1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129
|
# This file is a part of Julia. License is MIT: https://julialang.org/license
# name and module reflection
"""
nameof(m::Module) -> Symbol
Get the name of a `Module` as a `Symbol`.
# Examples
```jldoctest
julia> nameof(Base.Broadcast)
:Broadcast
```
"""
nameof(m::Module) = ccall(:jl_module_name, Ref{Symbol}, (Any,), m)
"""
parentmodule(m::Module) -> Module
Get a module's enclosing `Module`. `Main` is its own parent.
# Examples
```jldoctest
julia> parentmodule(Main)
Main
julia> parentmodule(Base.Broadcast)
Base
```
"""
parentmodule(m::Module) = ccall(:jl_module_parent, Ref{Module}, (Any,), m)
"""
moduleroot(m::Module) -> Module
Find the root module of a given module. This is the first module in the chain of
parent modules of `m` which is either a registered root module or which is its
own parent module.
"""
function moduleroot(m::Module)
while true
is_root_module(m) && return m
p = parentmodule(m)
p == m && return m
m = p
end
end
"""
@__MODULE__ -> Module
Get the `Module` of the toplevel eval,
which is the `Module` code is currently being read from.
"""
macro __MODULE__()
return __module__
end
"""
fullname(m::Module)
Get the fully-qualified name of a module as a tuple of symbols. For example,
# Examples
```jldoctest
julia> fullname(Base.Iterators)
(:Base, :Iterators)
julia> fullname(Main)
(:Main,)
```
"""
function fullname(m::Module)
mn = nameof(m)
if m === Main || m === Base || m === Core
return (mn,)
end
mp = parentmodule(m)
if mp === m
return (mn,)
end
return (fullname(mp)..., mn)
end
"""
names(x::Module; all::Bool = false, imported::Bool = false)
Get an array of the names exported by a `Module`, excluding deprecated names.
If `all` is true, then the list also includes non-exported names defined in the module,
deprecated names, and compiler-generated names.
If `imported` is true, then names explicitly imported from other modules
are also included.
As a special case, all names defined in `Main` are considered \"exported\",
since it is not idiomatic to explicitly export names from `Main`.
"""
names(m::Module; all::Bool = false, imported::Bool = false) =
sort!(ccall(:jl_module_names, Array{Symbol,1}, (Any, Cint, Cint), m, all, imported))
isexported(m::Module, s::Symbol) = ccall(:jl_module_exports_p, Cint, (Any, Any), m, s) != 0
isdeprecated(m::Module, s::Symbol) = ccall(:jl_is_binding_deprecated, Cint, (Any, Any), m, s) != 0
isbindingresolved(m::Module, var::Symbol) = ccall(:jl_binding_resolved_p, Cint, (Any, Any), m, var) != 0
function binding_module(m::Module, s::Symbol)
p = ccall(:jl_get_module_of_binding, Ptr{Cvoid}, (Any, Any), m, s)
p == C_NULL && return m
return unsafe_pointer_to_objref(p)::Module
end
function resolve(g::GlobalRef; force::Bool=false)
if force || isbindingresolved(g.mod, g.name)
return GlobalRef(binding_module(g.mod, g.name), g.name)
end
return g
end
const NamedTuple_typename = NamedTuple.body.body.name
function _fieldnames(@nospecialize t)
if t.name === NamedTuple_typename
if t.parameters[1] isa Tuple
return t.parameters[1]
else
throw(ArgumentError("type does not have definite field names"))
end
end
isdefined(t, :names) ? t.names : t.name.names
end
"""
fieldname(x::DataType, i::Integer)
Get the name of field `i` of a `DataType`.
# Examples
```jldoctest
julia> fieldname(Rational, 1)
:num
julia> fieldname(Rational, 2)
:den
```
"""
function fieldname(t::DataType, i::Integer)
if t.abstract
throw(ArgumentError("type does not have definite field names"))
end
names = _fieldnames(t)
n_fields = length(names)
field_label = n_fields == 1 ? "field" : "fields"
i > n_fields && throw(ArgumentError("Cannot access field $i since type $t only has $n_fields $field_label."))
i < 1 && throw(ArgumentError("Field numbers must be positive integers. $i is invalid."))
return names[i]::Symbol
end
fieldname(t::UnionAll, i::Integer) = fieldname(unwrap_unionall(t), i)
fieldname(t::Type{<:Tuple}, i::Integer) =
i < 1 || i > fieldcount(t) ? throw(BoundsError(t, i)) : Int(i)
"""
fieldnames(x::DataType)
Get a tuple with the names of the fields of a `DataType`.
