1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
|
# This file is a part of Julia. Except for the *_kernel functions (see below),
# license is MIT: https://julialang.org/license
struct DoubleFloat64
hi::Float64
lo::Float64
end
struct DoubleFloat32
hi::Float64
end
# sin_kernel and cos_kernel functions are only valid for |x| < pi/4 = 0.7854
# translated from openlibm code: k_sin.c, k_cos.c, k_sinf.c, k_cosf.c.
# atan functions are based on openlibm code: s_atan.c, s_atanf.c.
# acos functions are based on openlibm code: e_acos.c, e_acosf.c.
# asin functions are based on openlibm code: e_asin.c, e_asinf.c. The above
# functions are made available under the following licence:
## Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
##
## Developed at SunPro, a Sun Microsystems, Inc. business.
## Permission to use, copy, modify, and distribute this
## software is freely granted, provided that this notice
## is preserved.
# Trigonometric functions
# sin methods
@noinline sin_domain_error(x) = throw(DomainError(x, "sin(x) is only defined for finite x."))
function sin(x::T) where T<:Union{Float32, Float64}
absx = abs(x)
if absx < T(pi)/4 #|x| ~<= pi/4, no need for reduction
if absx < sqrt(eps(T))
return x
end
return sin_kernel(x)
elseif isnan(x)
return T(NaN)
elseif isinf(x)
sin_domain_error(x)
end
n, y = rem_pio2_kernel(x)
n = n&3
if n == 0
return sin_kernel(y)
elseif n == 1
return cos_kernel(y)
elseif n == 2
return -sin_kernel(y)
else
return -cos_kernel(y)
end
end
sin(x::Real) = sin(float(x))
# Coefficients in 13th order polynomial approximation on [0; π/4]
# sin(x) ≈ x + S1*x³ + S2*x⁵ + S3*x⁷ + S4*x⁹ + S5*x¹¹ + S6*x¹³
# D for double, S for sin, number is the order of x-1
const DS1 = -1.66666666666666324348e-01
const DS2 = 8.33333333332248946124e-03
const DS3 = -1.98412698298579493134e-04
const DS4 = 2.75573137070700676789e-06
const DS5 = -2.50507602534068634195e-08
const DS6 = 1.58969099521155010221e-10
"""
sin_kernel(yhi, ylo)
Computes the sine on the interval [-π/4; π/4].
"""
@inline function sin_kernel(y::DoubleFloat64)
y² = y.hi*y.hi
y⁴ = y²*y²
r = @horner(y², DS2, DS3, DS4) + y²*y⁴*@horner(y², DS5, DS6)
y³ = y²*y.hi
y.hi-((y²*(0.5*y.lo-y³*r)-y.lo)-y³*DS1)
end
@inline function sin_kernel(y::Float64)
y² = y*y
y⁴ = y²*y²
r = @horner(y², DS2, DS3, DS4) + y²*y⁴*@horner(y², DS5, DS6)
y³ = y²*y
y+y³*(DS1+y²*r)
end
# sin_kernels accepting values from rem_pio2 in the Float32 case
@inline sin_kernel(x::Float32) = sin_kernel(DoubleFloat32(x))
@inline function sin_kernel(y::DoubleFloat32)
S1 = -0.16666666641626524
S2 = 0.008333329385889463
z = y.hi*y.hi
w = z*z
r = @horner(z, -0.00019839334836096632, 2.718311493989822e-6)
s = z*y.hi
Float32((y.hi + s*@horner(z, S1, S2)) + s*w*r)
end
# cos methods
@noinline cos_domain_error(x) = throw(DomainError(x, "cos(x) is only defined for finite x."))
