1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707
|
# This file is a part of Julia. License is MIT: https://julialang.org/license
## reductions ##
###### Generic (map)reduce functions ######
if Int === Int32
const SmallSigned = Union{Int8,Int16}
const SmallUnsigned = Union{UInt8,UInt16}
else
const SmallSigned = Union{Int8,Int16,Int32}
const SmallUnsigned = Union{UInt8,UInt16,UInt32}
end
"""
Base.add_sum(x,y)
The reduction operator used in `sum`. The main difference from [`+`](@ref) is that small
integers are promoted to `Int`/`UInt`.
"""
add_sum(x,y) = x + y
add_sum(x::SmallSigned,y::SmallSigned) = Int(x) + Int(y)
add_sum(x::SmallUnsigned,y::SmallUnsigned) = UInt(x) + UInt(y)
"""
Base.mul_prod(x,y)
The reduction operator used in `prod`. The main difference from [`*`](@ref) is that small
integers are promoted to `Int`/`UInt`.
"""
mul_prod(x,y) = x * y
mul_prod(x::SmallSigned,y::SmallSigned) = Int(x) * Int(y)
mul_prod(x::SmallUnsigned,y::SmallUnsigned) = UInt(x) * UInt(y)
## foldl && mapfoldl
@noinline function mapfoldl_impl(f, op, nt::NamedTuple{(:init,)}, itr, i...)
init = nt.init
# Unroll the while loop once; if init is known, the call to op may
# be evaluated at compile time
y = iterate(itr, i...)
y === nothing && return init
v = op(init, f(y[1]))
while true
y = iterate(itr, y[2])
y === nothing && break
v = op(v, f(y[1]))
end
return v
end
function mapfoldl_impl(f, op, nt::NamedTuple{()}, itr)
y = iterate(itr)
if y === nothing
return Base.mapreduce_empty_iter(f, op, itr, IteratorEltype(itr))
end
(x, i) = y
init = mapreduce_first(f, op, x)
mapfoldl_impl(f, op, (init=init,), itr, i)
end
"""
mapfoldl(f, op, itr; [init])
Like [`mapreduce`](@ref), but with guaranteed left associativity, as in [`foldl`](@ref).
If provided, the keyword argument `init` will be used exactly once. In general, it will be
necessary to provide `init` to work with empty collections.
"""
mapfoldl(f, op, itr; kw...) = mapfoldl_impl(f, op, kw.data, itr)
"""
foldl(op, itr; [init])
Like [`reduce`](@ref), but with guaranteed left associativity. If provided, the keyword
argument `init` will be used exactly once. In general, it will be necessary to provide
`init` to work with empty collections.
# Examples
```jldoctest
julia> foldl(=>, 1:4)
((1=>2)=>3) => 4
julia> foldl(=>, 1:4; init=0)
(((0=>1)=>2)=>3) => 4
```
"""
foldl(op, itr; kw...) = mapfoldl(identity, op, itr; kw...)
## foldr & mapfoldr
function mapfoldr_impl(f, op, nt::NamedTuple{(:init,)}, itr, i::Integer)
init = nt.init
# Unroll the while loop once; if init is known, the call to op may
# be evaluated at compile time
if isempty(itr) || i == 0
return init
else
x = itr[i]
v = op(f(x), init)
while i > 1
x = itr[i -= 1]
v = op(f(x), v)
end
return v
end
end
function mapfoldr_impl(f, op, ::NamedTuple{()}, itr, i::Integer)
if isempty(itr)
return Base.mapreduce_empty_iter(f, op, itr, IteratorEltype(itr))
end
return mapfoldr_impl(f, op, (init=mapreduce_first(f, op, itr[i]),), itr, i-1)
end
"""
mapfoldr(f, op, itr; [init])
Like [`mapreduce`](@ref), but with guaranteed right associativity, as in [`foldr`](@ref). If
provided, the keyword argument `init` will be used exactly once. In general, it will be
necessary to provide `init` to work with empty collections.
"""
mapfoldr(f, op, itr; kw...) = mapfoldr_impl(f, op, kw.data, itr, lastindex(itr))
"""
foldr(op, itr; [init])
Like [`reduce`](@ref), but with guaranteed right associativity. If provided, the keyword
argument `init` will be used exactly once. In general, it will be necessary to provide
`init` to work with empty collections.