# Examples
```jldoctest
julia> fieldnames(Rational)
(:num, :den)
```
"""
fieldnames(t::DataType) = (fieldcount(t); # error check to make sure type is specific enough
(_fieldnames(t)...,))
fieldnames(t::UnionAll) = fieldnames(unwrap_unionall(t))
fieldnames(::Core.TypeofBottom) =
throw(ArgumentError("The empty type does not have field names since it does not have instances."))
fieldnames(t::Type{<:Tuple}) = ntuple(identity, fieldcount(t))
"""
nameof(t::DataType) -> Symbol
Get the name of a (potentially `UnionAll`-wrapped) `DataType` (without its parent module)
as a symbol.
# Examples
```jldoctest
julia> module Foo
struct S{T}
end
end
Foo
julia> nameof(Foo.S{T} where T)
:S
```
"""
nameof(t::DataType) = t.name.name
nameof(t::UnionAll) = nameof(unwrap_unionall(t))
"""
parentmodule(t::DataType) -> Module
Determine the module containing the definition of a (potentially `UnionAll`-wrapped) `DataType`.
# Examples
```jldoctest
julia> module Foo
struct Int end
end
Foo
julia> parentmodule(Int)
Core
julia> parentmodule(Foo.Int)
Foo
```
"""
parentmodule(t::DataType) = t.name.module
parentmodule(t::UnionAll) = parentmodule(unwrap_unionall(t))
"""
isconst(m::Module, s::Symbol) -> Bool
Determine whether a global is declared `const` in a given `Module`.
"""
isconst(m::Module, s::Symbol) =
ccall(:jl_is_const, Cint, (Any, Any), m, s) != 0
"""
@isdefined s -> Bool
Tests whether variable `s` is defined in the current scope.
# Examples
```jldoctest
julia> function f()
println(@isdefined x)
x = 3
println(@isdefined x)
end
f (generic function with 1 method)
julia> f()
false
true
```
"""
macro isdefined(s::Symbol)
return Expr(:isdefined, esc(s))
end
"""
objectid(x)
Get a hash value for `x` based on object identity. `objectid(x)==objectid(y)` if `x === y`.
"""
objectid(@nospecialize(x)) = ccall(:jl_object_id, UInt, (Any,), x)
# concrete datatype predicates
struct DataTypeLayout
nfields::UInt32
alignment::UInt32
# alignment : 28;
# haspadding : 1;
# pointerfree : 1;
# fielddesc_type : 2;
end
"""
Base.datatype_alignment(dt::DataType) -> Int
Memory allocation minimum alignment for instances of this type.
Can be called on any `isconcretetype`.
"""
function datatype_alignment(dt::DataType)
@_pure_meta
dt.layout == C_NULL && throw(UndefRefError())
alignment = unsafe_load(convert(Ptr{DataTypeLayout}, dt.layout)).alignment
return Int(alignment & 0x1FF)
end
"""
Base.datatype_haspadding(dt::DataType) -> Bool
Return whether the fields of instances of this type are packed in memory,
with no intervening padding bytes.
Can be called on any `isconcretetype`.
"""
function datatype_haspadding(dt::DataType)
@_pure_meta
dt.layout == C_NULL && throw(UndefRefError())
alignment = unsafe_load(convert(Ptr{DataTypeLayout}, dt.layout)).alignment
return (alignment >> 9) & 1 == 1
end
"""
Base.datatype_pointerfree(dt::DataType) -> Bool
Return whether instances of this type can contain references to gc-managed memory.
Can be called on any `isconcretetype`.
"""
function datatype_pointerfree(dt::DataType)
@_pure_meta
dt.layout == C_NULL && throw(UndefRefError())
alignment = unsafe_load(convert(Ptr{DataTypeLayout}, dt.layout)).alignment
return (alignment >> 10) & 0xFFFFF == 0
end
"""
Base.datatype_fielddesc_type(dt::DataType) -> Int
Return the size in bytes of each field-description entry in the layout array,
located at `(dt.layout + sizeof(DataTypeLayout))`.
