File: reinterpretarray.jl

package info (click to toggle)
julia 1.0.3%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 49,452 kB
  • sloc: lisp: 236,453; ansic: 55,579; cpp: 25,603; makefile: 1,685; pascal: 1,130; sh: 956; asm: 86; xml: 76
file content (295 lines) | stat: -rw-r--r-- 10,967 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
# This file is a part of Julia. License is MIT: https://julialang.org/license

"""
Gives a reinterpreted view (of element type T) of the underlying array (of element type S).
If the size of `T` differs from the size of `S`, the array will be compressed/expanded in
the first dimension.
"""
struct ReinterpretArray{T,N,S,A<:AbstractArray{S, N}} <: AbstractArray{T, N}
    parent::A
    readable::Bool
    writable::Bool
    global reinterpret
    function reinterpret(::Type{T}, a::A) where {T,N,S,A<:AbstractArray{S, N}}
        function throwbits(::Type{S}, ::Type{T}, ::Type{U}) where {S,T,U}
            @_noinline_meta
            throw(ArgumentError("cannot reinterpret `$(S)` `$(T)`, type `$(U)` is not a bits type"))
        end
        function throwsize0(::Type{S}, ::Type{T})
            @_noinline_meta
            throw(ArgumentError("cannot reinterpret a zero-dimensional `$(S)` array to `$(T)` which is of a different size"))
        end
        function thrownonint(::Type{S}, ::Type{T}, dim)
            @_noinline_meta
            throw(ArgumentError("""
                cannot reinterpret an `$(S)` array to `$(T)` whose first dimension has size `$(dim)`.
                The resulting array would have non-integral first dimension.
                """))
        end
        function throwaxes1(::Type{S}, ::Type{T}, ax1)
            @_noinline_meta
            throw(ArgumentError("cannot reinterpret a `$(S)` array to `$(T)` when the first axis is $ax1. Try reshaping first."))
        end
        isbitstype(T) || throwbits(S, T, T)
        isbitstype(S) || throwbits(S, T, S)
        (N != 0 || sizeof(T) == sizeof(S)) || throwsize0(S, T)
        ax1 = axes(a)[1]
        if N != 0 && sizeof(S) != sizeof(T)
            dim = length(ax1)
            rem(dim*sizeof(S),sizeof(T)) == 0 || thrownonint(S, T, dim)
            first(ax1) == 1 || throwaxes1(S, T, ax1)
        end
        readable = array_subpadding(T, S)
        writable = array_subpadding(S, T)
        new{T, N, S, A}(a, readable, writable)
    end
end

function check_readable(a::ReinterpretArray{T, N, S} where N) where {T,S}
    # See comment in check_writable
    if !a.readable && !array_subpadding(T, S)
        throw(PaddingError(T, S))
    end
end

function check_writable(a::ReinterpretArray{T, N, S} where N) where {T,S}
    # `array_subpadding` is relatively expensive (compared to a simple arrayref),
    # so it is cached in the array. However, it is computable at compile time if,
    # inference has the types available. By using this form of the check, we can
    # get the best of both worlds for the success case. If the types were not
    # available to inference, we simply need to check the field (relatively cheap)
    # and if they were we should be able to fold this check away entirely.
    if !a.writable && !array_subpadding(S, T)
        throw(PaddingError(T, S))
    end
end

IndexStyle(a::ReinterpretArray) = IndexStyle(a.parent)

parent(a::ReinterpretArray) = a.parent
dataids(a::ReinterpretArray) = dataids(a.parent)

function size(a::ReinterpretArray{T,N,S} where {N}) where {T,S}
    psize = size(a.parent)
    size1 = div(psize[1]*sizeof(S), sizeof(T))
    tuple(size1, tail(psize)...)
end

function axes(a::ReinterpretArray{T,N,S} where {N}) where {T,S}
    paxs = axes(a.parent)
    f, l = first(paxs[1]), length(paxs[1])
    size1 = div(l*sizeof(S), sizeof(T))
    tuple(oftype(paxs[1], f:f+size1-1), tail(paxs)...)
end

elsize(::Type{<:ReinterpretArray{T}}) where {T} = sizeof(T)
unsafe_convert(::Type{Ptr{T}}, a::ReinterpretArray{T,N,S} where N) where {T,S} = Ptr{T}(unsafe_convert(Ptr{S},a.parent))

