1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
|
# This file is a part of Julia. License is MIT: https://julialang.org/license
"""
Gives a reinterpreted view (of element type T) of the underlying array (of element type S).
If the size of `T` differs from the size of `S`, the array will be compressed/expanded in
the first dimension.
"""
struct ReinterpretArray{T,N,S,A<:AbstractArray{S, N}} <: AbstractArray{T, N}
parent::A
readable::Bool
writable::Bool
global reinterpret
function reinterpret(::Type{T}, a::A) where {T,N,S,A<:AbstractArray{S, N}}
function throwbits(::Type{S}, ::Type{T}, ::Type{U}) where {S,T,U}
@_noinline_meta
throw(ArgumentError("cannot reinterpret `$(S)` `$(T)`, type `$(U)` is not a bits type"))
end
function throwsize0(::Type{S}, ::Type{T})
@_noinline_meta
throw(ArgumentError("cannot reinterpret a zero-dimensional `$(S)` array to `$(T)` which is of a different size"))
end
function thrownonint(::Type{S}, ::Type{T}, dim)
@_noinline_meta
throw(ArgumentError("""
cannot reinterpret an `$(S)` array to `$(T)` whose first dimension has size `$(dim)`.
The resulting array would have non-integral first dimension.
"""))
end
function throwaxes1(::Type{S}, ::Type{T}, ax1)
@_noinline_meta
throw(ArgumentError("cannot reinterpret a `$(S)` array to `$(T)` when the first axis is $ax1. Try reshaping first."))
end
isbitstype(T) || throwbits(S, T, T)
isbitstype(S) || throwbits(S, T, S)
(N != 0 || sizeof(T) == sizeof(S)) || throwsize0(S, T)
ax1 = axes(a)[1]
if N != 0 && sizeof(S) != sizeof(T)
dim = length(ax1)
rem(dim*sizeof(S),sizeof(T)) == 0 || thrownonint(S, T, dim)
first(ax1) == 1 || throwaxes1(S, T, ax1)
end
readable = array_subpadding(T, S)
writable = array_subpadding(S, T)
new{T, N, S, A}(a, readable, writable)
end
end
function check_readable(a::ReinterpretArray{T, N, S} where N) where {T,S}
# See comment in check_writable
if !a.readable && !array_subpadding(T, S)
throw(PaddingError(T, S))
end
end
function check_writable(a::ReinterpretArray{T, N, S} where N) where {T,S}
# `array_subpadding` is relatively expensive (compared to a simple arrayref),
# so it is cached in the array. However, it is computable at compile time if,
# inference has the types available. By using this form of the check, we can
# get the best of both worlds for the success case. If the types were not
# available to inference, we simply need to check the field (relatively cheap)
# and if they were we should be able to fold this check away entirely.
if !a.writable && !array_subpadding(S, T)
throw(PaddingError(T, S))
end
end
IndexStyle(a::ReinterpretArray) = IndexStyle(a.parent)
parent(a::ReinterpretArray) = a.parent
dataids(a::ReinterpretArray) = dataids(a.parent)
function size(a::ReinterpretArray{T,N,S} where {N}) where {T,S}
psize = size(a.parent)
size1 = div(psize[1]*sizeof(S), sizeof(T))
tuple(size1, tail(psize)...)
end
function axes(a::ReinterpretArray{T,N,S} where {N}) where {T,S}
paxs = axes(a.parent)
f, l = first(paxs[1]), length(paxs[1])
size1 = div(l*sizeof(S), sizeof(T))
tuple(oftype(paxs[1], f:f+size1-1), tail(paxs)...)