function cos(x::T) where T<:Union{Float32, Float64}
absx = abs(x)
if absx < T(pi)/4
if absx < sqrt(eps(T)/T(2.0))
return T(1.0)
end
return cos_kernel(x)
elseif isnan(x)
return T(NaN)
elseif isinf(x)
cos_domain_error(x)
else
n, y = rem_pio2_kernel(x)
n = n&3
if n == 0
return cos_kernel(y)
elseif n == 1
return -sin_kernel(y)
elseif n == 2
return -cos_kernel(y)
else
return sin_kernel(y)
end
end
end
cos(x::Real) = cos(float(x))
const DC1 = 4.16666666666666019037e-02
const DC2 = -1.38888888888741095749e-03
const DC3 = 2.48015872894767294178e-05
const DC4 = -2.75573143513906633035e-07
const DC5 = 2.08757232129817482790e-09
const DC6 = -1.13596475577881948265e-11
"""
cos_kernel(y)
Compute the cosine on the interval y∈[-π/4; π/4].
"""
@inline function cos_kernel(y::DoubleFloat64)
y² = y.hi*y.hi
y⁴ = y²*y²
r = y²*@horner(y², DC1, DC2, DC3) + y⁴*y⁴*@horner(y², DC4, DC5, DC6)
half_y² = 0.5*y²
w = 1.0-half_y²
w + (((1.0-w)-half_y²) + (y²*r-y.hi*y.lo))
end
@inline function cos_kernel(y::Float64)
y² = y*y
y⁴ = y²*y²
r = y²*@horner(y², DC1, DC2, DC3) + y⁴*y⁴*@horner(y², DC4, DC5, DC6)
half_y² = 0.5*y²
w = 1.0-half_y²
w + (((1.0-w)-half_y²) + (y²*r))
end
# cos_kernels accepting values from rem_pio2 in the Float32 case
cos_kernel(x::Float32) = cos_kernel(DoubleFloat32(x))
@inline function cos_kernel(y::DoubleFloat32)
C0 = -0.499999997251031
C1 = 0.04166662332373906
y² = y.hi*y.hi
y⁴ = y²*y²
r = @horner(y², -0.001388676377460993, 2.439044879627741e-5)
Float32(((1.0+y²*C0) + y⁴*C1) + (y⁴*y²)*r)
end
### sincos methods
@noinline sincos_domain_error(x) = throw(DomainError(x, "sincos(x) is only defined for finite x."))
"""
sincos(x)
Simultaneously compute the sine and cosine of `x`, where the `x` is in radians.
"""
function sincos(x::T) where T<:Union{Float32, Float64}
if abs(x) < T(pi)/4
if x == zero(T)
return x, one(T)
end
return sincos_kernel(x)
elseif isnan(x)
return T(NaN), T(NaN)
elseif isinf(x)
sincos_domain_error(x)
end
n, y = rem_pio2_kernel(x)
n = n&3
# calculate both kernels at the reduced y...
si, co = sincos_kernel(y)
# ... and use the same selection scheme as above: (sin, cos, -sin, -cos) for
# for sin and (cos, -sin, -cos, sin) for cos
if n == 0
return si, co
elseif n == 1
return co, -si
elseif n == 2
return -si, -co
else
return -co, si
end
end
_sincos(x::AbstractFloat) = sincos(x)
_sincos(x) = (sin(x), cos(x))
sincos(x) = _sincos(float(x))
# There's no need to write specialized kernels, as inlining takes care of remo-
# ving superfluous calculations.
@inline sincos_kernel(y::Union{Float32, Float64, DoubleFloat32, DoubleFloat64}) = (sin_kernel(y), cos_kernel(y))
# tangent methods
@noinline tan_domain_error(x) = throw(DomainError(x, "tan(x) is only defined for finite x."))
