1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
|
# This file is a part of Julia. Except for the rem_pio2_kernel, and
# cody_waite_* methods (see below) license is MIT: https://julialang.org/license
# rem_pio2_kernel and cody_waite_* methods are heavily based on FDLIBM code:
# __ieee754_rem_pio2, that is made available under the following licence:
## Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
##
## Developed at SunPro, a Sun Microsystems, Inc. business.
## Permission to use, copy, modify, and distribute this
## software is freely granted, provided that this notice
## is preserved.
# Bits of 1/2π
# 1/2π == sum(x / 0x1p64^i for i,x = enumerate(INV_2PI))
# Can be obtained by:
#
# setprecision(BigFloat, 4096)
# I = 0.5/big(pi)
# for i = 1:19
# I *= 0x1p64
# k = trunc(UInt64, I)
# @printf "0x%016x,\n" k
# I -= k
# end
const INV_2PI = UInt64[
0x28be_60db_9391_054a,
0x7f09_d5f4_7d4d_3770,
0x36d8_a566_4f10_e410,
0x7f94_58ea_f7ae_f158,
0x6dc9_1b8e_9093_74b8,
0x0192_4bba_8274_6487,
0x3f87_7ac7_2c4a_69cf,
0xba20_8d7d_4bae_d121,
0x3a67_1c09_ad17_df90,
0x4e64_758e_60d4_ce7d,
0x2721_17e2_ef7e_4a0e,
0xc7fe_25ff_f781_6603,
0xfbcb_c462_d682_9b47,
0xdb4d_9fb3_c9f2_c26d,
0xd3d1_8fd9_a797_fa8b,
0x5d49_eeb1_faf9_7c5e,
0xcf41_ce7d_e294_a4ba,
0x9afe_d7ec_47e3_5742,
0x1580_cc11_bf1e_daea]
@inline function cody_waite_2c_pio2(x::Float64, fn, n)
pio2_1 = 1.57079632673412561417e+00
pio2_1t = 6.07710050650619224932e-11
z = muladd(-fn, pio2_1, x) # x - fn*pio2_1
y1 = muladd(-fn, pio2_1t, z) # z - fn*pio2_1t
y2 = muladd(-fn, pio2_1t, (z - y1)) # (z - y1) - fn*pio2_1t
n, DoubleFloat64(y1, y2)
end
@inline function cody_waite_ext_pio2(x::Float64, xhp)
pio2_1 = 1.57079632673412561417e+00
pio2_1t = 6.07710050650619224932e-11
pio2_2 = 6.07710050630396597660e-11
pio2_2t = 2.02226624879595063154e-21
pio2_3 = 2.02226624871116645580e-21
pio2_3t = 8.47842766036889956997e-32
fn = round(x*(2/pi)) # round to integer
# on older systems, the above could be faster with
# rf = 1.5/eps(Float64)
# fn = (x*(2/pi)+rf)-rf
r = muladd(-fn, pio2_1, x) # x - fn*pio2_1
w = fn*pio2_1t # 1st round good to 85 bit
j = xhp>>20
y1 = r-w
high = highword(y1)
i = j-((high>>20)&0x7ff)
if i>16 # 2nd iteration needed, good to 118
t = r
w = fn*pio2_2
r = t-w
w = muladd(fn, pio2_2t,-((t-r)-w))
y1 = r-w
high = highword(y1)
i = j-((high>>20)&0x7ff)
if i>49 # 3rd iteration need, 151 bits acc
t = r # will cover all possible cases
w = fn*pio2_3
r = t-w
w = muladd(fn, pio2_3t, -((t-r)-w))
y1 = r-w
end
end
y2 = (r-y1)-w
return unsafe_trunc(Int, fn), DoubleFloat64(y1, y2)
end
"""
fromfraction(f::Int128)
Compute a tuple of values `(z1,z2)` such that
``z1 + z2 == f / 2^128``
and the significand of `z1` has 27 trailing zeros.