# Examples
```jldoctest
julia> foldr(=>, 1:4)
1 => (2=>(3=>4))
julia> foldr(=>, 1:4; init=0)
1 => (2=>(3=>(4=>0)))
```
"""
foldr(op, itr; kw...) = mapfoldr(identity, op, itr; kw...)
## reduce & mapreduce
# `mapreduce_impl()` is called by `mapreduce()` (via `_mapreduce()`, when `A`
# supports linear indexing) and does actual calculations (for `A[ifirst:ilast]` subset).
# For efficiency, no parameter validity checks are done, it's the caller's responsibility.
# `ifirst:ilast` range is assumed to be a valid non-empty subset of `A` indices.
# This is a generic implementation of `mapreduce_impl()`,
# certain `op` (e.g. `min` and `max`) may have their own specialized versions.
@noinline function mapreduce_impl(f, op, A::AbstractArray, ifirst::Integer, ilast::Integer, blksize::Int)
if ifirst == ilast
@inbounds a1 = A[ifirst]
return mapreduce_first(f, op, a1)
elseif ifirst + blksize > ilast
# sequential portion
@inbounds a1 = A[ifirst]
@inbounds a2 = A[ifirst+1]
v = op(f(a1), f(a2))
@simd for i = ifirst + 2 : ilast
@inbounds ai = A[i]
v = op(v, f(ai))
end
return v
else
# pairwise portion
imid = (ifirst + ilast) >> 1
v1 = mapreduce_impl(f, op, A, ifirst, imid, blksize)
v2 = mapreduce_impl(f, op, A, imid+1, ilast, blksize)
return op(v1, v2)
end
end
mapreduce_impl(f, op, A::AbstractArray, ifirst::Integer, ilast::Integer) =
mapreduce_impl(f, op, A, ifirst, ilast, pairwise_blocksize(f, op))
"""
mapreduce(f, op, itr; [init])
Apply function `f` to each element in `itr`, and then reduce the result using the binary
function `op`. If provided, `init` must be a neutral element for `op` that will be returned
for empty collections. It is unspecified whether `init` is used for non-empty collections.
In general, it will be necessary to provide `init` to work with empty collections.
[`mapreduce`](@ref) is functionally equivalent to calling
`reduce(op, map(f, itr); init=init)`, but will in general execute faster since no
intermediate collection needs to be created. See documentation for [`reduce`](@ref) and
[`map`](@ref).
# Examples
```jldoctest
julia> mapreduce(x->x^2, +, [1:3;]) # == 1 + 4 + 9
14
```
The associativity of the reduction is implementation-dependent. Additionally, some
implementations may reuse the return value of `f` for elements that appear multiple times in
`itr`. Use [`mapfoldl`](@ref) or [`mapfoldr`](@ref) instead for
guaranteed left or right associativity and invocation of `f` for every value.
"""
mapreduce(f, op, itr; kw...) = mapfoldl(f, op, itr; kw...)
# Note: sum_seq usually uses four or more accumulators after partial
# unrolling, so each accumulator gets at most 256 numbers
pairwise_blocksize(f, op) = 1024
# This combination appears to show a benefit from a larger block size
pairwise_blocksize(::typeof(abs2), ::typeof(+)) = 4096
# handling empty arrays
_empty_reduce_error() = throw(ArgumentError("reducing over an empty collection is not allowed"))
"""
Base.reduce_empty(op, T)
The value to be returned when calling [`reduce`](@ref), [`foldl`](@ref) or [`foldr`](@ref)
with reduction `op` over an empty array with element type of `T`.
If not defined, this will throw an `ArgumentError`.
"""
reduce_empty(op, T) = _empty_reduce_error()
reduce_empty(::typeof(+), T) = zero(T)
reduce_empty(::typeof(+), ::Type{Bool}) = zero(Int)
reduce_empty(::typeof(*), T) = one(T)
reduce_empty(::typeof(*), ::Type{<:AbstractChar}) = ""
reduce_empty(::typeof(&), ::Type{Bool}) = true
reduce_empty(::typeof(|), ::Type{Bool}) = false
reduce_empty(::typeof(add_sum), T) = reduce_empty(+, T)
reduce_empty(::typeof(add_sum), ::Type{T}) where {T<:SmallSigned} = zero(Int)
reduce_empty(::typeof(add_sum), ::Type{T}) where {T<:SmallUnsigned} = zero(UInt)
reduce_empty(::typeof(mul_prod), T) = reduce_empty(*, T)
reduce_empty(::typeof(mul_prod), ::Type{T}) where {T<:SmallSigned} = one(Int)
reduce_empty(::typeof(mul_prod), ::Type{T}) where {T<:SmallUnsigned} = one(UInt)
"""
Base.mapreduce_empty(f, op, T)
The value to be returned when calling [`mapreduce`](@ref), [`mapfoldl`](@ref`) or
[`mapfoldr`](@ref) with map `f` and reduction `op` over an empty array with element type
of `T`.
