@_pure_meta; Bottom)
typejoin(@nospecialize(t)) = (@_pure_meta; t)
typejoin(@nospecialize(t), ts...) = (@_pure_meta; typejoin(t, typejoin(ts...)))
function typejoin(@nospecialize(a), @nospecialize(b))
@_pure_meta
if isa(a, TypeVar)
return typejoin(a.ub, b)
elseif isa(b, TypeVar)
return typejoin(a, b.ub)
elseif a <: b
return b
elseif b <: a
return a
elseif isa(a, UnionAll)
return UnionAll(a.var, typejoin(a.body, b))
elseif isa(b, UnionAll)
return UnionAll(b.var, typejoin(a, b.body))
elseif isa(a, Union)
return typejoin(typejoin(a.a, a.b), b)
elseif isa(b, Union)
return typejoin(a, typejoin(b.a, b.b))
elseif a <: Tuple
if !(b <: Tuple)
return Any
end
ap, bp = a.parameters, b.parameters
lar = length(ap)::Int
lbr = length(bp)::Int
if lar == 0
return Tuple{Vararg{tailjoin(bp, 1)}}
end
if lbr == 0
return Tuple{Vararg{tailjoin(ap, 1)}}
end
laf, afixed = full_va_len(ap)
lbf, bfixed = full_va_len(bp)
if laf < lbf
if isvarargtype(ap[lar]) && !afixed
c = Vector{Any}(undef, laf)
c[laf] = Vararg{typejoin(unwrapva(ap[lar]), tailjoin(bp, laf))}
n = laf-1
else
c = Vector{Any}(undef, laf+1)
c[laf+1] = Vararg{tailjoin(bp, laf+1)}
n = laf
end
elseif lbf < laf
if isvarargtype(bp[lbr]) && !bfixed
c = Vector{Any}(undef, lbf)
c[lbf] = Vararg{typejoin(unwrapva(bp[lbr]), tailjoin(ap, lbf))}
n = lbf-1
else
c = Vector{Any}(undef, lbf+1)
c[lbf+1] = Vararg{tailjoin(ap, lbf+1)}
n = lbf
end
else
c = Vector{Any}(undef, laf)
n = laf
end
for i = 1:n
ai = ap[min(i,lar)]; bi = bp[min(i,lbr)]
ci = typejoin(unwrapva(ai), unwrapva(bi))
c[i] = i == length(c) && (isvarargtype(ai) || isvarargtype(bi)) ? Vararg{ci} : ci
end
return Tuple{c...}
elseif b <: Tuple
return Any
end
while b !== Any
if a <: b.name.wrapper
while a.name !== b.name
a = supertype(a)
end
if a.name === Type.body.name
ap = a.parameters[1]
bp = b.parameters[1]
if ((isa(ap,TypeVar) && ap.lb === Bottom && ap.ub === Any) ||
(isa(bp,TypeVar) && bp.lb === Bottom && bp.ub === Any))
# handle special Type{T} supertype
return Type
end
end
aprimary = a.name.wrapper
# join on parameters
n = length(a.parameters)
if n == 0
return aprimary
end
vars = []
for i = 1:n
ai, bi = a.parameters[i], b.parameters[i]
if ai === bi || (isa(ai,Type) && isa(bi,Type) && ai <: bi && bi <: ai)
aprimary = aprimary{ai}
else
pushfirst!(vars, aprimary.var)
aprimary = aprimary.body
end
end
for v in vars
aprimary = UnionAll(v, aprimary)
end
return aprimary
end
b = supertype(b)
end
return Any
end
"""
promote_typejoin(T, S)
Compute a type that contains both `T` and `S`, which could be
either a parent of both types, or a `Union` if appropriate.
Falls back to [`typejoin`](@ref).