"""
function fromfraction(f::Int128)
if f == 0
return (0.0,0.0)
end
# 1. get leading term truncated to 26 bits
s = ((f < 0) % UInt64) << 63 # sign bit
x = abs(f) % UInt128 # magnitude
n1 = 128-leading_zeros(x) # ndigits0z(x,2)
m1 = ((x >> (n1-26)) % UInt64) << 27
d1 = ((n1-128+1021) % UInt64) << 52
z1 = reinterpret(Float64, s | (d1 + m1))
# 2. compute remaining term
x2 = (x - (UInt128(m1) << (n1-53)))
if x2 == 0
return (z1, 0.0)
end
n2 = 128-leading_zeros(x2)
m2 = (x2 >> (n2-53)) % UInt64
d2 = ((n2-128+1021) % UInt64) << 52
z2 = reinterpret(Float64, s | (d2 + m2))
return (z1,z2)
end
function paynehanek(x::Float64)
# 1. Convert to form
#
# x = X * 2^k,
#
# where 2^(n-1) <= X < 2^n is an n-bit integer (n = 53, k = exponent(x)-52 )
# Computations are integer based, so reinterpret x as UInt64
u = reinterpret(UInt64, x)
# Strip x of exponent bits and replace with ^1
X = (u & significand_mask(Float64)) | (one(UInt64) << significand_bits(Float64))
# Get k from formula above
# k = exponent(x)-52
k = Int((u & exponent_mask(Float64)) >> significand_bits(Float64)) - exponent_bias(Float64) - significand_bits(Float64)
# 2. Let α = 1/2π, then:
#
# α*x mod 1 ≡ [(α*2^k mod 1)*X] mod 1
#
# so we can ignore the first k bits of α. Extract the next 3 64-bit parts of α.
#
# i.e. equivalent to
# setprecision(BigFloat,4096)
# α = 1/(2*big(pi))
# A = mod(ldexp(α,k), 1)
# z1 = ldexp(A,64)
# a1 = trunc(UInt64, z1)
# z2 = ldexp(z1-a1, 64)
# a2 = trunc(UInt64, z2)
# z3 = ldexp(z2-a2, 64)
# a3 = trunc(UInt64, z3)
# This is equivalent to
# idx, shift = divrem(k, 64)
# but divrem is slower.
idx = k >> 6
shift = k - (idx << 6)
if shift == 0
@inbounds a1 = INV_2PI[idx+1]
@inbounds a2 = INV_2PI[idx+2]
@inbounds a3 = INV_2PI[idx+3]
else
# use shifts to extract the relevant 64 bit window
@inbounds a1 = (idx < 0 ? zero(UInt64) : INV_2PI[idx+1] << shift) | (INV_2PI[idx+2] >> (64 - shift))
@inbounds a2 = (INV_2PI[idx+2] << shift) | (INV_2PI[idx+3] >> (64 - shift))
@inbounds a3 = (INV_2PI[idx+3] << shift) | (INV_2PI[idx+4] >> (64 - shift))
end
# 3. Perform the multiplication:
#
# X. 0 0 0
# × 0. a1 a2 a3
# ==============
# _. w w _
#
# (i.e. ignoring integer and lowest bit parts of result)
w1 = UInt128(X*a1) << 64 # overflow becomes integer
w2 = widemul(X,a2)
w3 = widemul(X,a3) >> 64
w = w1 + w2 + w3 # quotient fraction after division by 2π
# adjust for sign of x
w = flipsign(w,x)
# 4. convert to quadrant, quotient fraction after division by π/2:
q = (((w>>125)%Int +1)>>1) # nearest quadrant
f = (w<<2) % Int128 # fraction part of quotient after division by π/2, taking values on [-0.5,0.5)
# 5. convert quotient fraction to split precision Float64
z_hi,z_lo = fromfraction(f)
# 6. multiply by π/2
pio2 = 1.5707963267948966
pio2_hi = 1.5707963407039642
pio2_lo = -1.3909067614167116e-8
y_hi = (z_hi+z_lo)*pio2
y_lo = (((z_hi*pio2_hi - y_hi) + z_hi*pio2_lo) + z_lo*pio2_hi) + z_lo*pio2_lo
return q, DoubleFloat64(y_hi, y_lo)
end
"""
rem_pio2_kernel(x)
Return the remainder of `x` modulo π/2 as a double-double pair, along with a `k`
such that ``k \\mod 3 == K \\mod 3`` where ``K*π/2 = x - rem``. Note, that it is
only meant for use when ``|x|>=π/4``, and that ``π/2`` is always subtracted or
added for ``π/4<|x|<=π/2`` instead of simply returning `x`.