function tan(x::T) where T<:Union{Float32, Float64}
absx = abs(x)
if absx < T(pi)/4
if absx < sqrt(eps(T))/2 # first order dominates, but also allows tan(-0)=-0
return x
end
return tan_kernel(x)
elseif isnan(x)
return T(NaN)
elseif isinf(x)
tan_domain_error(x)
end
n, y = rem_pio2_kernel(x)
if iseven(n)
return tan_kernel(y,1)
else
return tan_kernel(y,-1)
end
end
tan(x::Real) = tan(float(x))
@inline tan_kernel(y::Float64) = tan_kernel(DoubleFloat64(y, 0.0), 1)
@inline function tan_kernel(y::DoubleFloat64, k)
# kernel tan function on ~[-pi/4, pi/4] (except on -0)
# Input y is assumed to be bounded by ~pi/4 in magnitude.
# Input k indicates whether tan (if k = 1) or -1/tan (if k = -1) is returned.
# Algorithm
# 1. Since tan(-y) = -tan(y), we need only to consider positive y.
# 2. Callers must return tan(-0) = -0 without calling here since our
# odd polynomial is not evaluated in a way that preserves -0.
# Callers may do the optimization tan(y) ~ y for tiny y.
# 3. tan(y) is approximated by a odd polynomial of degree 27 on
# [0,0.67434]
# 3 27
# tan(y) ~ y + T1*y + ... + T13*y ≡ P(y)
# where
#
# |tan(y) 2 4 26 | -59.2
# (tan(y)-P(y))/y = |----- - (1+T1*y +T2*y +.... +T13*y )| <= 2
# | y |
#
# Note: tan(y+z) = tan(y) + tan'(y)*z
# ~ tan(y) + (1+y*y)*z
# Therefore, for better accuracz in computing tan(y+z), let
# 3 2 2 2 2
# r = y *(T2+y *(T3+y *(...+y *(T12+y *T13))))
# then
# 3 2
# tan(y+z) = y + (T1*y + (y *(r+z)+z))
#
# 4. For y in [0.67434,pi/4], let z = pi/4 - y, then
# tan(y) = tan(pi/4-z) = (1-tan(z))/(1+tan(z))
# = 1 - 2*(tan(z) - (tan(z)^2)/(1+tan(z)))
yhi = y.hi
ylo = y.lo
if abs(yhi) >= 0.6744
if yhi < 0.0
yhi = -yhi
ylo = -ylo
end
# Then, accurately reduce y as "pio4hi"-yhi+"pio4lo"-ylo
yhi = (pi/4 - yhi) + (3.06161699786838301793e-17 - ylo)
# yhi is guaranteed to be exact, so ylo is identically zero
ylo = 0.0
end
y² = yhi * yhi
y⁴ = y² * y²
# Break P(y)-T1*y³ = y^5*(T[2]+y^2*T[3]+...) into y⁵*r + y⁵*v where
# r = T[2]+y^4*T[4]+...+y^20*T[12])
# v = (y^2*(T[3]+y^4*T[5]+...+y^22*[T13]))
r = @horner(y⁴,
1.33333333333201242699e-01, # T2
2.18694882948595424599e-02, # T4
3.59207910759131235356e-03, # T6
5.88041240820264096874e-04, # T8
7.81794442939557092300e-05, # T10
-1.85586374855275456654e-05) # T12
v = y² * @horner(y⁴,
5.39682539762260521377e-02, # T3
8.86323982359930005737e-03, # T5
1.45620945432529025516e-03, # T7
2.46463134818469906812e-04, # T9
7.14072491382608190305e-05, # T11
2.59073051863633712884e-05) # T13
# Precompute y³
y³ = y² * yhi
# Calculate P(y)-y-T1*y³ = y⁵*r + y⁵*v = y²(y³*(r+v))
r = ylo + y² * (y³ * (r + v) + ylo)
# Calculate P(y)-y = r+T1*y³
r += 3.33333333333334091986e-01*y³
# Calculate w = r+y = P(y)
Px = yhi + r
if abs(y.hi) >= 0.6744
# If the original y was above the threshold, then we calculate
# tan(y) = 1 - 2*(tan(y) - (tan(y)^2)/(1+tan(y)))
# ≈ 1 - 2*(P(z) - (P(z)^2)/(1+P(z)))
# where z = y-π/4.
return (signbit(y.hi) ? -1.0 : 1.0)*(k - 2*(yhi-(Px^2/(k+Px)-r)))