If not defined, this will throw an `ArgumentError`.
"""
mapreduce_empty(f, op, T) = _empty_reduce_error()
mapreduce_empty(::typeof(identity), op, T) = reduce_empty(op, T)
mapreduce_empty(::typeof(abs), op, T) = abs(reduce_empty(op, T))
mapreduce_empty(::typeof(abs2), op, T) = abs2(reduce_empty(op, T))
mapreduce_empty(f::typeof(abs), ::typeof(max), T) = abs(zero(T))
mapreduce_empty(f::typeof(abs2), ::typeof(max), T) = abs2(zero(T))
mapreduce_empty_iter(f, op, itr, ::HasEltype) = mapreduce_empty(f, op, eltype(itr))
mapreduce_empty_iter(f, op::typeof(&), itr, ::EltypeUnknown) = true
mapreduce_empty_iter(f, op::typeof(|), itr, ::EltypeUnknown) = false
mapreduce_empty_iter(f, op, itr, ::EltypeUnknown) = _empty_reduce_error()
# handling of single-element iterators
"""
Base.reduce_first(op, x)
The value to be returned when calling [`reduce`](@ref), [`foldl`](@ref`) or
[`foldr`](@ref) with reduction `op` over an iterator which contains a single element
`x`. This value may also used to initialise the recursion, so that `reduce(op, [x, y])`
may call `op(reduce_first(op, x), y)`.
The default is `x` for most types. The main purpose is to ensure type stability, so
additional methods should only be defined for cases where `op` gives a result with
different types than its inputs.
"""
reduce_first(op, x) = x
reduce_first(::typeof(+), x::Bool) = Int(x)
reduce_first(::typeof(*), x::AbstractChar) = string(x)
reduce_first(::typeof(add_sum), x) = reduce_first(+, x)
reduce_first(::typeof(add_sum), x::SmallSigned) = Int(x)
reduce_first(::typeof(add_sum), x::SmallUnsigned) = UInt(x)
reduce_first(::typeof(mul_prod), x) = reduce_first(*, x)
reduce_first(::typeof(mul_prod), x::SmallSigned) = Int(x)
reduce_first(::typeof(mul_prod), x::SmallUnsigned) = UInt(x)
"""
Base.mapreduce_first(f, op, x)
The value to be returned when calling [`mapreduce`](@ref), [`mapfoldl`](@ref`) or
[`mapfoldr`](@ref) with map `f` and reduction `op` over an iterator which contains a
single element `x`. This value may also used to initialise the recursion, so that
`mapreduce(f, op, [x, y])` may call `op(reduce_first(op, f, x), f(y))`.
The default is `reduce_first(op, f(x))`.
"""
mapreduce_first(f, op, x) = reduce_first(op, f(x))
_mapreduce(f, op, A::AbstractArray) = _mapreduce(f, op, IndexStyle(A), A)
function _mapreduce(f, op, ::IndexLinear, A::AbstractArray{T}) where T
inds = LinearIndices(A)
n = length(inds)
if n == 0
return mapreduce_empty(f, op, T)
elseif n == 1
@inbounds a1 = A[first(inds)]
return mapreduce_first(f, op, a1)
elseif n < 16 # process short array here, avoid mapreduce_impl() compilation
@inbounds i = first(inds)
@inbounds a1 = A[i]
@inbounds a2 = A[i+=1]
s = op(f(a1), f(a2))
while i < last(inds)
@inbounds Ai = A[i+=1]
s = op(s, f(Ai))
end
return s
else
return mapreduce_impl(f, op, A, first(inds), last(inds))
end
end
mapreduce(f, op, a::Number) = mapreduce_first(f, op, a)
_mapreduce(f, op, ::IndexCartesian, A::AbstractArray) = mapfoldl(f, op, A)
"""
reduce(op, itr; [init])
Reduce the given collection `itr` with the given binary operator `op`. If provided, the
initial value `init` must be a neutral element for `op` that will be returned for empty
collections. It is unspecified whether `init` is used for non-empty collections.