Can be called on any `isconcretetype`.
See also [`Base.fieldoffset`](@ref).
"""
function datatype_fielddesc_type(dt::DataType)
@_pure_meta
dt.layout == C_NULL && throw(UndefRefError())
alignment = unsafe_load(convert(Ptr{DataTypeLayout}, dt.layout)).alignment
return (alignment >> 30) & 3
end
"""
isimmutable(v) -> Bool
Return `true` iff value `v` is immutable. See [Mutable Composite Types](@ref)
for a discussion of immutability. Note that this function works on values, so if you give it
a type, it will tell you that a value of `DataType` is mutable.
# Examples
```jldoctest
julia> isimmutable(1)
true
julia> isimmutable([1,2])
false
```
"""
isimmutable(@nospecialize(x)) = (@_pure_meta; !typeof(x).mutable)
"""
Base.isstructtype(T) -> Bool
Determine whether type `T` was declared as a struct type
(i.e. using the `struct` or `mutable struct` keyword).
"""
function isstructtype(@nospecialize(t::Type))
@_pure_meta
t = unwrap_unionall(t)
# TODO: what to do for `Union`?
isa(t, DataType) || return false
return length(t.types) != 0 || (t.size == 0 && !t.abstract)
end
"""
Base.isprimitivetype(T) -> Bool
Determine whether type `T` was declared as a primitive type
(i.e. using the `primitive` keyword).
"""
function isprimitivetype(@nospecialize(t::Type))
@_pure_meta
t = unwrap_unionall(t)
# TODO: what to do for `Union`?
isa(t, DataType) || return false
return length(t.types) == 0 && t.size != 0 && !t.abstract
end
"""
isbitstype(T)
Return `true` if type `T` is a "plain data" type,
meaning it is immutable and contains no references to other values,
only `primitive` types and other `isbitstype` types.
Typical examples are numeric types such as [`UInt8`](@ref),
[`Float64`](@ref), and [`Complex{Float64}`](@ref).
This category of types is significant since they are valid as type parameters,
may not track [`isdefined`](@ref) / [`isassigned`](@ref) status,
and have a defined layout that is compatible with C.
# Examples
```jldoctest
julia> isbitstype(Complex{Float64})
true
julia> isbitstype(Complex)
false
```
"""
isbitstype(@nospecialize(t::Type)) = (@_pure_meta; isa(t, DataType) && t.isbitstype)
"""
isbits(x)
Return `true` if `x` is an instance of an `isbitstype` type.
"""
isbits(@nospecialize x) = (@_pure_meta; typeof(x).isbitstype)
"""
isdispatchtuple(T)
Determine whether type `T` is a tuple "leaf type",
meaning it could appear as a type signature in dispatch
and has no subtypes (or supertypes) which could appear in a call.
"""
isdispatchtuple(@nospecialize(t)) = (@_pure_meta; isa(t, DataType) && t.isdispatchtuple)
iskindtype(@nospecialize t) = (t === DataType || t === UnionAll || t === Union || t === typeof(Bottom))
isconcretedispatch(@nospecialize t) = isconcretetype(t) && !iskindtype(t)
has_free_typevars(@nospecialize(t)) = ccall(:jl_has_free_typevars, Cint, (Any,), t) != 0
# equivalent to isa(v, Type) && isdispatchtuple(Tuple{v}) || v === Union{}
# and is thus perhaps most similar to the old (pre-1.0) `isleaftype` query
const _TYPE_NAME = Type.body.name
function isdispatchelem(@nospecialize v)
return (v === Bottom) || (v === typeof(Bottom)) || isconcretedispatch(v) ||
(isa(v, DataType) && v.name === _TYPE_NAME && !has_free_typevars(v)) # isType(v)
end
"""
isconcretetype(T)
Determine whether type `T` is a concrete type, meaning it could have direct instances
(values `x` such that `typeof(x) === T`).
# Examples
```jldoctest
julia> isconcretetype(Complex)
false
julia> isconcretetype(Complex{Float32})
true
julia> isconcretetype(Vector{Complex})
true
julia> isconcretetype(Vector{Complex{Float32}})
true
julia> isconcretetype(Union{})
false
julia> isconcretetype(Union{Int,String})
false
```
"""
isconcretetype(@nospecialize(t)) = (@_pure_meta; isa(t, DataType) && t.isconcretetype)
"""
Base.isabstracttype(T)
Determine whether type `T` was declared as an abstract type
(i.e. using the `abstract` keyword).
