1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875
|
# This file is a part of Julia. License is MIT: https://julialang.org/license
## Functions to compute the reduced shape
# for reductions that expand 0 dims to 1
reduced_index(i::OneTo) = OneTo(1)
reduced_index(i::Slice) = first(i):first(i)
reduced_index(i::AbstractUnitRange) =
throw(ArgumentError(
"""
No method is implemented for reducing index range of type $typeof(i). Please implement
reduced_index for this index type or report this as an issue.
"""
))
reduced_indices(a::AbstractArray, region) = reduced_indices(axes(a), region)
# for reductions that keep 0 dims as 0
reduced_indices0(a::AbstractArray, region) = reduced_indices0(axes(a), region)
function reduced_indices(inds::Indices{N}, d::Int) where N
d < 1 && throw(ArgumentError("dimension must be ≥ 1, got $d"))
if d == 1
return (reduced_index(inds[1]), tail(inds)...)
elseif 1 < d <= N
return tuple(inds[1:d-1]..., oftype(inds[d], reduced_index(inds[d])), inds[d+1:N]...)::typeof(inds)
else
return inds
end
end
function reduced_indices0(inds::Indices{N}, d::Int) where N
d < 1 && throw(ArgumentError("dimension must be ≥ 1, got $d"))
if d <= N
ind = inds[d]
rd = isempty(ind) ? ind : reduced_index(inds[d])
if d == 1
return (rd, tail(inds)...)
else
return tuple(inds[1:d-1]..., oftype(inds[d], rd), inds[d+1:N]...)::typeof(inds)
end
else
return inds
end
end
function reduced_indices(inds::Indices{N}, region) where N
rinds = [inds...]
for i in region
isa(i, Integer) || throw(ArgumentError("reduced dimension(s) must be integers"))
d = Int(i)
if d < 1
throw(ArgumentError("region dimension(s) must be ≥ 1, got $d"))
elseif d <= N
rinds[d] = reduced_index(rinds[d])
end
end
tuple(rinds...)::typeof(inds)
end
function reduced_indices0(inds::Indices{N}, region) where N
rinds = [inds...]
for i in region
isa(i, Integer) || throw(ArgumentError("reduced dimension(s) must be integers"))
d = Int(i)
if d < 1
throw(ArgumentError("region dimension(s) must be ≥ 1, got $d"))
elseif d <= N
rind = rinds[d]
rinds[d] = isempty(rind) ? rind : reduced_index(rind)
end
end
tuple(rinds...)::typeof(inds)
end
###### Generic reduction functions #####
## initialization
# initarray! is only called by sum!, prod!, etc.
for (Op, initfun) in ((:(typeof(add_sum)), :zero), (:(typeof(mul_prod)), :one))
@eval initarray!(a::AbstractArray{T}, ::$(Op), init::Bool, src::AbstractArray) where {T} = (init && fill!(a, $(initfun)(T)); a)
end
for Op in (:(typeof(max)), :(typeof(min)))
@eval initarray!(a::AbstractArray{T}, ::$(Op), init::Bool, src::AbstractArray) where {T} = (init && copyfirst!(a, src); a)
end
for (Op, initval) in ((:(typeof(&)), true), (:(typeof(|)), false))
@eval initarray!(a::AbstractArray, ::$(Op), init::Bool, src::AbstractArray) = (init && fill!(a, $initval); a)
end
# reducedim_initarray is called by
reducedim_initarray(A::AbstractArray, region, init, ::Type{R}) where {R} = fill!(similar(A,R,reduced_indices(A,region)), init)
reducedim_initarray(A::AbstractArray, region, init::T) where {T} = reducedim_initarray(A, region, init, T)