end
if k == 1
# Else, we simply return w = P(y) if k == 1 (integer multiple from argument
# reduction was even)...
return Px
else
# ...or tan(y) ≈ -1.0/(y+r) if !(k == 1) (integer multiple from argument
# reduction was odd). If 2ulp error is allowed, simply return the frac-
# tion directly. Instead, we calculate it accurately.
# Px0 is w with zeroed out low word
Px0 = reinterpret(Float64, (reinterpret(UInt64, Px) >> 32) << 32)
v = r - (Px0 - yhi) # Px0+v = r+y
t = a = -1.0 / Px
# zero out low word of t
t = reinterpret(Float64, (reinterpret(UInt64, t) >> 32) << 32)
s = 1.0 + t * Px0
return t + a * (s + t * v)
end
end
@inline tan_kernel(y::Float32) = tan_kernel(DoubleFloat32(y), 1)
@inline function tan_kernel(y::DoubleFloat32, k)
# |tan(y)/y - t(y)| < 2**-25.5 (~[-2e-08, 2e-08]). */
y² = y.hi*y.hi
r = @horner(y², 0.00297435743359967304927, 0.00946564784943673166728)
t = @horner(y², 0.0533812378445670393523, 0.0245283181166547278873)
y⁴ = y²*y²
y³ = y²*y.hi
u = @horner(y², 0.333331395030791399758, 0.133392002712976742718)
Py = (y.hi+y³*u)+(y³*y⁴)*(t+y⁴*r)
if k == 1
return Float32(Py)
end
return Float32(-1.0/Py)
end
# fallback methods
sin_kernel(x::Real) = sin(x)
cos_kernel(x::Real) = cos(x)
tan_kernel(x::Real) = tan(x)
sincos_kernel(x::Real) = sincos(x)
# Inverse trigonometric functions
# asin methods
ASIN_X_MIN_THRESHOLD(::Type{Float32}) = 2.0f0^-12
ASIN_X_MIN_THRESHOLD(::Type{Float64}) = sqrt(eps(Float64))
arc_p(t::Float64) =
t*@horner(t,
1.66666666666666657415e-01,
-3.25565818622400915405e-01,
2.01212532134862925881e-01,
-4.00555345006794114027e-02,
7.91534994289814532176e-04,
3.47933107596021167570e-05)
arc_q(z::Float64) =
@horner(z,
1.0,
-2.40339491173441421878e+00,
2.02094576023350569471e+00,
-6.88283971605453293030e-01,
7.70381505559019352791e-02)
arc_p(t::Float32) =
t*@horner(t,
1.6666586697f-01,
-4.2743422091f-02,
-8.6563630030f-03)
arc_q(t::Float32) = @horner(t, 1.0f0, -7.0662963390f-01)
@inline arc_tRt(t) = arc_p(t)/arc_q(t)
@inline function asin_kernel(t::Float64, x::Float64)
# we use that for 1/2 <= x < 1 we have
# asin(x) = pi/2-2*asin(sqrt((1-x)/2))
# Let y = (1-x), z = y/2, s := sqrt(z), and pio2_hi+pio2_lo=pi/2;
# then for x>0.98
# asin(x) = pi/2 - 2*(s+s*z*R(z))
# = pio2_hi - (2*(s+s*z*R(z)) - pio2_lo)
# For x<=0.98, let pio4_hi = pio2_hi/2, then
# f = hi part of s;
# c = sqrt(z) - f = (z-f*f)/(s+f) ...f+c=sqrt(z)
# and
# asin(x) = pi/2 - 2*(s+s*z*R(z))
# = pio4_hi+(pio4-2s)-(2s*z*R(z)-pio2_lo)
# = pio4_hi+(pio4-2f)-(2s*z*R(z)-(pio2_lo+2c))
pio2_lo = 6.12323399573676603587e-17
s = sqrt_llvm(t)
tRt = arc_tRt(t)
if abs(x) >= 0.975 # |x| > 0.975
return flipsign(pi/2 - (2.0*(s + s*tRt) - pio2_lo), x)
else
s0 = reinterpret(Float64, (reinterpret(UInt64, s) >> 32) << 32)
c = (t - s0*s0)/(s + s0)
p = 2.0*s*tRt - (pio2_lo - 2.0*c)
q = pi/4 - 2.0*s0
return flipsign(pi/4 - (p-q), x)
end
end
@inline function asin_kernel(t::Float32, x::Float32)
s = sqrt_llvm(Float64(t))
tRt = arc_tRt(t) # rational approximation
flipsign(Float32(pi/2 - 2*(s + s*tRt)), x)
end
@noinline asin_domain_error(x) = throw(DomainError(x, "asin(x) is not defined for |x|>1."))