# Examples
```jldoctest
julia> Base.isabstracttype(AbstractArray)
true
julia> Base.isabstracttype(Vector)
false
```
"""
function isabstracttype(@nospecialize(t))
@_pure_meta
t = unwrap_unionall(t)
# TODO: what to do for `Union`?
return isa(t, DataType) && t.abstract
end
"""
Base.parameter_upper_bound(t::UnionAll, idx)
Determine the upper bound of a type parameter in the underlying datatype.
This method should generally not be relied upon:
code instead should usually use static parameters in dispatch to extract these values.
# Examples
```jldoctest
julia> struct Foo{T<:AbstractFloat, N}
x::Tuple{T, N}
end
julia> Base.parameter_upper_bound(Foo, 1)
AbstractFloat
julia> Base.parameter_upper_bound(Foo, 2)
Any
```
"""
function parameter_upper_bound(t::UnionAll, idx)
@_pure_meta
return rewrap_unionall((unwrap_unionall(t)::DataType).parameters[idx], t)
end
"""
typeintersect(T, S)
Compute a type that contains the intersection of `T` and `S`. Usually this will be the
smallest such type or one close to it.
"""
typeintersect(@nospecialize(a),@nospecialize(b)) = (@_pure_meta; ccall(:jl_type_intersection, Any, (Any,Any), a, b))
"""
fieldoffset(type, i)
The byte offset of field `i` of a type relative to the data start. For example, we could
use it in the following manner to summarize information about a struct:
```jldoctest
julia> structinfo(T) = [(fieldoffset(T,i), fieldname(T,i), fieldtype(T,i)) for i = 1:fieldcount(T)];
julia> structinfo(Base.Filesystem.StatStruct)
12-element Array{Tuple{UInt64,Symbol,DataType},1}:
(0x0000000000000000, :device, UInt64)
(0x0000000000000008, :inode, UInt64)
(0x0000000000000010, :mode, UInt64)
(0x0000000000000018, :nlink, Int64)
(0x0000000000000020, :uid, UInt64)
(0x0000000000000028, :gid, UInt64)
(0x0000000000000030, :rdev, UInt64)
(0x0000000000000038, :size, Int64)
(0x0000000000000040, :blksize, Int64)
(0x0000000000000048, :blocks, Int64)
(0x0000000000000050, :mtime, Float64)
(0x0000000000000058, :ctime, Float64)
```
"""
fieldoffset(x::DataType, idx::Integer) = (@_pure_meta; ccall(:jl_get_field_offset, Csize_t, (Any, Cint), x, idx))
"""
fieldtype(T, name::Symbol | index::Int)
Determine the declared type of a field (specified by name or index) in a composite DataType `T`.
# Examples
```jldoctest
julia> struct Foo
x::Int64
y::String
end
julia> fieldtype(Foo, :x)
Int64
julia> fieldtype(Foo, 2)
String
```
"""
fieldtype
"""
fieldindex(T, name::Symbol, err:Bool=true)
Get the index of a named field, throwing an error if the field does not exist (when err==true)
or returning 0 (when err==false).
# Examples
```jldoctest
julia> struct Foo
x::Int64
y::String
end
julia> Base.fieldindex(Foo, :z)
ERROR: type Foo has no field z
Stacktrace:
[...]
julia> Base.fieldindex(Foo, :z, false)
0
```
"""
function fieldindex(T::DataType, name::Symbol, err::Bool=true)
return Int(ccall(:jl_field_index, Cint, (Any, Any, Cint), T, name, err)+1)
end
argument_datatype(@nospecialize t) = ccall(:jl_argument_datatype, Any, (Any,), t)
function argument_mt(@nospecialize t)
dt = argument_datatype(t)
(dt === nothing || !isdefined(dt.name, :mt)) && return nothing
dt.name.mt
end
"""
fieldcount(t::Type)
Get the number of fields that an instance of the given type would have.
An error is thrown if the type is too abstract to determine this.