# TODO: better way to handle reducedim initialization
#
# The current scheme is basically following Steven G. Johnson's original implementation
#
promote_union(T::Union) = promote_type(promote_union(T.a), promote_union(T.b))
promote_union(T) = T
_realtype(::Type{<:Complex}) = Real
_realtype(::Type{Complex{T}}) where T<:Real = T
_realtype(T::Type) = T
_realtype(::Union{typeof(abs),typeof(abs2)}, T) = _realtype(T)
_realtype(::Any, T) = T
function reducedim_init(f, op::Union{typeof(+),typeof(add_sum)}, A::AbstractArray, region)
_reducedim_init(f, op, zero, sum, A, region)
end
function reducedim_init(f, op::Union{typeof(*),typeof(mul_prod)}, A::AbstractArray, region)
_reducedim_init(f, op, one, prod, A, region)
end
function _reducedim_init(f, op, fv, fop, A, region)
T = _realtype(f, promote_union(eltype(A)))
if T !== Any && applicable(zero, T)
x = f(zero(T))
z = op(fv(x), fv(x))
Tr = z isa T ? T : typeof(z)
else
z = fv(fop(f, A))
Tr = typeof(z)
end
return reducedim_initarray(A, region, z, Tr)
end
# initialization when computing minima and maxima requires a little care
for (f1, f2, initval) in ((:min, :max, :Inf), (:max, :min, :(-Inf)))
@eval function reducedim_init(f, op::typeof($f1), A::AbstractArray, region)
# First compute the reduce indices. This will throw an ArgumentError
# if any region is invalid
ri = reduced_indices(A, region)
# Next, throw if reduction is over a region with length zero
any(i -> isempty(axes(A, i)), region) && _empty_reduce_error()
# Make a view of the first slice of the region
A1 = view(A, ri...)
if isempty(A1)
# If the slice is empty just return non-view version as the initial array
return copy(A1)
else
# otherwise use the min/max of the first slice as initial value
v0 = mapreduce(f, $f2, A1)
# but NaNs need to be avoided as intial values
v0 = v0 != v0 ? typeof(v0)($initval) : v0
T = _realtype(f, promote_union(eltype(A)))
Tr = v0 isa T ? T : typeof(v0)
return reducedim_initarray(A, region, v0, Tr)
end
end
end
reducedim_init(f::Union{typeof(abs),typeof(abs2)}, op::typeof(max), A::AbstractArray{T}, region) where {T} =
reducedim_initarray(A, region, zero(f(zero(T))), _realtype(f, T))
reducedim_init(f, op::typeof(&), A::AbstractArray, region) = reducedim_initarray(A, region, true)
reducedim_init(f, op::typeof(|), A::AbstractArray, region) = reducedim_initarray(A, region, false)
# specialize to make initialization more efficient for common cases
let
BitIntFloat = Union{BitInteger, Math.IEEEFloat}
T = Union{
[AbstractArray{t} for t in uniontypes(BitIntFloat)]...,
[AbstractArray{Complex{t}} for t in uniontypes(BitIntFloat)]...}
global function reducedim_init(f, op::Union{typeof(+),typeof(add_sum)}, A::T, region)
z = zero(f(zero(eltype(A))))
reducedim_initarray(A, region, op(z, z))
end
global function reducedim_init(f, op::Union{typeof(*),typeof(mul_prod)}, A::T, region)
u = one(f(one(eltype(A))))
reducedim_initarray(A, region, op(u, u))
end
end
## generic (map)reduction
has_fast_linear_indexing(a::AbstractArray) = false
has_fast_linear_indexing(a::Array) = true
function check_reducedims(R, A)
