1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007
|
# This file is a part of Julia. License is MIT: https://julialang.org/license
(:)(a::Real, b::Real) = (:)(promote(a,b)...)
(:)(start::T, stop::T) where {T<:Real} = UnitRange{T}(start, stop)
(:)(start::T, stop::T) where {T} = (:)(start, oftype(stop-start, 1), stop)
# promote start and stop, leaving step alone
(:)(start::A, step, stop::C) where {A<:Real,C<:Real} =
(:)(convert(promote_type(A,C),start), step, convert(promote_type(A,C),stop))
# AbstractFloat specializations
(:)(a::T, b::T) where {T<:AbstractFloat} = (:)(a, T(1), b)
(:)(a::T, b::AbstractFloat, c::T) where {T<:Real} = (:)(promote(a,b,c)...)
(:)(a::T, b::AbstractFloat, c::T) where {T<:AbstractFloat} = (:)(promote(a,b,c)...)
(:)(a::T, b::Real, c::T) where {T<:AbstractFloat} = (:)(promote(a,b,c)...)
(:)(start::T, step::T, stop::T) where {T<:AbstractFloat} =
_colon(OrderStyle(T), ArithmeticStyle(T), start, step, stop)
(:)(start::T, step::T, stop::T) where {T<:Real} =
_colon(OrderStyle(T), ArithmeticStyle(T), start, step, stop)
_colon(::Ordered, ::Any, start::T, step, stop::T) where {T} = StepRange(start, step, stop)
# for T<:Union{Float16,Float32,Float64} see twiceprecision.jl
_colon(::Ordered, ::ArithmeticRounds, start::T, step, stop::T) where {T} =
StepRangeLen(start, step, floor(Int, (stop-start)/step)+1)
_colon(::Any, ::Any, start::T, step, stop::T) where {T} =
StepRangeLen(start, step, floor(Int, (stop-start)/step)+1)
"""
(:)(start, [step], stop)
Range operator. `a:b` constructs a range from `a` to `b` with a step size of 1 (a [`UnitRange`](@ref))
, and `a:s:b` is similar but uses a step size of `s` (a [`StepRange`](@ref)).
`:` is also used in indexing to select whole dimensions.
"""
(:)(start::T, step, stop::T) where {T} = _colon(start, step, stop)
(:)(start::T, step, stop::T) where {T<:Real} = _colon(start, step, stop)
# without the second method above, the first method above is ambiguous with
# (:)(start::A, step, stop::C) where {A<:Real,C<:Real}
function _colon(start::T, step, stop::T) where T
T′ = typeof(start+step)
StepRange(convert(T′,start), step, convert(T′,stop))
end
"""
range(start; length, stop, step=1)
Given a starting value, construct a range either by length or from `start` to `stop`,
optionally with a given step (defaults to 1, a [`UnitRange`](@ref)).
One of `length` or `stop` is required. If `length`, `stop`, and `step` are all specified, they must agree.
If `length` and `stop` are provided and `step` is not, the step size will be computed
automatically such that there are `length` linearly spaced elements in the range (a [`LinRange`](@ref)).
If `step` and `stop` are provided and `length` is not, the overall range length will be computed
automatically such that the elements are `step` spaced (a [`StepRange`](@ref)).
# Examples
```jldoctest
julia> range(1, length=100)
1:100
julia> range(1, stop=100)
1:100
julia> range(1, step=5, length=100)
1:5:496
julia> range(1, step=5, stop=100)
1:5:96
```
"""
range(start; length::Union{Integer,Nothing}=nothing, stop=nothing, step=nothing) =
_range(start, step, stop, length)
# Range from start to stop: range(a, [step=s,] stop=b), no length
_range(start, step, stop, ::Nothing) = (:)(start, step, stop)
_range(start, ::Nothing, stop, ::Nothing) = (:)(start, stop)
# Range of a given length: range(a, [step=s,] length=l), no stop
_range(a::Real, ::Nothing, ::Nothing, len::Integer) = UnitRange{typeof(a)}(a, oftype(a, a+len-1))
_range(a::AbstractFloat, ::Nothing, ::Nothing, len::Integer) = _range(a, oftype(a, 1), nothing, len)
_range(a::AbstractFloat, st::AbstractFloat, ::Nothing, len::Integer) = _range(promote(a, st)..., nothing, len)
_range(a::Real, st::AbstractFloat, ::Nothing, len::Integer) = _range(float(a), st, nothing, len)
_range(a::AbstractFloat, st::Real, ::Nothing, len::Integer) = _range(a, float(st), nothing, len)
_range(a, ::Nothing, ::Nothing, len::Integer) = _range(a, oftype(a-a, 1), nothing, len)
_range(a::T, step, ::Nothing, len::Integer) where {T} =
_rangestyle(OrderStyle(T), ArithmeticStyle(T), a, step, len)
_rangestyle(::Ordered, ::ArithmeticWraps, a::T, step::S, len::Integer) where {T,S} =
StepRange{T,S}(a, step, convert(T, a+step*(len-1)))
_rangestyle(::Any, ::Any, a::T, step::S, len::Integer) where {T,S} =
StepRangeLen{typeof(a+0*step),T,S}(a, step, len)
# Malformed calls
_range(start, step, ::Nothing, ::Nothing) = # range(a, step=s)
throw(ArgumentError("At least one of `length` or `stop` must be specified"))
_range(start, ::Nothing, ::Nothing, ::Nothing) = # range(a)
throw(ArgumentError("At least one of `length` or `stop` must be specified"))
_range(::Nothing, ::Nothing, ::Nothing, ::Nothing) = # range(nothing)
throw(ArgumentError("At least one of `length` or `stop` must be specified"))
_range(start::Real, step::Real, stop::Real, length::Integer) = # range(a, step=s, stop=b, length=l)
throw(ArgumentError("Too many arguments specified; try passing only one of `stop` or `length`"))
_range(::Nothing, ::Nothing, ::Nothing, ::Integer) = # range(nothing, length=l)
throw(ArgumentError("Can't start a range at `nothing`"))
## 1-dimensional ranges ##
"""
AbstractRange{T}
Supertype for ranges with elements of type `T`.