"""
function fieldcount(@nospecialize t)
if t isa UnionAll || t isa Union
t = argument_datatype(t)
if t === nothing
throw(ArgumentError("type does not have a definite number of fields"))
end
t = t::DataType
elseif t == Union{}
throw(ArgumentError("The empty type does not have a well-defined number of fields since it does not have instances."))
end
if !(t isa DataType)
throw(TypeError(:fieldcount, "", Type, t))
end
if t.name === NamedTuple_typename
names, types = t.parameters
if names isa Tuple
return length(names)
end
if types isa DataType && types <: Tuple
return fieldcount(types)
end
abstr = true
else
abstr = t.abstract || (t.name === Tuple.name && isvatuple(t))
end
if abstr
throw(ArgumentError("type does not have a definite number of fields"))
end
return length(t.types)
end
# return all instances, for types that can be enumerated
"""
instances(T::Type)
Return a collection of all instances of the given type, if applicable. Mostly used for
enumerated types (see `@enum`).
# Example
```jldoctest
julia> @enum Color red blue green
julia> instances(Color)
(red::Color = 0, blue::Color = 1, green::Color = 2)
```
"""
function instances end
function to_tuple_type(@nospecialize(t))
@_pure_meta
if isa(t,Tuple) || isa(t,AbstractArray) || isa(t,SimpleVector)
t = Tuple{t...}
end
if isa(t,Type) && t<:Tuple
for p in unwrap_unionall(t).parameters
if !(isa(p,Type) || isa(p,TypeVar))
error("argument tuple type must contain only types")
end
end
else
error("expected tuple type")
end
t
end
function signature_type(@nospecialize(f), @nospecialize(args))
f_type = isa(f, Type) ? Type{f} : typeof(f)
if isa(args, Type)
u = unwrap_unionall(args)
return rewrap_unionall(Tuple{f_type, u.parameters...}, args)
else
return Tuple{f_type, args...}
end
end
"""
code_lowered(f, types; generated = true)
Return an array of the lowered forms (IR) for the methods matching the given generic function
and type signature.
If `generated` is `false`, the returned `CodeInfo` instances will correspond to fallback
implementations. An error is thrown if no fallback implementation exists.
If `generated` is `true`, these `CodeInfo` instances will correspond to the method bodies
yielded by expanding the generators.
Note that an error will be thrown if `types` are not leaf types when `generated` is
`true` and the corresponding method is a `@generated` method.
"""
function code_lowered(@nospecialize(f), @nospecialize(t = Tuple); generated::Bool = true)
return map(method_instances(f, t)) do m
if generated && isgenerated(m)
if isa(m, Core.MethodInstance)
return Core.Compiler.get_staged(m)
else # isa(m, Method)
error("Could not expand generator for `@generated` method ", m, ". ",
"This can happen if the provided argument types (", t, ") are ",
"not leaf types, but the `generated` argument is `true`.")
end
end
return uncompressed_ast(m)
end
end
isgenerated(m::Method) = isdefined(m, :generator)
isgenerated(m::Core.MethodInstance) = isgenerated(m.def)
# low-level method lookup functions used by the compiler
unionlen(x::Union) = unionlen(x.a) + unionlen(x.b)
unionlen(@nospecialize(x)) = 1
_uniontypes(x::Union, ts) = (_uniontypes(x.a,ts); _uniontypes(x.b,ts); ts)
_uniontypes(@nospecialize(x), ts) = (push!(ts, x); ts)
uniontypes(@nospecialize(x)) = _uniontypes(x, Any[])
function _methods(@nospecialize(f), @nospecialize(t), lim::Int, world::UInt)
tt = signature_type(f, t)
return _methods_by_ftype(tt, lim, world)
end
function _methods_by_ftype(@nospecialize(t), lim::Int, world::UInt)
return _methods_by_ftype(t, lim, world, UInt[typemin(UInt)], UInt[typemax(UInt)])
end
function _methods_by_ftype(@nospecialize(t), lim::Int, world::UInt, min::Array{UInt,1}, max::Array{UInt,1})
return ccall(:jl_matching_methods, Any, (Any, Cint, Cint, UInt, Ptr{UInt}, Ptr{UInt}), t, lim, 0, world, min, max)
end
# high-level, more convenient method lookup functions
# type for reflecting and pretty-printing a subset of methods
mutable struct MethodList
ms::Array{Method,1}
mt::Core.MethodTable
end
length(m::MethodList) = length(m.ms)
isempty(m::MethodList) = isempty(m.ms)
iterate(m::MethodList, s...) = iterate(m.ms, s...)
eltype(::Type{MethodList}) = Method
function MethodList(mt::Core.MethodTable)
ms = Method[]
visit(mt) do m
push!(ms, m)
end
return MethodList(ms, mt)
end
"""
methods(f, [types])
Returns the method table for `f`.