function asin(x::T) where T<:Union{Float32, Float64}
# Since asin(x) = x + x^3/6 + x^5*3/40 + x^7*15/336 + ...
# we approximate asin(x) on [0,0.5] by
# asin(x) = x + x*x^2*R(x^2)
# where
# R(x^2) is a rational approximation of (asin(x)-x)/x^3
# and its remez error is bounded by
# |(asin(x)-x)/x^3 - R(x^2)| < 2^(-58.75)
absx = abs(x)
if absx >= T(1.0) # |x|>= 1
if absx == T(1.0)
return flipsign(T(pi)/2, x)
end
asin_domain_error(x)
elseif absx < T(1.0)/2
# if |x| sufficiently small, |x| is a good approximation
if absx < ASIN_X_MIN_THRESHOLD(T)
return x
end
return muladd(x, arc_tRt(x*x), x)
end
# else 1/2 <= |x| < 1
t = (T(1.0) - absx)/2
return asin_kernel(t, x)
end
asin(x::Real) = asin(float(x))
# atan methods
ATAN_1_O_2_HI(::Type{Float64}) = 4.63647609000806093515e-01 # atan(0.5).hi
ATAN_2_O_2_HI(::Type{Float64}) = 7.85398163397448278999e-01 # atan(1.0).hi
ATAN_3_O_2_HI(::Type{Float64}) = 9.82793723247329054082e-01 # atan(1.5).hi
ATAN_INF_HI(::Type{Float64}) = 1.57079632679489655800e+00 # atan(Inf).hi
ATAN_1_O_2_HI(::Type{Float32}) = 4.6364760399f-01 # atan(0.5).hi
ATAN_2_O_2_HI(::Type{Float32}) = 7.8539812565f-01 # atan(1.0).hi
ATAN_3_O_2_HI(::Type{Float32}) = 9.8279368877f-01 # atan(1.5).hi
ATAN_INF_HI(::Type{Float32}) = 1.5707962513f+00 # atan(Inf).hi
ATAN_1_O_2_LO(::Type{Float64}) = 2.26987774529616870924e-17 # atan(0.5).lo
ATAN_2_O_2_LO(::Type{Float64}) = 3.06161699786838301793e-17 # atan(1.0).lo
ATAN_3_O_2_LO(::Type{Float64}) = 1.39033110312309984516e-17 # atan(1.5).lo
ATAN_INF_LO(::Type{Float64}) = 6.12323399573676603587e-17 # atan(Inf).lo
ATAN_1_O_2_LO(::Type{Float32}) = 5.0121582440f-09 # atan(0.5).lo
ATAN_2_O_2_LO(::Type{Float32}) = 3.7748947079f-08 # atan(1.0).lo
ATAN_3_O_2_LO(::Type{Float32}) = 3.4473217170f-08 # atan(1.5).lo
ATAN_INF_LO(::Type{Float32}) = 7.5497894159f-08 # atan(Inf).lo
ATAN_LARGE_X(::Type{Float64}) = 2.0^66 # seems too large? 2.0^60 gives the same
ATAN_SMALL_X(::Type{Float64}) = 2.0^-27
ATAN_LARGE_X(::Type{Float32}) = 2.0f0^26
ATAN_SMALL_X(::Type{Float32}) = 2.0f0^-12
atan_p(z::Float64, w::Float64) = z*@horner(w,
3.33333333333329318027e-01,
1.42857142725034663711e-01,
9.09088713343650656196e-02,
6.66107313738753120669e-02,
4.97687799461593236017e-02,
1.62858201153657823623e-02)
atan_q(w::Float64) = w*@horner(w,
-1.99999999998764832476e-01,
-1.11111104054623557880e-01,
-7.69187620504482999495e-02,
-5.83357013379057348645e-02,
-3.65315727442169155270e-02)
atan_p(z::Float32, w::Float32) = z*@horner(w, 3.3333328366f-01, 1.4253635705f-01, 6.1687607318f-02)
atan_q(w::Float32) = w*@horner(w, -1.9999158382f-01, -1.0648017377f-01)
@inline function atan_pq(x)
x² = x*x
x⁴ = x²*x²
# break sum from i=0 to 10 aT[i]z**(i+1) into odd and even poly
atan_p(x², x⁴), atan_q(x⁴)
end
atan(x::Real) = atan(float(x))