[`UnitRange`](@ref) and other types are subtypes of this.
"""
abstract type AbstractRange{T} <: AbstractArray{T,1} end
RangeStepStyle(::Type{<:AbstractRange}) = RangeStepIrregular()
RangeStepStyle(::Type{<:AbstractRange{<:Integer}}) = RangeStepRegular()
convert(::Type{T}, r::AbstractRange) where {T<:AbstractRange} = r isa T ? r : T(r)
## ordinal ranges
"""
OrdinalRange{T, S} <: AbstractRange{T}
Supertype for ordinal ranges with elements of type `T` with
spacing(s) of type `S`. The steps should be always-exact
multiples of [`oneunit`](@ref), and `T` should be a "discrete"
type, which cannot have values smaller than `oneunit`. For example,
`Integer` or `Date` types would qualify, whereas `Float64` would not (since this
type can represent values smaller than `oneunit(Float64)`.
[`UnitRange`](@ref), [`StepRange`](@ref), and other types are subtypes of this.
"""
abstract type OrdinalRange{T,S} <: AbstractRange{T} end
"""
AbstractUnitRange{T} <: OrdinalRange{T, T}
Supertype for ranges with a step size of [`oneunit(T)`](@ref) with elements of type `T`.
[`UnitRange`](@ref) and other types are subtypes of this.
"""
abstract type AbstractUnitRange{T} <: OrdinalRange{T,T} end
"""
StepRange{T, S} <: OrdinalRange{T, S}
Ranges with elements of type `T` with spacing of type `S`. The step
between each element is constant, and the range is defined in terms
of a `start` and `stop` of type `T` and a `step` of type `S`. Neither
`T` nor `S` should be floating point types. The syntax `a:b:c` with `b > 1`
and `a`, `b`, and `c` all integers creates a `StepRange`.
# Examples
```jldoctest
julia> collect(StepRange(1, Int8(2), 10))
5-element Array{Int64,1}:
1
3
5
7
9
julia> typeof(StepRange(1, Int8(2), 10))
StepRange{Int64,Int8}
julia> typeof(1:3:6)
StepRange{Int64,Int64}
```
"""
struct StepRange{T,S} <: OrdinalRange{T,S}
start::T
step::S
stop::T
function StepRange{T,S}(start::T, step::S, stop::T) where {T,S}
new(start, step, steprange_last(start,step,stop))
end
end
# to make StepRange constructor inlineable, so optimizer can see `step` value
function steprange_last(start::T, step, stop) where T
if isa(start,AbstractFloat) || isa(step,AbstractFloat)
throw(ArgumentError("StepRange should not be used with floating point"))
end
z = zero(step)
step == z && throw(ArgumentError("step cannot be zero"))
if stop == start
last = stop
else
if (step > z) != (stop > start)
last = steprange_last_empty(start, step, stop)
else
# Compute absolute value of difference between `start` and `stop`
# (to simplify handling both signed and unsigned T and checking for signed overflow):
absdiff, absstep = stop > start ? (stop - start, step) : (start - stop, -step)
# Compute remainder as a nonnegative number:
if T <: Signed && absdiff < zero(absdiff)
# handle signed overflow with unsigned rem
remain = convert(T, unsigned(absdiff) % absstep)
else
remain = absdiff % absstep
end
# Move `stop` closer to `start` if there is a remainder:
last = stop > start ? stop - remain : stop + remain
end
end
last
end
function steprange_last_empty(start::Integer, step, stop)
# empty range has a special representation where stop = start-1
# this is needed to avoid the wrap-around that can happen computing
# start - step, which leads to a range that looks very large instead
# of empty.
if step > zero(step)
last = start - oneunit(stop-start)
else
last = start + oneunit(stop-start)
end
last
end
# For types where x+oneunit(x) may not be well-defined
steprange_last_empty(start, step, stop) = start - step
StepRange(start::T, step::S, stop::T) where {T,S} = StepRange{T,S}(start, step, stop)
"""
UnitRange{T<:Real}
A range parameterized by a `start` and `stop` of type `T`, filled
with elements spaced by `1` from `start` until `stop` is exceeded.
The syntax `a:b` with `a` and `b` both `Integer`s creates a `UnitRange`.