# Check whether R has compatible dimensions w.r.t. A for reduction
#
# It returns an integer value (useful for choosing implementation)
# - If it reduces only along leading dimensions, e.g. sum(A, dims=1) or sum(A, dims=(1,2)),
# it returns the length of the leading slice. For the two examples above,
# it will be size(A, 1) or size(A, 1) * size(A, 2).
# - Otherwise, e.g. sum(A, dims=2) or sum(A, dims=(1,3)), it returns 0.
#
ndims(R) <= ndims(A) || throw(DimensionMismatch("cannot reduce $(ndims(A))-dimensional array to $(ndims(R)) dimensions"))
lsiz = 1
had_nonreduc = false
for i = 1:ndims(A)
Ri, Ai = axes(R, i), axes(A, i)
sRi, sAi = length(Ri), length(Ai)
if sRi == 1
if sAi > 1
if had_nonreduc
lsiz = 0 # to reduce along i, but some previous dimensions were non-reducing
else
lsiz *= sAi # if lsiz was set to zero, it will stay to be zero
end
end
else
Ri == Ai || throw(DimensionMismatch("reduction on array with indices $(axes(A)) with output with indices $(axes(R))"))
had_nonreduc = true
end
end
return lsiz
end
"""
Extract first entry of slices of array A into existing array R.
"""
copyfirst!(R::AbstractArray, A::AbstractArray) = mapfirst!(identity, R, A)
function mapfirst!(f, R::AbstractArray, A::AbstractArray)
lsiz = check_reducedims(R, A)
iA = axes(A)
iR = axes(R)
t = []
for i in 1:length(iR)
iAi = iA[i]
push!(t, iAi == iR[i] ? iAi : first(iAi))
end
map!(f, R, view(A, t...))
end
function _mapreducedim!(f, op, R::AbstractArray, A::AbstractArray)
lsiz = check_reducedims(R,A)
isempty(A) && return R
if has_fast_linear_indexing(A) && lsiz > 16
# use mapreduce_impl, which is probably better tuned to achieve higher performance
nslices = div(length(A), lsiz)
ibase = first(LinearIndices(A))-1
for i = 1:nslices
@inbounds R[i] = op(R[i], mapreduce_impl(f, op, A, ibase+1, ibase+lsiz))
ibase += lsiz
end
return R
end
indsAt, indsRt = safe_tail(axes(A)), safe_tail(axes(R)) # handle d=1 manually
keep, Idefault = Broadcast.shapeindexer(indsRt)
if reducedim1(R, A)
# keep the accumulator as a local variable when reducing along the first dimension
i1 = first(axes1(R))
@inbounds for IA in CartesianIndices(indsAt)
IR = Broadcast.newindex(IA, keep, Idefault)
r = R[i1,IR]
@simd for i in axes(A, 1)
r = op(r, f(A[i, IA]))
end
R[i1,IR] = r
end
else
@inbounds for IA in CartesianIndices(indsAt)
IR = Broadcast.newindex(IA, keep, Idefault)
@simd for i in axes(A, 1)
R[i,IR] = op(R[i,IR], f(A[i,IA]))
end
end
end
return R
end
mapreducedim!(f, op, R::AbstractArray, A::AbstractArray) =
(_mapreducedim!(f, op, R, A); R)
reducedim!(op, R::AbstractArray{RT}, A::AbstractArray) where {RT} =
mapreducedim!(identity, op, R, A)
"""
mapreduce(f, op, A::AbstractArray; dims=:, [init])
Evaluates to the same as `reduce(op, map(f, A); dims=dims, init=init)`, but is generally
faster because the intermediate array is avoided.
# Examples
```jldoctest
julia> a = reshape(Vector(1:16), (4,4))
4×4 Array{Int64,2}:
1 5 9 13
2 6 10 14
3 7 11 15
4 8 12 16
julia> mapreduce(isodd, *, a, dims=1)
1×4 Array{Bool,2}:
false false false false
julia> mapreduce(isodd, |, a, dims=1)
1×4 Array{Bool,2}:
true true true true
```
"""
mapreduce(f, op, A::AbstractArray; dims=:, kw...) = _mapreduce_dim(f, op, kw.data, A, dims)
_mapreduce_dim(f, op, nt::NamedTuple{(:init,)}, A::AbstractArray, ::Colon) = mapfoldl(f, op, A; nt...)