@inline @propagate_inbounds getindex(a::ReinterpretArray{T,0}) where {T} = reinterpret(T, a.parent[])
@inline @propagate_inbounds getindex(a::ReinterpretArray) = a[1]

@inline @propagate_inbounds function getindex(a::ReinterpretArray{T,N,S}, inds::Vararg{Int, N}) where {T,N,S}
    check_readable(a)
    _getindex_ra(a, inds[1], tail(inds))
end

@inline @propagate_inbounds function getindex(a::ReinterpretArray{T,N,S}, i::Int) where {T,N,S}
    check_readable(a)
    if isa(IndexStyle(a), IndexLinear)
        return _getindex_ra(a, i, ())
    end
    # Convert to full indices here, to avoid needing multiple conversions in
    # the loop in _getindex_ra
    inds = _to_subscript_indices(a, i)
    _getindex_ra(a, inds[1], tail(inds))
end

@inline _memcpy!(dst, src, n) = ccall(:memcpy, Cvoid, (Ptr{UInt8}, Ptr{UInt8}, Csize_t), dst, src, n)

@inline @propagate_inbounds function _getindex_ra(a::ReinterpretArray{T,N,S}, i1::Int, tailinds::TT) where {T,N,S,TT}
    # Make sure to match the scalar reinterpret if that is applicable
    if sizeof(T) == sizeof(S) && (fieldcount(T) + fieldcount(S)) == 0
        return reinterpret(T, a.parent[i1, tailinds...])
    else
        @boundscheck checkbounds(a, i1, tailinds...)
        ind_start, sidx = divrem((i1-1)*sizeof(T), sizeof(S))
        t = Ref{T}()
        s = Ref{S}()
        GC.@preserve t s begin
            tptr = Ptr{UInt8}(unsafe_convert(Ref{T}, t))
            sptr = Ptr{UInt8}(unsafe_convert(Ref{S}, s))
            i = 1
            nbytes_copied = 0
            # This is a bit complicated to deal with partial elements
            # at both the start and the end. LLVM will fold as appropriate,
            # once it knows the data layout
            while nbytes_copied < sizeof(T)
                s[] = a.parent[ind_start + i, tailinds...]
                nb = min(sizeof(S) - sidx, sizeof(T)-nbytes_copied)
                _memcpy!(tptr + nbytes_copied, sptr + sidx, nb)
                nbytes_copied += nb
                sidx = 0
                i += 1
            end
        end
        return t[]
    end
end


@inline @propagate_inbounds setindex!(a::ReinterpretArray{T,0,S} where T, v) where {S} = (a.parent[] = reinterpret(S, v))
@inline @propagate_inbounds setindex!(a::ReinterpretArray, v) = (a[1] = v)

@inline @propagate_inbounds function setindex!(a::ReinterpretArray{T,N,S}, v, inds::Vararg{Int, N}) where {T,N,S}
    check_writable(a)
    _setindex_ra!(a, v, inds[1], tail(inds))
end

@inline @propagate_inbounds function setindex!(a::ReinterpretArray{T,N,S}, v, i::Int) where {T,N,S}
    check_writable(a)
    if isa(IndexStyle(a), IndexLinear)
        return _setindex_ra!(a, v, i, ())
    end
    inds = _to_subscript_indices(a, i)
    _setindex_ra!(a, v, inds[1], tail(inds))
end