# Examples
```jldoctest
julia> collect(UnitRange(2.3, 5.2))
3-element Array{Float64,1}:
2.3
3.3
4.3
julia> typeof(1:10)
UnitRange{Int64}
```
"""
struct UnitRange{T<:Real} <: AbstractUnitRange{T}
start::T
stop::T
UnitRange{T}(start, stop) where {T<:Real} = new(start, unitrange_last(start,stop))
end
UnitRange(start::T, stop::T) where {T<:Real} = UnitRange{T}(start, stop)
unitrange_last(::Bool, stop::Bool) = stop
unitrange_last(start::T, stop::T) where {T<:Integer} =
ifelse(stop >= start, stop, convert(T,start-oneunit(stop-start)))
unitrange_last(start::T, stop::T) where {T} =
ifelse(stop >= start, convert(T,start+floor(stop-start)),
convert(T,start-oneunit(stop-start)))
if isdefined(Main, :Base)
function getindex(t::Tuple, r::AbstractUnitRange{<:Real})
n = length(r)
n == 0 && return ()
a = Vector{eltype(t)}(undef, n)
o = first(r) - 1
for i = 1:n
el = t[o + i]
@inbounds a[i] = el
end
(a...,)
end
end
"""
Base.OneTo(n)
Define an `AbstractUnitRange` that behaves like `1:n`, with the added
distinction that the lower limit is guaranteed (by the type system) to
be 1.
"""
struct OneTo{T<:Integer} <: AbstractUnitRange{T}
stop::T
OneTo{T}(stop) where {T<:Integer} = new(max(zero(T), stop))
function OneTo{T}(r::AbstractRange) where {T<:Integer}
throwstart(r) = (@_noinline_meta; throw(ArgumentError("first element must be 1, got $(first(r))")))
throwstep(r) = (@_noinline_meta; throw(ArgumentError("step must be 1, got $(step(r))")))
first(r) == 1 || throwstart(r)
step(r) == 1 || throwstep(r)
return new(max(zero(T), last(r)))
end
end
OneTo(stop::T) where {T<:Integer} = OneTo{T}(stop)
OneTo(r::AbstractRange{T}) where {T<:Integer} = OneTo{T}(r)
## Step ranges parameterized by length
"""
StepRangeLen{T,R,S}(ref::R, step::S, len, [offset=1]) where {T,R,S}
StepRangeLen( ref::R, step::S, len, [offset=1]) where { R,S}
A range `r` where `r[i]` produces values of type `T` (in the second
form, `T` is deduced automatically), parameterized by a `ref`erence
value, a `step`, and the `len`gth. By default `ref` is the starting
value `r[1]`, but alternatively you can supply it as the value of
`r[offset]` for some other index `1 <= offset <= len`. In conjunction
with `TwicePrecision` this can be used to implement ranges that are
free of roundoff error.
"""
struct StepRangeLen{T,R,S} <: AbstractRange{T}
ref::R # reference value (might be smallest-magnitude value in the range)
step::S # step value
len::Int # length of the range
offset::Int # the index of ref
function StepRangeLen{T,R,S}(ref::R, step::S, len::Integer, offset::Integer = 1) where {T,R,S}
len >= 0 || throw(ArgumentError("length cannot be negative, got $len"))
1 <= offset <= max(1,len) || throw(ArgumentError("StepRangeLen: offset must be in [1,$len], got $offset"))
new(ref, step, len, offset)
end
end
StepRangeLen(ref::R, step::S, len::Integer, offset::Integer = 1) where {R,S} =
StepRangeLen{typeof(ref+0*step),R,S}(ref, step, len, offset)
StepRangeLen{T}(ref::R, step::S, len::Integer, offset::Integer = 1) where {T,R,S} =
StepRangeLen{T,R,S}(ref, step, len, offset)
## range with computed step
"""
LinRange{T}
A range with `len` linearly spaced elements between its `start` and `stop`.
The size of the spacing is controlled by `len`, which must
be an `Int`.
# Examples
```jldoctest
julia> LinRange(1.5, 5.5, 9)
9-element LinRange{Float64}:
1.5,2.0,2.5,3.0,3.5,4.0,4.5,5.0,5.5
```
"""
struct LinRange{T} <: AbstractRange{T}
start::T
stop::T
len::Int
lendiv::Int
function LinRange{T}(start,stop,len) where T
len >= 0 || throw(ArgumentError("range($start, stop=$stop, length=$len): negative length"))
if len == 1
start == stop || throw(ArgumentError("range($start, stop=$stop, length=$len): endpoints differ"))
return new(start, stop, 1, 1)
end
new(start,stop,len,max(len-1,1))
end
end
function LinRange(start, stop, len::Integer)
T = typeof((stop-start)/len)
LinRange{T}(start, stop, len)
end
function _range(start::T, ::Nothing, stop::S, len::Integer) where {T,S}
a, b = promote(start, stop)
_range(a, nothing, b, len)
end
_range(start::T, ::Nothing, stop::T, len::Integer) where {T<:Real} = LinRange{T}(start, stop, len)
_range(start::T, ::Nothing, stop::T, len::Integer) where {T} = LinRange{T}(start, stop, len)
_range(start::T, ::Nothing, stop::T, len::Integer) where {T<:Integer} =
_linspace(float(T), start, stop, len)
## for Float16, Float32, and Float64 we hit twiceprecision.jl to lift to higher precision StepRangeLen
# for all other types we fall back to a plain old LinRange
_linspace(::Type{T}, start::Integer, stop::Integer, len::Integer) where T = LinRange{T}(start, stop, len)
function show(io::IO, r::LinRange)
print(io, "range(")
show(io, first(r))
print(io, ", stop=")
show(io, last(r))
print(io, ", length=")
show(io, length(r))
print(io, ')')
end
"""
`print_range(io, r)` prints out a nice looking range r in terms of its elements
as if it were `collect(r)`, dependent on the size of the
terminal, and taking into account whether compact numbers should be shown.