function atan(x::T) where T<:Union{Float32, Float64}
# Method
# 1. Reduce x to positive by atan(x) = -atan(-x).
# 2. According to the integer k=4t+0.25 chopped, t=x, the argument
# is further reduced to one of the following intervals and the
# arctangent of t is evaluated by the corresponding formula:
#
# [0,7/16] atan(x) = t-t^3*(a1+t^2*(a2+...(a10+t^2*a11)...)
# [7/16,11/16] atan(x) = atan(1/2) + atan( (t-0.5)/(1+t/2) )
# [11/16.19/16] atan(x) = atan( 1 ) + atan( (t-1)/(1+t) )
# [19/16,39/16] atan(x) = atan(3/2) + atan( (t-1.5)/(1+1.5t) )
# [39/16,INF] atan(x) = atan(INF) + atan( -1/t )
#
# If isnan(x) is true, then the nan value will eventually be passed to
# atan_pq(x) and return the appropriate nan value.
absx = abs(x)
if absx >= ATAN_LARGE_X(T)
return copysign(T(1.5707963267948966), x)
end
if absx < T(7/16)
# no reduction needed
if absx < ATAN_SMALL_X(T)
return x
end
p, q = atan_pq(x)
return x - x*(p + q)
end
xsign = sign(x)
if absx < T(19/16) # 7/16 <= |x| < 19/16
if absx < T(11/16) # 7/16 <= |x| <11/16
hi = ATAN_1_O_2_HI(T)
lo = ATAN_1_O_2_LO(T)
x = (T(2.0)*absx - T(1.0))/(T(2.0) + absx)
else # 11/16 <= |x| < 19/16
hi = ATAN_2_O_2_HI(T)
lo = ATAN_2_O_2_LO(T)
x = (absx - T(1.0))/(absx + T(1.0))
end
else
if absx < T(39/16) # 19/16 <= |x| < 39/16
hi = ATAN_3_O_2_HI(T)
lo = ATAN_3_O_2_LO(T)
x = (absx - T(1.5))/(T(1.0) + T(1.5)*absx)
else # 39/16 <= |x| < upper threshold (2.0^66 or 2.0f0^26)
hi = ATAN_INF_HI(T)
lo = ATAN_INF_LO(T)
x = -T(1.0)/absx
end
end
# end of argument reduction
p, q = atan_pq(x)
z = hi - ((x*(p + q) - lo) - x)
copysign(z, xsign)