For empty collections, providing `init` will be necessary, except for some special cases
(e.g. when `op` is one of `+`, `*`, `max`, `min`, `&`, `|`) when Julia can determine the
neutral element of `op`.
Reductions for certain commonly-used operators may have special implementations, and
should be used instead: `maximum(itr)`, `minimum(itr)`, `sum(itr)`, `prod(itr)`,
`any(itr)`, `all(itr)`.
The associativity of the reduction is implementation dependent. This means that you can't
use non-associative operations like `-` because it is undefined whether `reduce(-,[1,2,3])`
should be evaluated as `(1-2)-3` or `1-(2-3)`. Use [`foldl`](@ref) or
[`foldr`](@ref) instead for guaranteed left or right associativity.
Some operations accumulate error. Parallelism will be easier if the reduction can be
executed in groups. Future versions of Julia might change the algorithm. Note that the
elements are not reordered if you use an ordered collection.
# Examples
```jldoctest
julia> reduce(*, [2; 3; 4])
24
julia> reduce(*, [2; 3; 4]; init=-1)
-24
```
"""
reduce(op, itr; kw...) = mapreduce(identity, op, itr; kw...)
reduce(op, a::Number) = a # Do we want this?
###### Specific reduction functions ######
## sum
"""
sum(f, itr)
Sum the results of calling function `f` on each element of `itr`.
The return type is `Int` for signed integers of less than system word size, and
`UInt` for unsigned integers of less than system word size. For all other
arguments, a common return type is found to which all arguments are promoted.
# Examples
```jldoctest
julia> sum(abs2, [2; 3; 4])
29
```
Note the important difference between `sum(A)` and `reduce(+, A)` for arrays
with small integer eltype:
```jldoctest
julia> sum(Int8[100, 28])
128
julia> reduce(+, Int8[100, 28])
-128
```
In the former case, the integers are widened to system word size and therefore
the result is 128. In the latter case, no such widening happens and integer
overflow results in -128.
"""
sum(f, a) = mapreduce(f, add_sum, a)
"""
sum(itr)
Returns the sum of all elements in a collection.
The return type is `Int` for signed integers of less than system word size, and
`UInt` for unsigned integers of less than system word size. For all other
arguments, a common return type is found to which all arguments are promoted.
# Examples
```jldoctest
julia> sum(1:20)
210
```
"""
sum(a) = sum(identity, a)
sum(a::AbstractArray{Bool}) = count(a)
## prod
"""
prod(f, itr)
Returns the product of `f` applied to each element of `itr`.
The return type is `Int` for signed integers of less than system word size, and
`UInt` for unsigned integers of less than system word size. For all other
arguments, a common return type is found to which all arguments are promoted.
# Examples
```jldoctest
julia> prod(abs2, [2; 3; 4])
576
```
"""
prod(f, a) = mapreduce(f, mul_prod, a)
"""
prod(itr)
Returns the product of all elements of a collection.
The return type is `Int` for signed integers of less than system word size, and
`UInt` for unsigned integers of less than system word size. For all other
arguments, a common return type is found to which all arguments are promoted.
# Examples
```jldoctest
julia> prod(1:20)
2432902008176640000
```
"""
prod(a) = mapreduce(identity, mul_prod, a)
## maximum & minimum
function mapreduce_impl(f, op::Union{typeof(max), typeof(min)},
A::AbstractArray, first::Int, last::Int)
# locate the first non NaN number
@inbounds a1 = A[first]
v = mapreduce_first(f, op, a1)
i = first + 1
while (v == v) && (i <= last)
@inbounds ai = A[i]
v = op(v, f(ai))
i += 1
end
v
end
maximum(f::Callable, a) = mapreduce(f, max, a)
minimum(f::Callable, a) = mapreduce(f, min, a)
"""
maximum(itr)
Returns the largest element in a collection.
# Examples
```jldoctest
julia> maximum(-20.5:10)
9.5
julia> maximum([1,2,3])
3
```
"""
maximum(a) = mapreduce(identity, max, a)
"""
minimum(itr)
Returns the smallest element in a collection.