"""
@inline function rem_pio2_kernel(x::Float64)
xhp = poshighword(x)
# xhp <= highword(5pi/4) implies |x| ~<= 5pi/4,
if xhp <= 0x400f6a7a
# last five bits of xhp == last five bits of highword(pi/2) or
# highword(2pi/2) implies |x| ~= pi/2 or 2pi/2,
if (xhp & 0xfffff) == 0x921fb # use precise Cody Waite scheme
return cody_waite_ext_pio2(x, xhp)
end
# use Cody Waite with two constants
# xhp <= highword(3pi/4) implies |x| ~<= 3pi/4
if xhp <= 0x4002d97c
if x > 0.0
return cody_waite_2c_pio2(x, 1.0, 1)
else
return cody_waite_2c_pio2(x, -1.0, -1)
end
# 3pi/4 < |x| <= 5pi/4
else
if x > 0.0
return cody_waite_2c_pio2(x, 2.0, 2)
else
return cody_waite_2c_pio2(x, -2.0, -2)
end
end
end
# xhp <= highword(9pi/4) implies |x| ~<= 9pi/4
if xhp <= 0x401c463b
# xhp <= highword(7pi/4) implies |x| ~<= 7pi/4
if xhp <= 0x4015fdbc
# xhp == highword(3pi/2) implies |x| ~= 3pi/2
if xhp == 0x4012d97c # use precise Cody Waite scheme
return cody_waite_ext_pio2(x, xhp)
end
# use Cody Waite with two constants
if x > 0.0
return cody_waite_2c_pio2(x, 3.0, 3)
else
return cody_waite_2c_pio2(x, -3.0, -3)
end
# 7pi/4 < |x| =< 9pi/4
else
# xhp == highword(4pi/2) implies |x| ~= 4pi/2
if xhp == 0x401921fb # use precise Cody Waite scheme
return cody_waite_ext_pio2(x, xhp)
end
# use Cody Waite with two constants
if x > 0.0
return cody_waite_2c_pio2(x, 4.0, 4)
else
return cody_waite_2c_pio2(x, -4.0, -4)
end
end
end
# xhp < highword(2.0^20*pi/2) implies |x| ~< 2^20*pi/2
if xhp < 0x413921fb # use precise Cody Waite scheme
return cody_waite_ext_pio2(x, xhp)
end
# if |x| >= 2^20*pi/2 switch to Payne Hanek
return paynehanek(x)
end
## Float32
@inline function rem_pio2_kernel(x::Float32)
pio2_1 = 1.57079631090164184570e+00
pio2_1t = 1.58932547735281966916e-08
inv_pio2 = 6.36619772367581382433e-01
xd = convert(Float64, x)
absxd = abs(xd)
# it is assumed that NaN and Infs have been checked
if absxd <= pi*5/4
if absxd <= pi*3/4
if x > 0
return 1, DoubleFloat32(xd - pi/2)
else
return -1, DoubleFloat32(xd + pi/2)
end
end
if x > 0
return 2, DoubleFloat32(xd - pi)
else
return -2, DoubleFloat32(xd + pi)
end
elseif absxd <= pi*9/4
if absxd <= pi*7/4
if x > 0
return 3, DoubleFloat32(xd - pi*3/2)
else
return -3, DoubleFloat32(xd + pi*3/2)
end
end
if x > 0
return 4, DoubleFloat32(xd - pi*4/2)
else
return -4, DoubleFloat32(xd + pi*4/2)
end
end
#/* 33+53 bit pi is good enough for medium size */
if absxd < Float32(pi)/2*2.0f0^28 # medium size */
# use Cody Waite reduction with two coefficients
fn = round(xd*inv_pio2)
r = xd-fn*pio2_1
w = fn*pio2_1t
y = r-w;
return unsafe_trunc(Int, fn), DoubleFloat32(y)
end
n, y = rem_pio2_kernel(xd)
return n, DoubleFloat32(y.hi)
end
|