1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
|
# This file is a part of Julia. License is MIT: https://julialang.org/license
# sinh, cosh, tanh, asinh, acosh, and atanh are heavily based on FDLIBM code:
# e_sinh.c, e_sinhf, e_cosh.c, e_coshf, s_tanh.c, s_tanhf.c, s_asinh.c,
# s_asinhf.c, e_acosh.c, e_coshf.c, e_atanh.c, and e_atanhf.c
# that are made available under the following licence:
# ====================================================
# Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
#
# Developed at SunSoft, a Sun Microsystems, Inc. business.
# Permission to use, copy, modify, and distribute this
# software is freely granted, provided that this notice
# is preserved.
# ====================================================
_ldexp_exp(x::Float64, i::Int32) = ccall(("__ldexp_exp", libm), Float64, (Float64, Int32), x, i)
_ldexp_exp(x::Float32, i::Int32) = ccall(("__ldexp_expf",libm), Float32, (Float32, Int32), x, i)
_ldexp_exp(x::Real, i::Int32) = _ldexp_exp(float(x), i)
# Hyperbolic functions
# sinh methods
H_SMALL_X(::Type{Float64}) = 2.0^-28
H_MEDIUM_X(::Type{Float64}) = 22.0
H_SMALL_X(::Type{Float32}) = 2f-12
H_MEDIUM_X(::Type{Float32}) = 9f0
H_LARGE_X(::Type{Float64}) = 709.7822265633563 # nextfloat(709.7822265633562)
H_OVERFLOW_X(::Type{Float64}) = 710.475860073944 # nextfloat(710.4758600739439)
H_LARGE_X(::Type{Float32}) = 88.72283f0
H_OVERFLOW_X(::Type{Float32}) = 89.415985f0
function sinh(x::T) where T <: Union{Float32, Float64}
# Method
# mathematically sinh(x) is defined to be (exp(x)-exp(-x))/2
# 1. Replace x by |x| (sinh(-x) = -sinh(x)).
# 2. Find the branch and the expression to calculate and return it
# a) 0 <= x < H_SMALL_X
# return x
# b) H_SMALL_X <= x < H_MEDIUM_X
# return sinh(x) = (E + E/(E+1))/2, where E=expm1(x)
# c) H_MEDIUM_X <= x < H_LARGE_X
# return sinh(x) = exp(x)/2
# d) H_LARGE_X <= x < H_OVERFLOW_X
# return sinh(x) = exp(x/2)/2 * exp(x/2)
# e) H_OVERFLOW_X <= x
# return sinh(x) = T(Inf)
#
# Notes:
# only sinh(0) = 0 is exact for finite x.
isnan(x) && return x
absx = abs(x)
h = T(0.5)
if x < 0
h = -h
end
# in a) or b)
if absx < H_MEDIUM_X(T)
# in a)
if absx < H_SMALL_X(T)
return x
end
t = expm1(absx)
if absx < T(1)
return h*(T(2)*t - t*t/(t + T(1)))
end
return h*(t + t/(t + T(1)))
end
# in c)
if absx < H_LARGE_X(T)
return h*exp(absx)
end
# in d)
if absx < H_OVERFLOW_X(T)
return h*T(2)*_ldexp_exp(absx, Int32(-1))
end
# in e)
return copysign(T(Inf), x)
end
sinh(x::Real) = sinh(float(x))
# cosh methods
COSH_SMALL_X(::Type{Float32}) = 0.00024414062f0
COSH_SMALL_X(::Type{Float64}) = 2.7755602085408512e-17
function cosh(x::T) where T <: Union{Float32, Float64}
# Method
# mathematically cosh(x) is defined to be (exp(x)+exp(-x))/2
# 1. Replace x by |x| (cosh(x) = cosh(-x)).
# 2. Find the branch and the expression to calculate and return it
# a) x <= COSH_SMALL_X
# return T(1)
# b) COSH_SMALL_X <= x <= ln2/2
# return 1+expm1(|x|)^2/(2*exp(|x|))
# c) ln2/2 <= x <= H_MEDIUM_X
# return (exp(|x|)+1/exp(|x|)/2
# d) H_MEDIUM_X <= x < H_LARGE_X
# return cosh(x) = exp(x)/2
# e) H_LARGE_X <= x < H_OVERFLOW_X
# return cosh(x) = exp(x/2)/2 * exp(x/2)
# f) H_OVERFLOW_X <= x
# return cosh(x) = T(Inf)
isnan(x) && return x
absx = abs(x)
h = T(0.5)
# in a) or b)
if absx < log(T(2))/2
# in a)
if absx < COSH_SMALL_X(T)
return T(1)
end
t = expm1(absx)
w = T(1) + t
return T(1) + (t*t)/(w + w)
end
# in c)
if absx < H_MEDIUM_X(T)
t = exp(absx)
return h*t + h/t
end
# in d)
if absx < H_LARGE_X(T)
return h*exp(absx)
end
# in e)
if absx < H_OVERFLOW_X(T)
return _ldexp_exp(absx, Int32(-1))
end
# in f)
return T(Inf)
end
cosh(x::Real) = cosh(float(x))