It figures out the width in characters of each element, and if they
end up too wide, it shows the first and last elements separated by a
horizontal ellipsis. Typical output will look like `1.0,2.0,3.0,…,4.0,5.0,6.0`.
`print_range(io, r, pre, sep, post, hdots)` uses optional
parameters `pre` and `post` characters for each printed row,
`sep` separator string between printed elements,
`hdots` string for the horizontal ellipsis.
"""
function print_range(io::IO, r::AbstractRange,
pre::AbstractString = " ",
sep::AbstractString = ",",
post::AbstractString = "",
hdots::AbstractString = ",\u2026,") # horiz ellipsis
# This function borrows from print_matrix() in show.jl
# and should be called by show and display
limit = get(io, :limit, false)
sz = displaysize(io)
if !haskey(io, :compact)
io = IOContext(io, :compact => true)
end
screenheight, screenwidth = sz[1] - 4, sz[2]
screenwidth -= length(pre) + length(post)
postsp = ""
sepsize = length(sep)
m = 1 # treat the range as a one-row matrix
n = length(r)
# Figure out spacing alignments for r, but only need to examine the
# left and right edge columns, as many as could conceivably fit on the
# screen, with the middle columns summarized by horz, vert, or diag ellipsis
maxpossiblecols = div(screenwidth, 1+sepsize) # assume each element is at least 1 char + 1 separator
colsr = n <= maxpossiblecols ? (1:n) : [1:div(maxpossiblecols,2)+1; (n-div(maxpossiblecols,2)):n]
rowmatrix = reshape(r[colsr], 1, length(colsr)) # treat the range as a one-row matrix for print_matrix_row
A = alignment(io, rowmatrix, 1:m, 1:length(rowmatrix), screenwidth, screenwidth, sepsize) # how much space range takes
if n <= length(A) # cols fit screen, so print out all elements
print(io, pre) # put in pre chars
print_matrix_row(io,rowmatrix,A,1,1:n,sep) # the entire range
print(io, post) # add the post characters
else # cols don't fit so put horiz ellipsis in the middle
# how many chars left after dividing width of screen in half
# and accounting for the horiz ellipsis
c = div(screenwidth-length(hdots)+1,2)+1 # chars remaining for each side of rowmatrix
alignR = reverse(alignment(io, rowmatrix, 1:m, length(rowmatrix):-1:1, c, c, sepsize)) # which cols of rowmatrix to put on the right
c = screenwidth - sum(map(sum,alignR)) - (length(alignR)-1)*sepsize - length(hdots)
alignL = alignment(io, rowmatrix, 1:m, 1:length(rowmatrix), c, c, sepsize) # which cols of rowmatrix to put on the left
print(io, pre) # put in pre chars
print_matrix_row(io, rowmatrix,alignL,1,1:length(alignL),sep) # left part of range
print(io, hdots) # horizontal ellipsis
print_matrix_row(io, rowmatrix,alignR,1,length(rowmatrix)-length(alignR)+1:length(rowmatrix),sep) # right part of range
print(io, post) # post chars
end
end
## interface implementations
size(r::AbstractRange) = (length(r),)
isempty(r::StepRange) =
(r.start != r.stop) & ((r.step > zero(r.step)) != (r.stop > r.start))
isempty(r::AbstractUnitRange) = first(r) > last(r)
isempty(r::StepRangeLen) = length(r) == 0
isempty(r::LinRange) = length(r) == 0
"""
step(r)
Get the step size of an [`AbstractRange`](@ref) object.
# Examples
```jldoctest
julia> step(1:10)
1
julia> step(1:2:10)
2
julia> step(2.5:0.3:10.9)
0.3
julia> step(range(2.5, stop=10.9, length=85))
0.1
```
"""
step(r::StepRange) = r.step
step(r::AbstractUnitRange{T}) where{T} = oneunit(T) - zero(T)
step(r::StepRangeLen{T}) where {T} = T(r.step)
step(r::LinRange) = (last(r)-first(r))/r.lendiv
step_hp(r::StepRangeLen) = r.step
step_hp(r::AbstractRange) = step(r)
unsafe_length(r::AbstractRange) = length(r) # generic fallback
function unsafe_length(r::StepRange)
n = Integer(div(r.stop+r.step - r.start, r.step))
isempty(r) ? zero(n) : n
end
length(r::StepRange) = unsafe_length(r)
unsafe_length(r::AbstractUnitRange) = Integer(last(r) - first(r) + step(r))
unsafe_length(r::OneTo) = Integer(r.stop - zero(r.stop))
length(r::AbstractUnitRange) = unsafe_length(r)
length(r::OneTo) = unsafe_length(r)
length(r::StepRangeLen) = r.len
length(r::LinRange) = r.len
# Needed to fold the `firstindex` call in SimdLoop.simd_index
firstindex(::UnitRange) = 1
firstindex(::StepRange) = 1
firstindex(::LinRange) = 1
function length(r::StepRange{T}) where T<:Union{Int,UInt,Int64,UInt64}
isempty(r) && return zero(T)
if r.step > 1
return checked_add(convert(T, div(unsigned(r.stop - r.start), r.step)), one(T))
elseif r.step < -1
return checked_add(convert(T, div(unsigned(r.start - r.stop), -r.step)), one(T))
elseif r.step > 0
return checked_add(div(checked_sub(r.stop, r.start), r.step), one(T))
else
return checked_add(div(checked_sub(r.start, r.stop), -r.step), one(T))
end
end
function length(r::AbstractUnitRange{T}) where T<:Union{Int,Int64}
@_inline_meta
checked_add(checked_sub(last(r), first(r)), one(T))
end
length(r::OneTo{T}) where {T<:Union{Int,Int64}} = T(r.stop)
length(r::AbstractUnitRange{T}) where {T<:Union{UInt,UInt64}} =
r.stop < r.start ? zero(T) : checked_add(last(r) - first(r), one(T))
# some special cases to favor default Int type
let smallint = (Int === Int64 ?