If `types` is specified, returns an array of methods whose types match.
"""
function methods(@nospecialize(f), @nospecialize(t))
if isa(f, Core.Builtin)
throw(ArgumentError("argument is not a generic function"))
end
t = to_tuple_type(t)
world = typemax(UInt)
return MethodList(Method[m[3] for m in _methods(f, t, -1, world)], typeof(f).name.mt)
end
methods(f::Core.Builtin) = MethodList(Method[], typeof(f).name.mt)
function methods_including_ambiguous(@nospecialize(f), @nospecialize(t))
tt = signature_type(f, t)
world = typemax(UInt)
min = UInt[typemin(UInt)]
max = UInt[typemax(UInt)]
ms = ccall(:jl_matching_methods, Any, (Any, Cint, Cint, UInt, Ptr{UInt}, Ptr{UInt}), tt, -1, 1, world, min, max)::Array{Any,1}
return MethodList(Method[m[3] for m in ms], typeof(f).name.mt)
end
function methods(@nospecialize(f))
# return all matches
return methods(f, Tuple{Vararg{Any}})
end
function visit(f, mt::Core.MethodTable)
mt.defs !== nothing && visit(f, mt.defs)
nothing
end
function visit(f, mc::Core.TypeMapLevel)
if mc.targ !== nothing
e = mc.targ::Vector{Any}
for i in 1:length(e)
isassigned(e, i) && visit(f, e[i])
end
end
if mc.arg1 !== nothing
e = mc.arg1::Vector{Any}
for i in 1:length(e)
isassigned(e, i) && visit(f, e[i])
end
end
mc.list !== nothing && visit(f, mc.list)
mc.any !== nothing && visit(f, mc.any)
nothing
end
function visit(f, d::Core.TypeMapEntry)
while d !== nothing
f(d.func)
d = d.next
end
nothing
end
function length(mt::Core.MethodTable)
n = 0
visit(mt) do m
n += 1
end
return n::Int
end
isempty(mt::Core.MethodTable) = (mt.defs === nothing)
uncompressed_ast(m::Method) = isdefined(m,:source) ? uncompressed_ast(m, m.source) :
isdefined(m,:generator) ? error("Method is @generated; try `code_lowered` instead.") :
error("Code for this Method is not available.")
uncompressed_ast(m::Method, s::CodeInfo) = s
uncompressed_ast(m::Method, s::Array{UInt8,1}) = ccall(:jl_uncompress_ast, Any, (Any, Any), m, s)::CodeInfo
uncompressed_ast(m::Core.MethodInstance) = uncompressed_ast(m.def)
function method_instances(@nospecialize(f), @nospecialize(t), world::UInt = typemax(UInt))
tt = signature_type(f, t)
results = Vector{Union{Method,Core.MethodInstance}}()
for method_data in _methods_by_ftype(tt, -1, world)
mtypes, msp, m = method_data
instance = Core.Compiler.code_for_method(m, mtypes, msp, world, false)
push!(results, ifelse(isa(instance, Core.MethodInstance), instance, m))
end
return results
end
# this type mirrors jl_cgparams_t (documented in julia.h)
struct CodegenParams
cached::Cint
track_allocations::Cint
code_coverage::Cint
static_alloc::Cint
prefer_specsig::Cint
module_setup::Any
module_activation::Any
raise_exception::Any
emit_function::Any
emitted_function::Any
CodegenParams(;cached::Bool=true,
track_allocations::Bool=true, code_coverage::Bool=true,
static_alloc::Bool=true, prefer_specsig::Bool=false,
module_setup=nothing, module_activation=nothing, raise_exception=nothing,
emit_function=nothing, emitted_function=nothing) =
new(Cint(cached),
Cint(track_allocations), Cint(code_coverage),
Cint(static_alloc), Cint(prefer_specsig),
module_setup, module_activation, raise_exception,
emit_function, emitted_function)
end
# give a decent error message if we try to instantiate a staged function on non-leaf types
function func_for_method_checked(m::Method, @nospecialize types)
if isdefined(m, :generator) && !isdispatchtuple(types)
error("cannot call @generated function `", m, "` ",
"with abstract argument types: ", types)
end
return m
end
"""
code_typed(f, types; optimize=true)
Returns an array of type-inferred lowered form (IR) for the methods matching the given
generic function and type signature. The keyword argument `optimize` controls whether
additional optimizations, such as inlining, are also applied.