_mapreduce_dim(f, op, ::NamedTuple{()}, A::AbstractArray, ::Colon) = _mapreduce(f, op, IndexStyle(A), A)
_mapreduce_dim(f, op, nt::NamedTuple{(:init,)}, A::AbstractArray, dims) =
mapreducedim!(f, op, reducedim_initarray(A, dims, nt.init), A)
_mapreduce_dim(f, op, ::NamedTuple{()}, A::AbstractArray, dims) =
mapreducedim!(f, op, reducedim_init(f, op, A, dims), A)
"""
reduce(f, A; dims=:, [init])
Reduce 2-argument function `f` along dimensions of `A`. `dims` is a vector specifying the
dimensions to reduce, and the keyword argument `init` is the initial value to use in the
reductions. For `+`, `*`, `max` and `min` the `init` argument is optional.
The associativity of the reduction is implementation-dependent; if you need a particular
associativity, e.g. left-to-right, you should write your own loop or consider using
[`foldl`](@ref) or [`foldr`](@ref). See documentation for [`reduce`](@ref).
# Examples
```jldoctest
julia> a = reshape(Vector(1:16), (4,4))
4×4 Array{Int64,2}:
1 5 9 13
2 6 10 14
3 7 11 15
4 8 12 16
julia> reduce(max, a, dims=2)
4×1 Array{Int64,2}:
13
14
15
16
julia> reduce(max, a, dims=1)
1×4 Array{Int64,2}:
4 8 12 16
```
"""
reduce(op, A::AbstractArray; kw...) = mapreduce(identity, op, A; kw...)
##### Specific reduction functions #####
"""
sum(A::AbstractArray; dims)
Sum elements of an array over the given dimensions.
# Examples
```jldoctest
julia> A = [1 2; 3 4]
2×2 Array{Int64,2}:
1 2
3 4
julia> sum(A, dims=1)
1×2 Array{Int64,2}:
4 6
julia> sum(A, dims=2)
2×1 Array{Int64,2}:
3
7
```
"""
sum(A::AbstractArray; dims)
"""
sum!(r, A)
Sum elements of `A` over the singleton dimensions of `r`, and write results to `r`.
# Examples
```jldoctest
julia> A = [1 2; 3 4]
2×2 Array{Int64,2}:
1 2
3 4
julia> sum!([1; 1], A)
2-element Array{Int64,1}:
3
7
julia> sum!([1 1], A)
1×2 Array{Int64,2}:
4 6
```
"""
sum!(r, A)
"""
prod(A::AbstractArray; dims)
Multiply elements of an array over the given dimensions.
# Examples
```jldoctest
julia> A = [1 2; 3 4]
2×2 Array{Int64,2}:
1 2
3 4
julia> prod(A, dims=1)
1×2 Array{Int64,2}:
3 8
julia> prod(A, dims=2)
2×1 Array{Int64,2}:
2
12
```
"""
prod(A::AbstractArray; dims)
"""
prod!(r, A)
Multiply elements of `A` over the singleton dimensions of `r`, and write results to `r`.
# Examples
```jldoctest
julia> A = [1 2; 3 4]
2×2 Array{Int64,2}:
1 2
3 4
julia> prod!([1; 1], A)
2-element Array{Int64,1}:
2
12
julia> prod!([1 1], A)
1×2 Array{Int64,2}:
3 8
```
"""
prod!(r, A)
"""
maximum(A::AbstractArray; dims)
Compute the maximum value of an array over the given dimensions. See also the
[`max(a,b)`](@ref) function to take the maximum of two or more arguments,
which can be applied elementwise to arrays via `max.(a,b)`.
# Examples
```jldoctest
julia> A = [1 2; 3 4]
2×2 Array{Int64,2}:
1 2
3 4
julia> maximum(A, dims=1)
1×2 Array{Int64,2}:
3 4
julia> maximum(A, dims=2)
2×1 Array{Int64,2}:
2
4
```
"""
maximum(A::AbstractArray; dims)
"""
maximum!(r, A)
Compute the maximum value of `A` over the singleton dimensions of `r`, and write results to `r`.