Union{Int8,UInt8,Int16,UInt16,Int32,UInt32} :
Union{Int8,UInt8,Int16,UInt16})
global length
function length(r::StepRange{<:smallint})
isempty(r) && return Int(0)
div(Int(r.stop)+Int(r.step) - Int(r.start), Int(r.step))
end
length(r::AbstractUnitRange{<:smallint}) = Int(last(r)) - Int(first(r)) + 1
length(r::OneTo{<:smallint}) = Int(r.stop)
end
first(r::OrdinalRange{T}) where {T} = convert(T, r.start)
first(r::OneTo{T}) where {T} = oneunit(T)
first(r::StepRangeLen) = unsafe_getindex(r, 1)
first(r::LinRange) = r.start
last(r::OrdinalRange{T}) where {T} = convert(T, r.stop)
last(r::StepRangeLen) = unsafe_getindex(r, length(r))
last(r::LinRange) = r.stop
minimum(r::AbstractUnitRange) = isempty(r) ? throw(ArgumentError("range must be non-empty")) : first(r)
maximum(r::AbstractUnitRange) = isempty(r) ? throw(ArgumentError("range must be non-empty")) : last(r)
minimum(r::AbstractRange) = isempty(r) ? throw(ArgumentError("range must be non-empty")) : min(first(r), last(r))
maximum(r::AbstractRange) = isempty(r) ? throw(ArgumentError("range must be non-empty")) : max(first(r), last(r))
extrema(r::AbstractRange) = (minimum(r), maximum(r))
# Ranges are immutable
copy(r::AbstractRange) = r
## iteration
function iterate(r::Union{LinRange,StepRangeLen}, i::Int=1)
@_inline_meta
length(r) < i && return nothing
unsafe_getindex(r, i), i + 1
end
iterate(r::OrdinalRange) = isempty(r) ? nothing : (first(r), first(r))
function iterate(r::OrdinalRange{T}, i) where {T}
@_inline_meta
i == last(r) && return nothing
next = convert(T, i + step(r))
(next, next)
end
## indexing
_in_unit_range(v::UnitRange, val, i::Integer) = i > 0 && val <= v.stop && val >= v.start
function getindex(v::UnitRange{T}, i::Integer) where T
@_inline_meta
val = convert(T, v.start + i - 1)
@boundscheck _in_unit_range(v, val, i) || throw_boundserror(v, i)
val
end
const OverflowSafe = Union{Bool,Int8,Int16,Int32,Int64,Int128,
UInt8,UInt16,UInt32,UInt64,UInt128}
function getindex(v::UnitRange{T}, i::Integer) where {T<:OverflowSafe}
@_inline_meta
val = v.start + i - 1
@boundscheck _in_unit_range(v, val, i) || throw_boundserror(v, i)
val % T
end
function getindex(v::OneTo{T}, i::Integer) where T
@_inline_meta
@boundscheck ((i > 0) & (i <= v.stop)) || throw_boundserror(v, i)
convert(T, i)
end
function getindex(v::AbstractRange{T}, i::Integer) where T
@_inline_meta
ret = convert(T, first(v) + (i - 1)*step_hp(v))
ok = ifelse(step(v) > zero(step(v)),
(ret <= v.stop) & (ret >= v.start),
(ret <= v.start) & (ret >= v.stop))
@boundscheck ((i > 0) & ok) || throw_boundserror(v, i)
ret
end
function getindex(r::Union{StepRangeLen,LinRange}, i::Integer)
@_inline_meta
@boundscheck checkbounds(r, i)
unsafe_getindex(r, i)
end
# This is separate to make it useful even when running with --check-bounds=yes
function unsafe_getindex(r::StepRangeLen{T}, i::Integer) where T
u = i - r.offset
T(r.ref + u*r.step)
end
function _getindex_hiprec(r::StepRangeLen, i::Integer) # without rounding by T
u = i - r.offset
r.ref + u*r.step
end
function unsafe_getindex(r::LinRange, i::Integer)
lerpi(i-1, r.lendiv, r.start, r.stop)
end
function lerpi(j::Integer, d::Integer, a::T, b::T) where T
@_inline_meta
t = j/d
T((1-t)*a + t*b)
end
getindex(r::AbstractRange, ::Colon) = copy(r)
function getindex(r::AbstractUnitRange, s::AbstractUnitRange{<:Integer})
@_inline_meta
@boundscheck checkbounds(r, s)
f = first(r)
st = oftype(f, f + first(s)-1)
range(st, length=length(s))
end
function getindex(r::OneTo{T}, s::OneTo) where T
@_inline_meta
@boundscheck checkbounds(r, s)
OneTo(T(s.stop))
end
function getindex(r::AbstractUnitRange, s::StepRange{<:Integer})
@_inline_meta
@boundscheck checkbounds(r, s)
st = oftype(first(r), first(r) + s.start-1)
range(st, step=step(s), length=length(s))
end
function getindex(r::StepRange, s::AbstractRange{<:Integer})
@_inline_meta
@boundscheck checkbounds(r, s)
st = oftype(r.start, r.start + (first(s)-1)*step(r))