"""
function code_typed(@nospecialize(f), @nospecialize(types=Tuple); optimize=true)
ccall(:jl_is_in_pure_context, Bool, ()) && error("code reflection cannot be used from generated functions")
if isa(f, Core.Builtin)
throw(ArgumentError("argument is not a generic function"))
end
types = to_tuple_type(types)
asts = []
world = ccall(:jl_get_world_counter, UInt, ())
params = Core.Compiler.Params(world)
for x in _methods(f, types, -1, world)
meth = func_for_method_checked(x[3], types)
(code, ty) = Core.Compiler.typeinf_code(meth, x[1], x[2], optimize, params)
code === nothing && error("inference not successful") # inference disabled?
push!(asts, code => ty)
end
return asts
end
function return_types(@nospecialize(f), @nospecialize(types=Tuple))
ccall(:jl_is_in_pure_context, Bool, ()) && error("code reflection cannot be used from generated functions")
if isa(f, Core.Builtin)
throw(ArgumentError("argument is not a generic function"))
end
types = to_tuple_type(types)
rt = []
world = ccall(:jl_get_world_counter, UInt, ())
params = Core.Compiler.Params(world)
for x in _methods(f, types, -1, world)
meth = func_for_method_checked(x[3], types)
ty = Core.Compiler.typeinf_type(meth, x[1], x[2], params)
ty === nothing && error("inference not successful") # inference disabled?
push!(rt, ty)
end
return rt
end
"""
which(f, types)
Returns the method of `f` (a `Method` object) that would be called for arguments of the given `types`.
If `types` is an abstract type, then the method that would be called by `invoke` is returned.
"""
function which(@nospecialize(f), @nospecialize(t))
if isa(f, Core.Builtin)
throw(ArgumentError("argument is not a generic function"))
end
t = to_tuple_type(t)
tt = signature_type(f, t)
m = ccall(:jl_gf_invoke_lookup, Any, (Any, UInt), tt, typemax(UInt))
if m === nothing
error("no unique matching method found for the specified argument types")
end
return m.func::Method
end
"""
which(module, symbol)
Return the module in which the binding for the variable referenced by `symbol` in `module` was created.
"""
function which(m::Module, s::Symbol)
if !isdefined(m, s)
error("\"$s\" is not defined in module $m")
end
return binding_module(m, s)
end
# function reflection
"""
nameof(f::Function) -> Symbol
Get the name of a generic `Function` as a symbol, or `:anonymous`.
"""
nameof(f::Function) = typeof(f).name.mt.name
functionloc(m::Core.MethodInstance) = functionloc(m.def)
"""
functionloc(m::Method)
Returns a tuple `(filename,line)` giving the location of a `Method` definition.
"""
function functionloc(m::Method)
ln = m.line
if ln <= 0
error("could not determine location of method definition")
end
return (find_source_file(string(m.file)), ln)
end
"""
functionloc(f::Function, types)
Returns a tuple `(filename,line)` giving the location of a generic `Function` definition.
"""
functionloc(@nospecialize(f), @nospecialize(types)) = functionloc(which(f,types))
function functionloc(@nospecialize(f))
mt = methods(f)
if isempty(mt)
if isa(f, Function)
error("function has no definitions")
else
error("object is not callable")
end
end
if length(mt) > 1
error("function has multiple methods; please specify a type signature")
end
return functionloc(first(mt))
end
"""
parentmodule(f::Function) -> Module
Determine the module containing the (first) definition of a generic
function.
"""
parentmodule(f::Function) = parentmodule(typeof(f))
"""
parentmodule(f::Function, types) -> Module
Determine the module containing a given definition of a generic function.