end
elsize(::Type{<:ReinterpretArray{T}}) where {T} = sizeof(T)
unsafe_convert(::Type{Ptr{T}}, a::ReinterpretArray{T,N,S} where N) where {T,S} = Ptr{T}(unsafe_convert(Ptr{S},a.parent))
@inline @propagate_inbounds getindex(a::ReinterpretArray{T,0}) where {T} = reinterpret(T, a.parent[])
@inline @propagate_inbounds getindex(a::ReinterpretArray) = a[1]
@inline @propagate_inbounds function getindex(a::ReinterpretArray{T,N,S}, inds::Vararg{Int, N}) where {T,N,S}
check_readable(a)
_getindex_ra(a, inds[1], tail(inds))
end
@inline @propagate_inbounds function getindex(a::ReinterpretArray{T,N,S}, i::Int) where {T,N,S}
check_readable(a)
if isa(IndexStyle(a), IndexLinear)
return _getindex_ra(a, i, ())
end
# Convert to full indices here, to avoid needing multiple conversions in
# the loop in _getindex_ra
inds = _to_subscript_indices(a, i)
_getindex_ra(a, inds[1], tail(inds))
end
@inline _memcpy!(dst, src, n) = ccall(:memcpy, Cvoid, (Ptr{UInt8}, Ptr{UInt8}, Csize_t), dst, src, n)
@inline @propagate_inbounds function _getindex_ra(a::ReinterpretArray{T,N,S}, i1::Int, tailinds::TT) where {T,N,S,TT}
# Make sure to match the scalar reinterpret if that is applicable
if sizeof(T) == sizeof(S) && (fieldcount(T) + fieldcount(S)) == 0
return reinterpret(T, a.parent[i1, tailinds...])
else
@boundscheck checkbounds(a, i1, tailinds...)
ind_start, sidx = divrem((i1-1)*sizeof(T), sizeof(S))
t = Ref{T}()
s = Ref{S}()
GC.@preserve t s begin
tptr = Ptr{UInt8}(unsafe_convert(Ref{T}, t))
sptr = Ptr{UInt8}(unsafe_convert(Ref{S}, s))
i = 1
nbytes_copied = 0
# This is a bit complicated to deal with partial elements
# at both the start and the end. LLVM will fold as appropriate,
# once it knows the data layout
while nbytes_copied < sizeof(T)
s[] = a.parent[ind_start + i, tailinds...]
nb = min(sizeof(S) - sidx, sizeof(T)-nbytes_copied)
_memcpy!(tptr + nbytes_copied, sptr + sidx, nb)
nbytes_copied += nb
sidx = 0
i += 1
end
end
return t[]
end
end
@inline @propagate_inbounds setindex!(a::ReinterpretArray{T,0,S} where T, v) where {S} = (a.parent[] = reinterpret(S, v))
@inline @propagate_inbounds setindex!(a::ReinterpretArray, v) = (a[1] = v)
@inline @propagate_inbounds function setindex!(a::ReinterpretArray{T,N,S}, v, inds::Vararg{Int, N}) where {T,N,S}
check_writable(a)
_setindex_ra!(a, v, inds[1], tail(inds))
end
@inline @propagate_inbounds function setindex!(a::ReinterpretArray{T,N,S}, v, i::Int) where {T,N,S}
check_writable(a)
if isa(IndexStyle(a), IndexLinear)
return _setindex_ra!(a, v, i, ())
end
inds = _to_subscript_indices(a, i)
_setindex_ra!(a, v, inds[1], tail(inds))
end
@inline @propagate_inbounds function _setindex_ra!(a::ReinterpretArray{T,N,S}, v, i1::Int, tailinds::TT) where {T,N,S,TT}
v = convert(T, v)::T
# Make sure to match the scalar reinterpret if that is applicable
if sizeof(T) == sizeof(S) && (fieldcount(T) + fieldcount(S)) == 0
return setindex!(a.parent, reinterpret(S, v), i1, tailinds...)
else
@boundscheck checkbounds(a, i1, tailinds...)