range(st, step=step(r)*step(s), length=length(s))
end
function getindex(r::StepRangeLen{T}, s::OrdinalRange{<:Integer}) where {T}
@_inline_meta
@boundscheck checkbounds(r, s)
# Find closest approach to offset by s
ind = LinearIndices(s)
offset = max(min(1 + round(Int, (r.offset - first(s))/step(s)), last(ind)), first(ind))
ref = _getindex_hiprec(r, first(s) + (offset-1)*step(s))
return StepRangeLen{T}(ref, r.step*step(s), length(s), offset)
end
function getindex(r::LinRange, s::OrdinalRange{<:Integer})
@_inline_meta
@boundscheck checkbounds(r, s)
vfirst = unsafe_getindex(r, first(s))
vlast = unsafe_getindex(r, last(s))
return LinRange(vfirst, vlast, length(s))
end
show(io::IO, r::AbstractRange) = print(io, repr(first(r)), ':', repr(step(r)), ':', repr(last(r)))
show(io::IO, r::UnitRange) = print(io, repr(first(r)), ':', repr(last(r)))
show(io::IO, r::OneTo) = print(io, "Base.OneTo(", r.stop, ")")
==(r::T, s::T) where {T<:AbstractRange} =
(first(r) == first(s)) & (step(r) == step(s)) & (last(r) == last(s))
==(r::OrdinalRange, s::OrdinalRange) =
(first(r) == first(s)) & (step(r) == step(s)) & (last(r) == last(s))
==(r::T, s::T) where {T<:Union{StepRangeLen,LinRange}} =
(first(r) == first(s)) & (length(r) == length(s)) & (last(r) == last(s))
==(r::Union{StepRange{T},StepRangeLen{T,T}}, s::Union{StepRange{T},StepRangeLen{T,T}}) where {T} =
(first(r) == first(s)) & (last(r) == last(s)) & (step(r) == step(s))
function ==(r::AbstractRange, s::AbstractRange)
lr = length(r)
if lr != length(s)
return false
end
yr, ys = iterate(r), iterate(s)
while yr !== nothing
yr[1] == ys[1] || return false
yr, ys = iterate(r, yr[2]), iterate(s, ys[2])
end
return true
end
intersect(r::OneTo, s::OneTo) = OneTo(min(r.stop,s.stop))
intersect(r::AbstractUnitRange{<:Integer}, s::AbstractUnitRange{<:Integer}) = max(first(r),first(s)):min(last(r),last(s))
intersect(i::Integer, r::AbstractUnitRange{<:Integer}) =
i < first(r) ? (first(r):i) :
i > last(r) ? (i:last(r)) : (i:i)
intersect(r::AbstractUnitRange{<:Integer}, i::Integer) = intersect(i, r)
function intersect(r::AbstractUnitRange{<:Integer}, s::StepRange{<:Integer})
if isempty(s)
range(first(r), length=0)
elseif step(s) == 0
intersect(first(s), r)
elseif step(s) < 0
intersect(r, reverse(s))
else
sta = first(s)
ste = step(s)
sto = last(s)
lo = first(r)
hi = last(r)
i0 = max(sta, lo + mod(sta - lo, ste))
i1 = min(sto, hi - mod(hi - sta, ste))
i0:ste:i1
end
end
function intersect(r::StepRange{<:Integer}, s::AbstractUnitRange{<:Integer})
if step(r) < 0
reverse(intersect(s, reverse(r)))
else
intersect(s, r)
end
end
function intersect(r::StepRange, s::StepRange)
if isempty(r) || isempty(s)
return range(first(r), step=step(r), length=0)
elseif step(s) < 0
return intersect(r, reverse(s))
elseif step(r) < 0
return reverse(intersect(reverse(r), s))
end
start1 = first(r)
step1 = step(r)
stop1 = last(r)
start2 = first(s)
step2 = step(s)
stop2 = last(s)
a = lcm(step1, step2)
# if a == 0
# # One or both ranges have step 0.
# if step1 == 0 && step2 == 0
# return start1 == start2 ? r : AbstractRange(start1, 0, 0)
# elseif step1 == 0
# return start2 <= start1 <= stop2 && rem(start1 - start2, step2) == 0 ? r : AbstractRange(start1, 0, 0)
# else
# return start1 <= start2 <= stop1 && rem(start2 - start1, step1) == 0 ? (start2:step1:start2) : AbstractRange(start1, step1, 0)
# end
# end
g, x, y = gcdx(step1, step2)
if rem(start1 - start2, g) != 0
# Unaligned, no overlap possible.
return range(start1, step=a, length=0)
end
z = div(start1 - start2, g)
b = start1 - x * z * step1
# Possible points of the intersection of r and s are
# ..., b-2a, b-a, b, b+a, b+2a, ...
# Determine where in the sequence to start and stop.
m = max(start1 + mod(b - start1, a), start2 + mod(b - start2, a))
n = min(stop1 - mod(stop1 - b, a), stop2 - mod(stop2 - b, a))
m:a:n
end
function intersect(r1::AbstractRange, r2::AbstractRange, r3::AbstractRange, r::AbstractRange...)