@inline @propagate_inbounds function _setindex_ra!(a::ReinterpretArray{T,N,S}, v, i1::Int, tailinds::TT) where {T,N,S,TT}
    v = convert(T, v)::T
    # Make sure to match the scalar reinterpret if that is applicable
    if sizeof(T) == sizeof(S) && (fieldcount(T) + fieldcount(S)) == 0
        return setindex!(a.parent, reinterpret(S, v), i1, tailinds...)
    else
        @boundscheck checkbounds(a, i1, tailinds...)
        ind_start, sidx = divrem((i1-1)*sizeof(T), sizeof(S))
        t = Ref{T}(v)
        s = Ref{S}()
        GC.@preserve t s begin
            tptr = Ptr{UInt8}(unsafe_convert(Ref{T}, t))
            sptr = Ptr{UInt8}(unsafe_convert(Ref{S}, s))
            nbytes_copied = 0
            i = 1
            # Deal with any partial elements at the start. We'll have to copy in the
            # element from the original array and overwrite the relevant parts
            if sidx != 0
                s[] = a.parent[ind_start + i, tailinds...]
                nb = min(sizeof(S) - sidx, sizeof(T))
                _memcpy!(sptr + sidx, tptr, nb)
                nbytes_copied += nb
                a.parent[ind_start + i, tailinds...] = s[]
                i += 1
                sidx = 0
            end
            # Deal with the main body of elements
            while nbytes_copied < sizeof(T) && (sizeof(T) - nbytes_copied) > sizeof(S)
                nb = min(sizeof(S), sizeof(T) - nbytes_copied)
                _memcpy!(sptr, tptr + nbytes_copied, nb)
                nbytes_copied += nb
                a.parent[ind_start + i, tailinds...] = s[]
                i += 1
            end
            # Deal with trailing partial elements
            if nbytes_copied < sizeof(T)
                s[] = a.parent[ind_start + i, tailinds...]
                nb = min(sizeof(S), sizeof(T) - nbytes_copied)
                _memcpy!(sptr, tptr + nbytes_copied, nb)
                a.parent[ind_start + i, tailinds...] = s[]
            end
        end
    end
    return a
end

# Padding
struct Padding
    offset::Int
    size::Int
end
function intersect(p1::Padding, p2::Padding)
    start = max(p1.offset, p2.offset)
    stop = min(p1.offset + p1.size, p2.offset + p2.size)
    Padding(start, max(0, stop-start))
end

struct PaddingError
    S::Type
    T::Type
end

function showerror(io::IO, p::PaddingError)
    print(io, "Padding of type $(p.S) is not compatible with type $(p.T).")
end

"""
    CyclePadding(padding, total_size)

Cylces an iterator of `Padding` structs, restarting the padding at `total_size`.
E.g. if `padding` is all the padding in a struct and `total_size` is the total
aligned size of that array, `CyclePadding` will correspond to the padding in an
infinite vector of such structs.
"""
struct CyclePadding{P}
    padding::P
    total_size::Int
end
eltype(::Type{<:CyclePadding}) = Padding
IteratorSize(::Type{<:CyclePadding}) = IsInfinite()
isempty(cp::CyclePadding) = isempty(cp.padding)
function iterate(cp::CyclePadding)
    y = iterate(cp.padding)
    y === nothing && return nothing
    y[1], (0, y[2])
end
function iterate(cp::CyclePadding, state::Tuple)
    y = iterate(cp.padding, tail(state)...)
    y === nothing && return iterate(cp, (state[1]+cp.total_size,))
    Padding(y[1].offset+state[1], y[1].size), (state[1], tail(y)...)
end

"""
    Compute the location of padding in a type.
"""
function padding(T)
    padding = Padding[]
    last_end::Int = 0
    for i = 1:fieldcount(T)
        offset = fieldoffset(T, i)
        fT = fieldtype(T, i)
        if offset != last_end
            push!(padding, Padding(offset, offset-last_end))
        end
        last_end = offset + sizeof(fT)
    end
    padding
end

function CyclePadding(T::DataType)
    a, s = datatype_alignment(T), sizeof(T)
    as = s + (a - (s % a)) % a
    pad = padding(T)
    s != as && push!(pad, Padding(s, as - s))
    CyclePadding(pad, as)
end

using .Iterators: Stateful
@pure function array_subpadding(S, T)
    checked_size = 0
    lcm_size = lcm(sizeof(S), sizeof(T))
    s, t = Stateful{<:Any, Any}(CyclePadding(S)),
           Stateful{<:Any, Any}(CyclePadding(T))
    isempty(t) && return true
    isempty(s) && return false
    while checked_size < lcm_size
        # Take padding in T
        pad = popfirst!(t)
        # See if there's corresponding padding in S
        while true
            ps = peek(s)
            ps.offset > pad.offset && return false
            intersect(ps, pad) == pad && break
            popfirst!(s)
        end
        checked_size = pad.offset + pad.size
    end
    return true
end