# Examples
```jldoctest
julia> A = [1 2; 3 4]
2×2 Array{Int64,2}:
1 2
3 4
julia> maximum!([1; 1], A)
2-element Array{Int64,1}:
2
4
julia> maximum!([1 1], A)
1×2 Array{Int64,2}:
3 4
```
"""
maximum!(r, A)
"""
minimum(A::AbstractArray; dims)
Compute the minimum value of an array over the given dimensions. See also the
[`min(a,b)`](@ref) function to take the minimum of two or more arguments,
which can be applied elementwise to arrays via `min.(a,b)`.
# Examples
```jldoctest
julia> A = [1 2; 3 4]
2×2 Array{Int64,2}:
1 2
3 4
julia> minimum(A, dims=1)
1×2 Array{Int64,2}:
1 2
julia> minimum(A, dims=2)
2×1 Array{Int64,2}:
1
3
```
"""
minimum(A::AbstractArray; dims)
"""
minimum!(r, A)
Compute the minimum value of `A` over the singleton dimensions of `r`, and write results to `r`.
# Examples
```jldoctest
julia> A = [1 2; 3 4]
2×2 Array{Int64,2}:
1 2
3 4
julia> minimum!([1; 1], A)
2-element Array{Int64,1}:
1
3
julia> minimum!([1 1], A)
1×2 Array{Int64,2}:
1 2
```
"""
minimum!(r, A)
"""
all(A; dims)
Test whether all values along the given dimensions of an array are `true`.
# Examples
```jldoctest
julia> A = [true false; true true]
2×2 Array{Bool,2}:
true false
true true
julia> all(A, dims=1)
1×2 Array{Bool,2}:
true false
julia> all(A, dims=2)
2×1 Array{Bool,2}:
false
true
```
"""
all(A::AbstractArray; dims)
"""
all!(r, A)
Test whether all values in `A` along the singleton dimensions of `r` are `true`, and write results to `r`.
# Examples
```jldoctest
julia> A = [true false; true false]
2×2 Array{Bool,2}:
true false
true false
julia> all!([1; 1], A)
2-element Array{Int64,1}:
0
0
julia> all!([1 1], A)
1×2 Array{Int64,2}:
1 0
```
"""
all!(r, A)
"""
any(A; dims)
Test whether any values along the given dimensions of an array are `true`.
# Examples
```jldoctest
julia> A = [true false; true false]
2×2 Array{Bool,2}:
true false
true false
julia> any(A, dims=1)
1×2 Array{Bool,2}:
true false
julia> any(A, dims=2)
2×1 Array{Bool,2}:
true
true
```
"""
any(::AbstractArray; dims)
"""
any!(r, A)
Test whether any values in `A` along the singleton dimensions of `r` are `true`, and write
results to `r`.
# Examples
```jldoctest
julia> A = [true false; true false]
2×2 Array{Bool,2}:
true false
true false
julia> any!([1; 1], A)
2-element Array{Int64,1}:
1
1
julia> any!([1 1], A)
1×2 Array{Int64,2}:
1 0
```
"""
any!(r, A)
for (fname, _fname, op) in [(:sum, :_sum, :add_sum), (:prod, :_prod, :mul_prod),
(:maximum, :_maximum, :max), (:minimum, :_minimum, :min)]
@eval begin
# User-facing methods with keyword arguments
@inline ($fname)(a::AbstractArray; dims=:) = ($_fname)(a, dims)
@inline ($fname)(f::Callable, a::AbstractArray; dims=:) = ($_fname)(f, a, dims)
# Underlying implementations using dispatch
($_fname)(a, ::Colon) = ($_fname)(identity, a, :)
($_fname)(f, a, ::Colon) = mapreduce(f, $op, a)
end
end
any(a::AbstractArray; dims=:) = _any(a, dims)
any(f::Function, a::AbstractArray; dims=:) = _any(f, a, dims)
_any(a, ::Colon) = _any(identity, a, :)
all(a::AbstractArray; dims=:) = _all(a, dims)
all(f::Function, a::AbstractArray; dims=:) = _all(f, a, dims)
_all(a, ::Colon) = _all(identity, a, :)
for (fname, op) in [(:sum, :add_sum), (:prod, :mul_prod),
(:maximum, :max), (:minimum, :min),
(:all, :&), (:any, :|)]
fname! = Symbol(fname, '!')