"""
promote_typejoin(@nospecialize(a), @nospecialize(b)) = _promote_typejoin(a, b)::Type
_promote_typejoin(@nospecialize(a), @nospecialize(b)) = typejoin(a, b)
_promote_typejoin(::Type{Nothing}, ::Type{T}) where {T} =
isconcretetype(T) || T === Union{} ? Union{T, Nothing} : Any
_promote_typejoin(::Type{T}, ::Type{Nothing}) where {T} =
isconcretetype(T) || T === Union{} ? Union{T, Nothing} : Any
_promote_typejoin(::Type{Missing}, ::Type{T}) where {T} =
isconcretetype(T) || T === Union{} ? Union{T, Missing} : Any
_promote_typejoin(::Type{T}, ::Type{Missing}) where {T} =
isconcretetype(T) || T === Union{} ? Union{T, Missing} : Any
_promote_typejoin(::Type{Nothing}, ::Type{Missing}) = Union{Nothing, Missing}
_promote_typejoin(::Type{Missing}, ::Type{Nothing}) = Union{Nothing, Missing}
_promote_typejoin(::Type{Nothing}, ::Type{Nothing}) = Nothing
_promote_typejoin(::Type{Missing}, ::Type{Missing}) = Missing
# Returns length, isfixed
function full_va_len(p)
isempty(p) && return 0, true
last = p[end]
if isvarargtype(last)
N = unwrap_unionall(last).parameters[2]
if isa(N, Integer)
return (length(p) + N - 1)::Int, true
end
return length(p)::Int, false
end
return length(p)::Int, true
end
# reduce typejoin over A[i:end]
function tailjoin(A, i)
if i > length(A)
return unwrapva(A[end])
end
t = Bottom
for j = i:length(A)
t = typejoin(t, unwrapva(A[j]))
end
return t
end
## promotion mechanism ##
"""
promote_type(type1, type2)
Promotion refers to converting values of mixed types to a single common type.
`promote_type` represents the default promotion behavior in Julia when
operators (usually mathematical) are given arguments of differing types.
`promote_type` generally tries to return a type which can at least approximate
most values of either input type without excessively widening. Some loss is
tolerated; for example, `promote_type(Int64, Float64)` returns
[`Float64`](@ref) even though strictly, not all [`Int64`](@ref) values can be
represented exactly as `Float64` values.
```jldoctest
julia> promote_type(Int64, Float64)
Float64
julia> promote_type(Int32, Int64)
Int64
julia> promote_type(Float32, BigInt)
BigFloat
julia> promote_type(Int16, Float16)
Float16
julia> promote_type(Int64, Float16)
Float16
julia> promote_type(Int8, UInt16)
UInt16
```
"""
function promote_type end
promote_type() = Bottom
promote_type(T) = T
promote_type(T, S, U, V...) = (@_inline_meta; promote_type(T, promote_type(S, U, V...)))
promote_type(::Type{Bottom}, ::Type{Bottom}) = Bottom
promote_type(::Type{T}, ::Type{T}) where {T} = T
promote_type(::Type{T}, ::Type{Bottom}) where {T} = T
promote_type(::Type{Bottom}, ::Type{T}) where {T} = T
function promote_type(::Type{T}, ::Type{S}) where {T,S}
@_inline_meta
# Try promote_rule in both orders. Typically only one is defined,
# and there is a fallback returning Bottom below, so the common case is
# promote_type(T, S) =>
# promote_result(T, S, result, Bottom) =>
# typejoin(result, Bottom) => result
promote_result(T, S, promote_rule(T,S), promote_rule(S,T))
end
"""
promote_rule(type1, type2)
Specifies what type should be used by [`promote`](@ref) when given values of types `type1` and
`type2`. This function should not be called directly, but should have definitions added to
it for new types as appropriate.
"""
function promote_rule end
promote_rule(::Type{<:Any}, ::Type{<:Any}) = Bottom
# To fix ambiguities
promote_rule(::Type{Any}, ::Type{<:Any}) = Any
promote_rule(::Type{<:Any}, ::Type{Any}) = Any
promote_rule(::Type{Any}, ::Type{Any}) = Any
promote_result(::Type{<:Any},::Type{<:Any},::Type{T},::Type{S}) where {T,S} = (@_inline_meta; promote_type(T,S))
# If no promote_rule is defined, both directions give Bottom. In that
# case use typejoin on the original types instead.
promote_result(::Type{T},::Type{S},::Type{Bottom},::Type{Bottom}) where {T,S} = (@_inline_meta; typejoin(T, S))
"""
promote(xs...)