end
# atan2 methods
ATAN2_PI_LO(::Type{Float32}) = -8.7422776573f-08
ATAN2_RATIO_BIT_SHIFT(::Type{Float32}) = 23
ATAN2_RATIO_THRESHOLD(::Type{Float32}) = 26
ATAN2_PI_LO(::Type{Float64}) = 1.2246467991473531772E-16
ATAN2_RATIO_BIT_SHIFT(::Type{Float64}) = 20
ATAN2_RATIO_THRESHOLD(::Type{Float64}) = 60
function atan(y::T, x::T) where T<:Union{Float32, Float64}
# Method :
# M1) Reduce y to positive by atan2(y,x)=-atan2(-y,x).
# M2) Reduce x to positive by (if x and y are unexceptional):
# ARG (x+iy) = arctan(y/x) ... if x > 0,
# ARG (x+iy) = pi - arctan[y/(-x)] ... if x < 0,
#
# Special cases:
#
# S1) ATAN2((anything), NaN ) is NaN;
# S2) ATAN2(NAN , (anything) ) is NaN;
# S3) ATAN2(+-0, +(anything but NaN)) is +-0 ;
# S4) ATAN2(+-0, -(anything but NaN)) is +-pi ;
# S5) ATAN2(+-(anything but 0 and NaN), 0) is +-pi/2;
# S6) ATAN2(+-(anything but INF and NaN), +INF) is +-0 ;
# S7) ATAN2(+-(anything but INF and NaN), -INF) is +-pi;
# S8) ATAN2(+-INF,+INF ) is +-pi/4 ;
# S9) ATAN2(+-INF,-INF ) is +-3pi/4;
# S10) ATAN2(+-INF, (anything but,0,NaN, and INF)) is +-pi/2;
if isnan(x) || isnan(y) # S1 or S2
return T(NaN)
end
if x == T(1.0) # then y/x = y and x > 0, see M2
return atan(y)
end
# generate an m ∈ {0, 1, 2, 3} to branch off of
m = 2*signbit(x) + 1*signbit(y)
if iszero(y)
if m == 0 || m == 1
return y # atan(+-0, +anything) = +-0
elseif m == 2
return T(pi) # atan(+0, -anything) = pi
elseif m == 3
return -T(pi) # atan(-0, -anything) =-pi
end
elseif iszero(x)
return flipsign(T(pi)/2, y)
end
if isinf(x)
if isinf(y)
if m == 0
return T(pi)/4 # atan(+Inf), +Inf))
elseif m == 1
return -T(pi)/4 # atan(-Inf), +Inf))
elseif m == 2
return 3*T(pi)/4 # atan(+Inf, -Inf)
elseif m == 3
return -3*T(pi)/4 # atan(-Inf,-Inf)
end
else
if m == 0
return zero(T) # atan(+...,+Inf) */
elseif m == 1
return -zero(T) # atan(-...,+Inf) */
elseif m == 2
return T(pi) # atan(+...,-Inf) */
elseif m == 3
return -T(pi) # atan(-...,-Inf) */
end
end
end
# x wasn't Inf, but y is
isinf(y) && return copysign(T(pi)/2, y)
ypw = poshighword(y)
xpw = poshighword(x)
# compute y/x for Float32
k = reinterpret(Int32, ypw-xpw)>>ATAN2_RATIO_BIT_SHIFT(T)
if k > ATAN2_RATIO_THRESHOLD(T) # |y/x| > threshold
z=T(pi)/2+T(0.5)*ATAN2_PI_LO(T)
m&=1;
elseif x<0 && k < -ATAN2_RATIO_THRESHOLD(T) # 0 > |y|/x > threshold
z = zero(T)
else #safe to do y/x
z = atan(abs(y/x))
end
if m == 0
return z # atan(+,+)
elseif m == 1
return -z # atan(-,+)
elseif m == 2
return T(pi)-(z-ATAN2_PI_LO(T)) # atan(+,-)
else # default case m == 3
return (z-ATAN2_PI_LO(T))-T(pi) # atan(-,-)
end
end
# acos methods
ACOS_X_MIN_THRESHOLD(::Type{Float32}) = 2.0f0^-26
ACOS_X_MIN_THRESHOLD(::Type{Float64}) = 2.0^-57
PIO2_HI(::Type{Float32}) = 1.5707962513f+00
PIO2_LO(::Type{Float32}) = 7.5497894159f-08
PIO2_HI(::Type{Float64}) = 1.57079632679489655800e+00
PIO2_LO(::Type{Float64}) = 6.12323399573676603587e-17
ACOS_PI(::Type{Float32}) = 3.1415925026f+00
ACOS_PI(::Type{Float64}) = 3.14159265358979311600e+00
@inline ACOS_CORRECT_LOWWORD(::Type{Float32}, x) = reinterpret(Float32, (reinterpret(UInt32, x) & 0xfffff000))
@inline ACOS_CORRECT_LOWWORD(::Type{Float64}, x) = reinterpret(Float64, (reinterpret(UInt64, x) >> 32) << 32)
@noinline acos_domain_error(x) = throw(DomainError(x, "acos(x) not defined for |x| > 1"))