i = intersect(intersect(r1, r2), r3)
for t in r
i = intersect(i, t)
end
i
end
# _findin (the index of intersection)
function _findin(r::AbstractRange{<:Integer}, span::AbstractUnitRange{<:Integer})
local ifirst
local ilast
fspan = first(span)
lspan = last(span)
fr = first(r)
lr = last(r)
sr = step(r)
if sr > 0
ifirst = fr >= fspan ? 1 : ceil(Integer,(fspan-fr)/sr)+1
ilast = lr <= lspan ? length(r) : length(r) - ceil(Integer,(lr-lspan)/sr)
elseif sr < 0
ifirst = fr <= lspan ? 1 : ceil(Integer,(lspan-fr)/sr)+1
ilast = lr >= fspan ? length(r) : length(r) - ceil(Integer,(lr-fspan)/sr)
else
ifirst = fr >= fspan ? 1 : length(r)+1
ilast = fr <= lspan ? length(r) : 0
end
r isa AbstractUnitRange ? (ifirst:ilast) : (ifirst:1:ilast)
end
## linear operations on ranges ##
-(r::OrdinalRange) = range(-first(r), step=-step(r), length=length(r))
-(r::StepRangeLen{T,R,S}) where {T,R,S} =
StepRangeLen{T,R,S}(-r.ref, -r.step, length(r), r.offset)
-(r::LinRange) = LinRange(-r.start, -r.stop, length(r))
# promote eltype if at least one container wouldn't change, otherwise join container types.
el_same(::Type{T}, a::Type{<:AbstractArray{T,n}}, b::Type{<:AbstractArray{T,n}}) where {T,n} = a
el_same(::Type{T}, a::Type{<:AbstractArray{T,n}}, b::Type{<:AbstractArray{S,n}}) where {T,S,n} = a
el_same(::Type{T}, a::Type{<:AbstractArray{S,n}}, b::Type{<:AbstractArray{T,n}}) where {T,S,n} = b
el_same(::Type, a, b) = promote_typejoin(a, b)
promote_rule(a::Type{UnitRange{T1}}, b::Type{UnitRange{T2}}) where {T1,T2} =
el_same(promote_type(T1,T2), a, b)
UnitRange{T}(r::UnitRange{T}) where {T<:Real} = r
UnitRange{T}(r::UnitRange) where {T<:Real} = UnitRange{T}(r.start, r.stop)
promote_rule(a::Type{OneTo{T1}}, b::Type{OneTo{T2}}) where {T1,T2} =
el_same(promote_type(T1,T2), a, b)
OneTo{T}(r::OneTo{T}) where {T<:Integer} = r
OneTo{T}(r::OneTo) where {T<:Integer} = OneTo{T}(r.stop)
promote_rule(a::Type{UnitRange{T1}}, ::Type{UR}) where {T1,UR<:AbstractUnitRange} =
promote_rule(a, UnitRange{eltype(UR)})
UnitRange{T}(r::AbstractUnitRange) where {T<:Real} = UnitRange{T}(first(r), last(r))
UnitRange(r::AbstractUnitRange) = UnitRange(first(r), last(r))
AbstractUnitRange{T}(r::AbstractUnitRange{T}) where {T} = r
AbstractUnitRange{T}(r::UnitRange) where {T} = UnitRange{T}(r)
AbstractUnitRange{T}(r::OneTo) where {T} = OneTo{T}(r)
promote_rule(::Type{StepRange{T1a,T1b}}, ::Type{StepRange{T2a,T2b}}) where {T1a,T1b,T2a,T2b} =
el_same(promote_type(T1a,T2a),
# el_same only operates on array element type, so just promote second type parameter
StepRange{T1a, promote_type(T1b,T2b)},
StepRange{T2a, promote_type(T1b,T2b)})
StepRange{T1,T2}(r::StepRange{T1,T2}) where {T1,T2} = r
promote_rule(a::Type{StepRange{T1a,T1b}}, ::Type{UR}) where {T1a,T1b,UR<:AbstractUnitRange} =
promote_rule(a, StepRange{eltype(UR), eltype(UR)})
StepRange{T1,T2}(r::AbstractRange) where {T1,T2} =
StepRange{T1,T2}(convert(T1, first(r)), convert(T2, step(r)), convert(T1, last(r)))
StepRange(r::AbstractUnitRange{T}) where {T} =
StepRange{T,T}(first(r), step(r), last(r))
(::Type{StepRange{T1,T2} where T1})(r::AbstractRange) where {T2} = StepRange{eltype(r),T2}(r)
promote_rule(::Type{StepRangeLen{T1,R1,S1}},::Type{StepRangeLen{T2,R2,S2}}) where {T1,T2,R1,R2,S1,S2} =
el_same(promote_type(T1,T2),
StepRangeLen{T1,promote_type(R1,R2),promote_type(S1,S2)},
StepRangeLen{T2,promote_type(R1,R2),promote_type(S1,S2)})
StepRangeLen{T,R,S}(r::StepRangeLen{T,R,S}) where {T,R,S} = r
StepRangeLen{T,R,S}(r::StepRangeLen) where {T,R,S} =
StepRangeLen{T,R,S}(convert(R, r.ref), convert(S, r.step), length(r), r.offset)
StepRangeLen{T}(r::StepRangeLen) where {T} =
StepRangeLen(convert(T, r.ref), convert(T, r.step), length(r), r.offset)
promote_rule(a::Type{StepRangeLen{T,R,S}}, ::Type{OR}) where {T,R,S,OR<:AbstractRange} =