_fname = Symbol('_', fname)
@eval begin
$(fname!)(f::Function, r::AbstractArray, A::AbstractArray; init::Bool=true) =
mapreducedim!(f, $(op), initarray!(r, $(op), init, A), A)
$(fname!)(r::AbstractArray, A::AbstractArray; init::Bool=true) = $(fname!)(identity, r, A; init=init)
$(_fname)(A, dims) = $(_fname)(identity, A, dims)
$(_fname)(f, A, dims) = mapreduce(f, $(op), A, dims=dims)
end
end
##### findmin & findmax #####
# The initial values of Rval are not used if the corresponding indices in Rind are 0.
#
function findminmax!(f, Rval, Rind, A::AbstractArray{T,N}) where {T,N}
(isempty(Rval) || isempty(A)) && return Rval, Rind
lsiz = check_reducedims(Rval, A)
for i = 1:N
axes(Rval, i) == axes(Rind, i) || throw(DimensionMismatch("Find-reduction: outputs must have the same indices"))
end
# If we're reducing along dimension 1, for efficiency we can make use of a temporary.
# Otherwise, keep the result in Rval/Rind so that we traverse A in storage order.
indsAt, indsRt = safe_tail(axes(A)), safe_tail(axes(Rval))
keep, Idefault = Broadcast.shapeindexer(indsRt)
ks = keys(A)
y = iterate(ks)
zi = zero(eltype(ks))
if reducedim1(Rval, A)
i1 = first(axes1(Rval))
@inbounds for IA in CartesianIndices(indsAt)
IR = Broadcast.newindex(IA, keep, Idefault)
tmpRv = Rval[i1,IR]
tmpRi = Rind[i1,IR]
for i in axes(A,1)
k, kss = y::Tuple
tmpAv = A[i,IA]
if tmpRi == zi || (tmpRv == tmpRv && (tmpAv != tmpAv || f(tmpAv, tmpRv)))
tmpRv = tmpAv
tmpRi = k
end
y = iterate(ks, kss)
end
Rval[i1,IR] = tmpRv
Rind[i1,IR] = tmpRi
end
else
@inbounds for IA in CartesianIndices(indsAt)
IR = Broadcast.newindex(IA, keep, Idefault)
for i in axes(A, 1)
k, kss = y::Tuple
tmpAv = A[i,IA]
tmpRv = Rval[i,IR]
tmpRi = Rind[i,IR]
if tmpRi == zi || (tmpRv == tmpRv && (tmpAv != tmpAv || f(tmpAv, tmpRv)))
Rval[i,IR] = tmpAv
Rind[i,IR] = k
end
y = iterate(ks, kss)
end
end
end
Rval, Rind
end
"""
findmin!(rval, rind, A) -> (minval, index)
Find the minimum of `A` and the corresponding linear index along singleton
dimensions of `rval` and `rind`, and store the results in `rval` and `rind`.
`NaN` is treated as less than all other values.
"""
function findmin!(rval::AbstractArray, rind::AbstractArray, A::AbstractArray;
init::Bool=true)
findminmax!(isless, init && !isempty(A) ? fill!(rval, first(A)) : rval, fill!(rind,zero(eltype(keys(A)))), A)
end
"""
findmin(A; dims) -> (minval, index)
For an array input, returns the value and index of the minimum over the given dimensions.
`NaN` is treated as less than all other values.