Convert all arguments to a common type, and return them all (as a tuple).
If no arguments can be converted, an error is raised.
# Examples
```jldoctest
julia> promote(Int8(1), Float16(4.5), Float32(4.1))
(1.0f0, 4.5f0, 4.1f0)
```
"""
function promote end
function _promote(x::T, y::S) where {T,S}
@_inline_meta
R = promote_type(T, S)
return (convert(R, x), convert(R, y))
end
promote_typeof(x) = typeof(x)
promote_typeof(x, xs...) = (@_inline_meta; promote_type(typeof(x), promote_typeof(xs...)))
function _promote(x, y, z)
@_inline_meta
R = promote_typeof(x, y, z)
return (convert(R, x), convert(R, y), convert(R, z))
end
function _promote(x, y, zs...)
@_inline_meta
R = promote_typeof(x, y, zs...)
return (convert(R, x), convert(R, y), convert(Tuple{Vararg{R}}, zs)...)
end
# TODO: promote(x::T, ys::T...) where {T} here to catch all circularities?
## promotions in arithmetic, etc. ##
promote() = ()
promote(x) = (x,)
function promote(x, y)
@_inline_meta
px, py = _promote(x, y)
not_sametype((x,y), (px,py))
px, py
end
function promote(x, y, z)
@_inline_meta
px, py, pz = _promote(x, y, z)
not_sametype((x,y,z), (px,py,pz))
px, py, pz
end
function promote(x, y, z, a...)
p = _promote(x, y, z, a...)
not_sametype((x, y, z, a...), p)
p
end
promote(x::T, y::T, zs::T...) where {T} = (x, y, zs...)
not_sametype(x::T, y::T) where {T} = sametype_error(x)
not_sametype(x, y) = nothing
function sametype_error(input)
@_noinline_meta
error("promotion of types ",
join(map(x->string(typeof(x)), input), ", ", " and "),
" failed to change any arguments")
end
+(x::Number, y::Number) = +(promote(x,y)...)
*(x::Number, y::Number) = *(promote(x,y)...)
-(x::Number, y::Number) = -(promote(x,y)...)
/(x::Number, y::Number) = /(promote(x,y)...)
"""
^(x, y)
Exponentiation operator. If `x` is a matrix, computes matrix exponentiation.
If `y` is an `Int` literal (e.g. `2` in `x^2` or `-3` in `x^-3`), the Julia code
`x^y` is transformed by the compiler to `Base.literal_pow(^, x, Val(y))`, to
enable compile-time specialization on the value of the exponent.
(As a default fallback we have `Base.literal_pow(^, x, Val(y)) = ^(x,y)`,
where usually `^ == Base.^` unless `^` has been defined in the calling
namespace.)
```jldoctest
julia> 3^5
243
julia> A = [1 2; 3 4]
2×2 Array{Int64,2}:
1 2
3 4
julia> A^3
2×2 Array{Int64,2}:
37 54
81 118
```
"""
^(x::Number, y::Number) = ^(promote(x,y)...)
fma(x::Number, y::Number, z::Number) = fma(promote(x,y,z)...)
muladd(x::Number, y::Number, z::Number) = muladd(promote(x,y,z)...)
==(x::Number, y::Number) = (==)(promote(x,y)...)
<( x::Real, y::Real) = (< )(promote(x,y)...)