promote_rule(a, StepRangeLen{eltype(OR), eltype(OR), eltype(OR)})
StepRangeLen{T,R,S}(r::AbstractRange) where {T,R,S} =
StepRangeLen{T,R,S}(R(first(r)), S(step(r)), length(r))
StepRangeLen{T}(r::AbstractRange) where {T} =
StepRangeLen(T(first(r)), T(step(r)), length(r))
StepRangeLen(r::AbstractRange) = StepRangeLen{eltype(r)}(r)
promote_rule(a::Type{LinRange{T1}}, b::Type{LinRange{T2}}) where {T1,T2} =
el_same(promote_type(T1,T2), a, b)
LinRange{T}(r::LinRange{T}) where {T} = r
LinRange{T}(r::AbstractRange) where {T} = LinRange{T}(first(r), last(r), length(r))
LinRange(r::AbstractRange{T}) where {T} = LinRange{T}(r)
promote_rule(a::Type{LinRange{T}}, ::Type{OR}) where {T,OR<:OrdinalRange} =
promote_rule(a, LinRange{eltype(OR)})
promote_rule(::Type{LinRange{L}}, b::Type{StepRangeLen{T,R,S}}) where {L,T,R,S} =
promote_rule(StepRangeLen{L,L,L}, b)
## concatenation ##
function vcat(rs::AbstractRange{T}...) where T
n::Int = 0
for ra in rs
n += length(ra)
end
a = Vector{T}(undef, n)
i = 1
for ra in rs, x in ra
@inbounds a[i] = x
i += 1
end
return a
end
Array{T,1}(r::AbstractRange{T}) where {T} = vcat(r)
collect(r::AbstractRange) = vcat(r)
reverse(r::OrdinalRange) = (:)(last(r), -step(r), first(r))
reverse(r::StepRangeLen) = StepRangeLen(r.ref, -r.step, length(r), length(r)-r.offset+1)
reverse(r::LinRange) = LinRange(r.stop, r.start, length(r))
## sorting ##
issorted(r::AbstractUnitRange) = true
issorted(r::AbstractRange) = length(r) <= 1 || step(r) >= zero(step(r))
sort(r::AbstractUnitRange) = r
sort!(r::AbstractUnitRange) = r
sort(r::AbstractRange) = issorted(r) ? r : reverse(r)
sortperm(r::AbstractUnitRange) = 1:length(r)
sortperm(r::AbstractRange) = issorted(r) ? (1:1:length(r)) : (length(r):-1:1)
function sum(r::AbstractRange{<:Real})
l = length(r)
# note that a little care is required to avoid overflow in l*(l-1)/2
return l * first(r) + (iseven(l) ? (step(r) * (l-1)) * (l>>1)
: (step(r) * l) * ((l-1)>>1))
end
function _in_range(x, r::AbstractRange)
if step(r) == 0
return !isempty(r) && first(r) == x
else
n = round(Integer, (x - first(r)) / step(r)) + 1
return n >= 1 && n <= length(r) && r[n] == x
end
end
in(x::Real, r::AbstractRange{<:Real}) = _in_range(x, r)
# This method needs to be defined separately since -(::T, ::T) can be implemented
# even if -(::T, ::Real) is not
in(x::T, r::AbstractRange{T}) where {T} = _in_range(x, r)
in(x::Integer, r::AbstractUnitRange{<:Integer}) = (first(r) <= x) & (x <= last(r))
in(x::Real, r::AbstractRange{T}) where {T<:Integer} =
isinteger(x) && !isempty(r) && x >= minimum(r) && x <= maximum(r) &&
(mod(convert(T,x),step(r))-mod(first(r),step(r)) == 0)
in(x::AbstractChar, r::AbstractRange{<:AbstractChar}) =
!isempty(r) && x >= minimum(r) && x <= maximum(r) &&
(mod(Int(x) - Int(first(r)), step(r)) == 0)
# Addition/subtraction of ranges
function _define_range_op(@nospecialize f)
@eval begin
function $f(r1::OrdinalRange, r2::OrdinalRange)
r1l = length(r1)
(r1l == length(r2) ||
throw(DimensionMismatch("argument dimensions must match")))
range($f(first(r1), first(r2)), step=$f(step(r1), step(r2)), length=r1l)
end
function $f(r1::LinRange{T}, r2::LinRange{T}) where T
len = r1.len
(len == r2.len ||
throw(DimensionMismatch("argument dimensions must match")))
LinRange{T}(convert(T, $f(first(r1), first(r2))),
convert(T, $f(last(r1), last(r2))), len)
end
$f(r1::Union{StepRangeLen, OrdinalRange, LinRange},
r2::Union{StepRangeLen, OrdinalRange, LinRange}) =
$f(promote(r1, r2)...)
end
end
_define_range_op(:+)
_define_range_op(:-)
function +(r1::StepRangeLen{T,S}, r2::StepRangeLen{T,S}) where {T,S}
len = length(r1)
(len == length(r2) ||
throw(DimensionMismatch("argument dimensions must match")))
StepRangeLen(first(r1)+first(r2), step(r1)+step(r2), len)
end
-(r1::StepRangeLen, r2::StepRangeLen) = +(r1, -r2)
|