# Examples
```jldoctest
julia> A = [1.0 2; 3 4]
2×2 Array{Float64,2}:
1.0 2.0
3.0 4.0
julia> findmin(A, dims=1)
([1.0 2.0], CartesianIndex{2}[CartesianIndex(1, 1) CartesianIndex(1, 2)])
julia> findmin(A, dims=2)
([1.0; 3.0], CartesianIndex{2}[CartesianIndex(1, 1); CartesianIndex(2, 1)])
```
"""
findmin(A::AbstractArray; dims=:) = _findmin(A, dims)
function _findmin(A, region)
ri = reduced_indices0(A, region)
if isempty(A)
if prod(map(length, reduced_indices(A, region))) != 0
throw(ArgumentError("collection slices must be non-empty"))
end
(similar(A, ri), zeros(eltype(keys(A)), ri))
else
findminmax!(isless, fill!(similar(A, ri), first(A)),
zeros(eltype(keys(A)), ri), A)
end
end
isgreater(a, b) = isless(b,a)
"""
findmax!(rval, rind, A) -> (maxval, index)
Find the maximum of `A` and the corresponding linear index along singleton
dimensions of `rval` and `rind`, and store the results in `rval` and `rind`.
`NaN` is treated as greater than all other values.
"""
function findmax!(rval::AbstractArray, rind::AbstractArray, A::AbstractArray;
init::Bool=true)
findminmax!(isgreater, init && !isempty(A) ? fill!(rval, first(A)) : rval, fill!(rind,zero(eltype(keys(A)))), A)
end
"""
findmax(A; dims) -> (maxval, index)
For an array input, returns the value and index of the maximum over the given dimensions.
`NaN` is treated as greater than all other values.
# Examples
```jldoctest
julia> A = [1.0 2; 3 4]
2×2 Array{Float64,2}:
1.0 2.0
3.0 4.0
julia> findmax(A, dims=1)
([3.0 4.0], CartesianIndex{2}[CartesianIndex(2, 1) CartesianIndex(2, 2)])
julia> findmax(A, dims=2)
([2.0; 4.0], CartesianIndex{2}[CartesianIndex(1, 2); CartesianIndex(2, 2)])
```
"""
findmax(A::AbstractArray; dims=:) = _findmax(A, dims)
function _findmax(A, region)
ri = reduced_indices0(A, region)
if isempty(A)
if prod(map(length, reduced_indices(A, region))) != 0
throw(ArgumentError("collection slices must be non-empty"))
end
similar(A, ri), zeros(eltype(keys(A)), ri)
else
findminmax!(isgreater, fill!(similar(A, ri), first(A)),
zeros(eltype(keys(A)), ri), A)
end
end
reducedim1(R, A) = length(axes1(R)) == 1
"""
argmin(A; dims) -> indices
For an array input, return the indices of the minimum elements over the given dimensions.
`NaN` is treated as less than all other values.
# Examples
```jldoctest
julia> A = [1.0 2; 3 4]
2×2 Array{Float64,2}:
1.0 2.0
3.0 4.0
julia> argmin(A, dims=1)
1×2 Array{CartesianIndex{2},2}:
CartesianIndex(1, 1) CartesianIndex(1, 2)
julia> argmin(A, dims=2)
2×1 Array{CartesianIndex{2},2}:
CartesianIndex(1, 1)
CartesianIndex(2, 1)
```
"""
argmin(A::AbstractArray; dims=:) = findmin(A; dims=dims)[2]
"""
argmax(A; dims) -> indices
For an array input, return the indices of the maximum elements over the given dimensions.
`NaN` is treated as greater than all other values.
# Examples
```jldoctest
julia> A = [1.0 2; 3 4]
2×2 Array{Float64,2}:
1.0 2.0
3.0 4.0
julia> argmax(A, dims=1)
1×2 Array{CartesianIndex{2},2}:
CartesianIndex(2, 1) CartesianIndex(2, 2)
julia> argmax(A, dims=2)
2×1 Array{CartesianIndex{2},2}:
CartesianIndex(1, 2)
CartesianIndex(2, 2)
```
"""
argmax(A::AbstractArray; dims=:) = findmax(A; dims=dims)[2]
|