# Examples
```jldoctest
julia> minimum(-20.5:10)
-20.5
julia> minimum([1,2,3])
1
```
"""
minimum(a) = mapreduce(identity, min, a)
## all & any
"""
any(itr) -> Bool
Test whether any elements of a boolean collection are `true`, returning `true` as
soon as the first `true` value in `itr` is encountered (short-circuiting).
If the input contains [`missing`](@ref) values, return `missing` if all non-missing
values are `false` (or equivalently, if the input contains no `true` value), following
[three-valued logic](https://en.wikipedia.org/wiki/Three-valued_logic).
# Examples
```jldoctest
julia> a = [true,false,false,true]
4-element Array{Bool,1}:
true
false
false
true
julia> any(a)
true
julia> any((println(i); v) for (i, v) in enumerate(a))
1
true
julia> any([missing, true])
true
julia> any([false, missing])
missing
```
"""
any(itr) = any(identity, itr)
"""
all(itr) -> Bool
Test whether all elements of a boolean collection are `true`, returning `false` as
soon as the first `false` value in `itr` is encountered (short-circuiting).
If the input contains [`missing`](@ref) values, return `missing` if all non-missing
values are `true` (or equivalently, if the input contains no `false` value), following
[three-valued logic](https://en.wikipedia.org/wiki/Three-valued_logic).
# Examples
```jldoctest
julia> a = [true,false,false,true]
4-element Array{Bool,1}:
true
false
false
true
julia> all(a)
false
julia> all((println(i); v) for (i, v) in enumerate(a))
1
2
false
julia> all([missing, false])
false
julia> all([true, missing])
missing
```
"""
all(itr) = all(identity, itr)
"""
any(p, itr) -> Bool
Determine whether predicate `p` returns `true` for any elements of `itr`, returning
`true` as soon as the first item in `itr` for which `p` returns `true` is encountered
(short-circuiting).
If the input contains [`missing`](@ref) values, return `missing` if all non-missing
values are `false` (or equivalently, if the input contains no `true` value), following
[three-valued logic](https://en.wikipedia.org/wiki/Three-valued_logic).
# Examples
```jldoctest
julia> any(i->(4<=i<=6), [3,5,7])
true
julia> any(i -> (println(i); i > 3), 1:10)
1
2
3
4
true
julia> any(i -> i > 0, [1, missing])
true
julia> any(i -> i > 0, [-1, missing])
missing
julia> any(i -> i > 0, [-1, 0])
false
```
"""
any(f, itr) = _any(f, itr, :)
function _any(f, itr, ::Colon)
anymissing = false
for x in itr
v = f(x)
if ismissing(v)
anymissing = true
elseif v
return true
end
end
return anymissing ? missing : false
end
"""
all(p, itr) -> Bool
Determine whether predicate `p` returns `true` for all elements of `itr`, returning
`false` as soon as the first item in `itr` for which `p` returns `false` is encountered
(short-circuiting).
If the input contains [`missing`](@ref) values, return `missing` if all non-missing
values are `true` (or equivalently, if the input contains no `false` value), following
[three-valued logic](https://en.wikipedia.org/wiki/Three-valued_logic).
# Examples
```jldoctest
julia> all(i->(4<=i<=6), [4,5,6])
true
julia> all(i -> (println(i); i < 3), 1:10)
1
2
3
false
julia> all(i -> i > 0, [1, missing])
missing
julia> all(i -> i > 0, [-1, missing])
false
julia> all(i -> i > 0, [1, 2])
true
```
"""
all(f, itr) = _all(f, itr, :)
function _all(f, itr, ::Colon)
anymissing = false
for x in itr
v = f(x)
if ismissing(v)
anymissing = true
# this syntax allows throwing a TypeError for non-Bool, for consistency with any
elseif v
continue
else
return false
end
end
return anymissing ? missing : true
end
## count
"""
count(p, itr) -> Integer
count(itr) -> Integer
Count the number of elements in `itr` for which predicate `p` returns `true`.
If `p` is omitted, counts the number of `true` elements in `itr` (which
should be a collection of boolean values).
# Examples
```jldoctest
julia> count(i->(4<=i<=6), [2,3,4,5,6])
3
julia> count([true, false, true, true])
3
```
"""
function count(pred, itr)
n = 0
for x in itr
n += pred(x)::Bool
end
return n
end
function count(pred, a::AbstractArray)
n = 0
for i in eachindex(a)
@inbounds n += pred(a[i])::Bool
end
return n
end
count(itr) = count(identity, itr)
|