ind_start, sidx = divrem((i1-1)*sizeof(T), sizeof(S))
t = Ref{T}(v)
s = Ref{S}()
GC.@preserve t s begin
tptr = Ptr{UInt8}(unsafe_convert(Ref{T}, t))
sptr = Ptr{UInt8}(unsafe_convert(Ref{S}, s))
nbytes_copied = 0
i = 1
# Deal with any partial elements at the start. We'll have to copy in the
# element from the original array and overwrite the relevant parts
if sidx != 0
s[] = a.parent[ind_start + i, tailinds...]
nb = min(sizeof(S) - sidx, sizeof(T))
_memcpy!(sptr + sidx, tptr, nb)
nbytes_copied += nb
a.parent[ind_start + i, tailinds...] = s[]
i += 1
sidx = 0
end
# Deal with the main body of elements
while nbytes_copied < sizeof(T) && (sizeof(T) - nbytes_copied) > sizeof(S)
nb = min(sizeof(S), sizeof(T) - nbytes_copied)
_memcpy!(sptr, tptr + nbytes_copied, nb)
nbytes_copied += nb
a.parent[ind_start + i, tailinds...] = s[]
i += 1
end
# Deal with trailing partial elements
if nbytes_copied < sizeof(T)
s[] = a.parent[ind_start + i, tailinds...]
nb = min(sizeof(S), sizeof(T) - nbytes_copied)
_memcpy!(sptr, tptr + nbytes_copied, nb)
a.parent[ind_start + i, tailinds...] = s[]
end
end
end
return a
end
# Padding
struct Padding
offset::Int
size::Int
end
function intersect(p1::Padding, p2::Padding)
start = max(p1.offset, p2.offset)
stop = min(p1.offset + p1.size, p2.offset + p2.size)
Padding(start, max(0, stop-start))
end
struct PaddingError
S::Type
T::Type
end
function showerror(io::IO, p::PaddingError)
print(io, "Padding of type $(p.S) is not compatible with type $(p.T).")
end
"""
CyclePadding(padding, total_size)
Cylces an iterator of `Padding` structs, restarting the padding at `total_size`.
E.g. if `padding` is all the padding in a struct and `total_size` is the total
aligned size of that array, `CyclePadding` will correspond to the padding in an
infinite vector of such structs.
"""
struct CyclePadding{P}
padding::P
total_size::Int
end
eltype(::Type{<:CyclePadding}) = Padding
IteratorSize(::Type{<:CyclePadding}) = IsInfinite()
isempty(cp::CyclePadding) = isempty(cp.padding)
function iterate(cp::CyclePadding)
y = iterate(cp.padding)
y === nothing && return nothing
y[1], (0, y[2])
end
function iterate(cp::CyclePadding, state::Tuple)
y = iterate(cp.padding, tail(state)...)
y === nothing && return iterate(cp, (state[1]+cp.total_size,))
Padding(y[1].offset+state[1], y[1].size), (state[1], tail(y)...)
end
"""
Compute the location of padding in a type.
"""
function padding(T)
padding = Padding[]
last_end::Int = 0
for i = 1:fieldcount(T)
offset = fieldoffset(T, i)
fT = fieldtype(T, i)
if offset != last_end
push!(padding, Padding(offset, offset-last_end))
end
last_end = offset + sizeof(fT)
end
padding
end
function CyclePadding(T::DataType)
a, s = datatype_alignment(T), sizeof(T)
as = s + (a - (s % a)) % a
pad = padding(T)
s != as && push!(pad, Padding(s, as - s))
CyclePadding(pad, as)
end
using .Iterators: Stateful
@pure function array_subpadding(S, T)
checked_size = 0
lcm_size = lcm(sizeof(S), sizeof(T))
s, t = Stateful{<:Any, Any}(CyclePadding(S)),
Stateful{<:Any, Any}(CyclePadding(T))
isempty(t) && return true
isempty(s) && return false
while checked_size < lcm_size
# Take padding in T
pad = popfirst!(t)
# See if there's corresponding padding in S
while true
ps = peek(s)
ps.offset > pad.offset && return false
intersect(ps, pad) == pad && break
popfirst!(s)
end
checked_size = pad.offset + pad.size
end
return true
end
|