# tanh methods
TANH_LARGE_X(::Type{Float64}) = 22.0
TANH_LARGE_X(::Type{Float32}) = 9.0f0
function tanh(x::T) where T<:Union{Float32, Float64}
# Method
# mathematically tanh(x) is defined to be (exp(x)-exp(-x))/(exp(x)+exp(-x))
# 1. reduce x to non-negative by tanh(-x) = -tanh(x).
# 2. Find the branch and the expression to calculate and return it
# a) 0 <= x < H_SMALL_X
# return x
# b) H_SMALL_X <= x < 1
# -expm1(-2x)/(expm1(-2x) + 2)
# c) 1 <= x < TANH_LARGE_X
# 1 - 2/(expm1(2x) + 2)
# d) TANH_LARGE_X <= x
# return 1
if isnan(x)
return x
elseif isinf(x)
return copysign(T(1), x)
end
absx = abs(x)
if absx < TANH_LARGE_X(T)
# in a)
if absx < H_SMALL_X(T)
return x
end
if absx >= T(1)
# in c)
t = expm1(T(2)*absx)
z = T(1) - T(2)/(t + T(2))
else
# in b)
t = expm1(-T(2)*absx)
z = -t/(t + T(2))
end
else
# in d)
z = T(1)
end
return copysign(z, x)
end
tanh(x::Real) = tanh(float(x))
# Inverse hyperbolic functions
AH_LN2(::Type{Float64}) = 6.93147180559945286227e-01
AH_LN2(::Type{Float32}) = 6.9314718246f-01
# asinh methods
function asinh(x::T) where T <: Union{Float32, Float64}
# Method
# mathematically asinh(x) = sign(x)*log(|x| + sqrt(x*x + 1))
# is the principle value of the inverse hyperbolic sine
# 1. Find the branch and the expression to calculate and return it
# a) |x| < 2^-28
# return x
# b) |x| < 2
# return sign(x)*log1p(|x| + x^2/(1 + sqrt(1+x^2)))
# c) 2 <= |x| < 2^28
# return sign(x)*log(2|x|+1/(|x|+sqrt(x*x+1)))
# d) |x| >= 2^28
# return sign(x)*(log(x)+ln2))
if isnan(x) || isinf(x)
return x
end
absx = abs(x)
if absx < T(2)
# in a)
if absx < T(2)^-28
return x
end
# in b)
t = x*x
w = log1p(absx + t/(T(1) + sqrt(T(1) + t)))
elseif absx < T(2)^28
# in c)
t = absx
w = log(T(2)*t + T(1)/(sqrt(x*x + T(1)) + t))
else
# in d)
w = log(absx) + AH_LN2(T)
end
return copysign(w, x)
end
asinh(x::Real) = asinh(float(x))
# acosh methods
@noinline acosh_domain_error(x) = throw(DomainError(x, "acosh(x) is only defined for x ≥ 1."))
function acosh(x::T) where T <: Union{Float32, Float64}
# Method
# mathematically acosh(x) if defined to be log(x + sqrt(x*x-1))
# 1. Find the branch and the expression to calculate and return it
# a) x = 1
# return log1p(t+sqrt(2.0*t+t*t)) where t=x-1.
# b) 1 < x < 2
# return log1p(t+sqrt(2.0*t+t*t)) where t=x-1.
# c) 2 <= x <
# return log(2x-1/(sqrt(x*x-1)+x))
# d) x >= 2^28
# return log(x)+ln2
# Special cases:
# if x < 1 throw DomainError
isnan(x) && return x
if x < T(1)
return acosh_domain_error(x)
elseif x == T(1)
# in a)
return T(0)
elseif x < T(2)
# in b)
t = x - T(1)
return log1p(t + sqrt(T(2)*t + t*t))
elseif x < T(2)^28
# in c)
t = x*x
return log(T(2)*x - T(1)/(x+sqrt(t - T(1))))
else
# in d)
return log(x) + AH_LN2(T)
end
end
acosh(x::Real) = acosh(float(x))
# atanh methods
@noinline atanh_domain_error(x) = throw(DomainError(x, "atanh(x) is only defined for |x| ≤ 1."))
function atanh(x::T) where T <: Union{Float32, Float64}
# Method
# 1.Reduced x to positive by atanh(-x) = -atanh(x)
# 2. Find the branch and the expression to calculate and return it
# a) 0 <= x < 2^-28
# return x
# b) 2^-28 <= x < 0.5
# return 0.5*log1p(2x+2x*x/(1-x))
# c) 0.5 <= x < 1
# return 0.5*log1p(2x/1-x)
# d) x = 1
# return Inf
# Special cases:
# if |x| > 1 throw DomainError
isnan(x) && return x
absx = abs(x)
if absx > 1
atanh_domain_error(x)
end
if absx < T(2)^-28
# in a)
return x
end
if absx < T(0.5)
# in b)
t = absx+absx
t = T(0.5)*log1p(t+t*absx/(T(1)-absx))
elseif absx < T(1)
# in c)
t = T(0.5)*log1p((absx + absx)/(T(1)-absx))
elseif absx == T(1)
# in d)
return copysign(T(Inf), x)
end
return copysign(t, x)
end
atanh(x::Real) = atanh(float(x))
|