"""
function parentmodule(@nospecialize(f), @nospecialize(types))
m = methods(f, types)
if isempty(m)
error("no matching methods")
end
return first(m).module
end
"""
hasmethod(f, Tuple type; world = typemax(UInt)) -> Bool
Determine whether the given generic function has a method matching the given
`Tuple` of argument types with the upper bound of world age given by `world`.
See also [`applicable`](@ref).
# Examples
```jldoctest
julia> hasmethod(length, Tuple{Array})
true
```
"""
function hasmethod(@nospecialize(f), @nospecialize(t); world = typemax(UInt))
t = to_tuple_type(t)
t = signature_type(f, t)
return ccall(:jl_method_exists, Cint, (Any, Any, UInt), typeof(f).name.mt, t, world) != 0
end
"""
isambiguous(m1, m2; ambiguous_bottom=false) -> Bool
Determine whether two methods `m1` and `m2` (typically of the same
function) are ambiguous. This test is performed in the context of
other methods of the same function; in isolation, `m1` and `m2` might
be ambiguous, but if a third method resolving the ambiguity has been
defined, this returns `false`.
For parametric types, the `ambiguous_bottom` keyword argument controls whether
`Union{}` counts as an ambiguous intersection of type parameters – when `true`,
it is considered ambiguous, when `false` it is not.
# Examples
```jldoctest
julia> foo(x::Complex{<:Integer}) = 1
foo (generic function with 1 method)
julia> foo(x::Complex{<:Rational}) = 2
foo (generic function with 2 methods)
julia> m1, m2 = collect(methods(foo));
julia> typeintersect(m1.sig, m2.sig)
Tuple{#foo,Complex{Union{}}}
julia> Base.isambiguous(m1, m2, ambiguous_bottom=true)
true
julia> Base.isambiguous(m1, m2, ambiguous_bottom=false)
false
```
"""
function isambiguous(m1::Method, m2::Method; ambiguous_bottom::Bool=false)
ti = typeintersect(m1.sig, m2.sig)
ti === Bottom && return false
if !ambiguous_bottom
has_bottom_parameter(ti) && return false
end
ml = _methods_by_ftype(ti, -1, typemax(UInt))
isempty(ml) && return true
for m in ml
if ti <: m[3].sig
return false
end
end
return true
end
"""
delete_method(m::Method)
Make method `m` uncallable and force recompilation of any methods that use(d) it.
"""
function delete_method(m::Method)
ccall(:jl_method_table_disable, Cvoid, (Any, Any), get_methodtable(m), m)
end
function get_methodtable(m::Method)
ft = ccall(:jl_first_argument_datatype, Any, (Any,), m.sig)
(ft::DataType).name.mt
end
"""
has_bottom_parameter(t) -> Bool
Determine whether `t` is a Type for which one or more of its parameters is `Union{}`.
"""
function has_bottom_parameter(t::Type)
ret = false
for p in t.parameters
ret |= (p == Bottom) || has_bottom_parameter(p)
end
ret
end
has_bottom_parameter(t::UnionAll) = has_bottom_parameter(unwrap_unionall(t))
has_bottom_parameter(t::Union) = has_bottom_parameter(t.a) & has_bottom_parameter(t.b)
has_bottom_parameter(t::TypeVar) = t.ub == Bottom || has_bottom_parameter(t.ub)
has_bottom_parameter(::Any) = false
min_world(m::Method) = reinterpret(UInt, m.min_world)
max_world(m::Method) = reinterpret(UInt, m.max_world)
min_world(m::Core.MethodInstance) = reinterpret(UInt, m.min_world)
max_world(m::Core.MethodInstance) = reinterpret(UInt, m.max_world)
"""
propertynames(x, private=false)
Get a tuple or a vector of the properties (`x.property`) of an object `x`.
This is typically the same as [`fieldnames(typeof(x))`](@ref), but types
that overload [`getproperty`](@ref) should generally overload `propertynames`
as well to get the properties of an instance of the type.
`propertynames(x)` may return only "public" property names that are part
of the documented interface of `x`. If you want it to also return "private"
fieldnames intended for internal use, pass `true` for the optional second argument.
REPL tab completion on `x.` shows only the `private=false` properties.
"""
propertynames(x) = fieldnames(typeof(x))
propertynames(m::Module) = names(m)
propertynames(x, private) = propertynames(x) # ignore private flag by default
|