<=(x::Real, y::Real) = (<=)(promote(x,y)...)
div(x::Real, y::Real) = div(promote(x,y)...)
fld(x::Real, y::Real) = fld(promote(x,y)...)
cld(x::Real, y::Real) = cld(promote(x,y)...)
rem(x::Real, y::Real) = rem(promote(x,y)...)
mod(x::Real, y::Real) = mod(promote(x,y)...)
mod1(x::Real, y::Real) = mod1(promote(x,y)...)
fld1(x::Real, y::Real) = fld1(promote(x,y)...)
max(x::Real, y::Real) = max(promote(x,y)...)
min(x::Real, y::Real) = min(promote(x,y)...)
minmax(x::Real, y::Real) = minmax(promote(x, y)...)
# "Promotion" that takes a function into account and tries to preserve
# non-concrete types. These are meant to be used mainly by elementwise
# operations, so it is advised against overriding them
_default_type(T::Type) = T
if isdefined(Core, :Compiler)
const _return_type = Core.Compiler.return_type
else
_return_type(@nospecialize(f), @nospecialize(t)) = Any
end
"""
promote_op(f, argtypes...)
Guess what an appropriate container eltype would be for storing results of
`f(::argtypes...)`. The guess is in part based on type inference, so can change any time.
!!! warning
In pathological cases, the type returned by `promote_op(f, argtypes...)` may not even
be a supertype of the return value of `f(::argtypes...)`. Therefore, `promote_op`
should _not_ be used e.g. in the preallocation of an output array.
!!! warning
Due to its fragility, use of `promote_op` should be avoided. It is preferable to base
the container eltype on the type of the actual elements. Only in the absence of any
elements (for an empty result container), it may be unavoidable to call `promote_op`.
"""
promote_op(::Any...) = Any
function promote_op(f, ::Type{S}) where S
TT = Tuple{_default_type(S)}
T = _return_type(f, TT)
isdispatchtuple(Tuple{S}) && return isdispatchtuple(Tuple{T}) ? T : Any
return typejoin(S, T)
end
function promote_op(f, ::Type{R}, ::Type{S}) where {R,S}
TT = Tuple{_default_type(R), _default_type(S)}
T = _return_type(f, TT)
isdispatchtuple(Tuple{R}) && isdispatchtuple(Tuple{S}) && return isdispatchtuple(Tuple{T}) ? T : Any
return typejoin(R, S, T)
end
## catch-alls to prevent infinite recursion when definitions are missing ##
no_op_err(name, T) = error(name," not defined for ",T)
(+)(x::T, y::T) where {T<:Number} = no_op_err("+", T)
(*)(x::T, y::T) where {T<:Number} = no_op_err("*", T)
(-)(x::T, y::T) where {T<:Number} = no_op_err("-", T)
(/)(x::T, y::T) where {T<:Number} = no_op_err("/", T)
(^)(x::T, y::T) where {T<:Number} = no_op_err("^", T)
fma(x::T, y::T, z::T) where {T<:Number} = no_op_err("fma", T)
fma(x::Integer, y::Integer, z::Integer) = x*y+z
muladd(x::T, y::T, z::T) where {T<:Number} = x*y+z
(&)(x::T, y::T) where {T<:Integer} = no_op_err("&", T)
(|)(x::T, y::T) where {T<:Integer} = no_op_err("|", T)
xor(x::T, y::T) where {T<:Integer} = no_op_err("xor", T)
(==)(x::T, y::T) where {T<:Number} = x === y
(< )(x::T, y::T) where {T<:Real} = no_op_err("<" , T)
(<=)(x::T, y::T) where {T<:Real} = no_op_err("<=", T)
rem(x::T, y::T) where {T<:Real} = no_op_err("rem", T)
mod(x::T, y::T) where {T<:Real} = no_op_err("mod", T)
min(x::Real) = x
max(x::Real) = x
minmax(x::Real) = (x, x)
max(x::T, y::T) where {T<:Real} = ifelse(y < x, x, y)
min(x::T, y::T) where {T<:Real} = ifelse(y < x, y, x)
minmax(x::T, y::T) where {T<:Real} = y < x ? (y, x) : (x, y)
flipsign(x::T, y::T) where {T<:Signed} = no_op_err("flipsign", T)
|