function acos(x::T) where T <: Union{Float32, Float64}
# Method :
# acos(x) = pi/2 - asin(x)
# acos(-x) = pi/2 + asin(x)
# As a result, we use the same rational approximation (arc_tRt) as in asin.
# See the comments in asin for more information about this approximation.
# 1) For |x| <= 0.5
# acos(x) = pi/2 - (x + x*x^2*R(x^2))
# 2) For x < -0.5
# acos(x) = pi - 2asin(sqrt((1 - |x|)/2))
# = pi - 0.5*(s+s*z*R(z))
# where z=(1-|x|)/2, s=sqrt(z)
# 3) For x > 0.5
# acos(x) = pi/2 - (pi/2 - 2asin(sqrt((1 - x)/2)))
# = 2asin(sqrt((1 - x)/2))
# = 2s + 2s*z*R(z) ...z=(1 - x)/2, s=sqrt(z)
# = 2f + (2c + 2s*z*R(z))
# where f=hi part of s, and c = (z - f*f)/(s + f) is the correction term
# for f so that f + c ~ sqrt(z).
# Special cases:
# 4) if x is NaN, return x itself;
# 5) if |x|>1 throw warning.
absx = abs(x)
if absx >= T(1.0)
# acos(-1) = π, acos(1) = 0
absx == T(1.0) && return x > T(0.0) ? T(0.0) : T(pi)
# acos(x) is not defined for |x| > 1
acos_domain_error(x) # see 5) above
elseif absx < T(1.0)/2 # see 1) above
# if |x| sufficiently small, acos(x) ≈ pi/2
absx < ACOS_X_MIN_THRESHOLD(T) && return T(pi)/2
# if |x| < 0.5 we have acos(x) = pi/2 - (x + x*x^2*R(x^2))
return PIO2_HI(T) - (x - (PIO2_LO(T) - x*arc_tRt(x*x)))
end
z = (T(1.0) - absx)*T(0.5)
zRz = arc_tRt(z)
s = sqrt_llvm(z)
if x < T(0.0) # see 2) above
return ACOS_PI(T) - T(2.0)*(s + (zRz*s - PIO2_LO(T)))
else # see 3) above
# if x > 0.5 we have
# acos(x) = pi/2 - (pi/2 - 2asin(sqrt((1-x)/2)))
# = 2asin(sqrt((1-x)/2))
# = 2s + 2s*z*R(z) ...z=(1-x)/2, s=sqrt(z)
# = 2f + (2c + 2s*z*R(z))
# where f=hi part of s, and c = (z-f*f)/(s+f) is the correction term
# for f so that f+c ~ sqrt(z).
df = ACOS_CORRECT_LOWWORD(T, s)
c = (z - df*df)/(s + df)
return T(2.0)*(df + (zRz*s + c))
end
end
acos(x::Real) = acos(float(x))
# multiply in extended precision
function mulpi_ext(x::Float64)
m = 3.141592653589793
m_hi = 3.1415926218032837
m_lo = 3.178650954705639e-8
x_hi = reinterpret(Float64, reinterpret(UInt64,x) & 0xffff_ffff_f800_0000)
x_lo = x-x_hi
y_hi = m*x
y_lo = x_hi * m_lo + (x_lo* m_hi + ((x_hi*m_hi-y_hi) + x_lo*m_lo))
DoubleFloat64(y_hi,y_lo)
end
mulpi_ext(x::Float32) = DoubleFloat32(pi*Float64(x))
mulpi_ext(x::Rational) = mulpi_ext(float(x))
mulpi_ext(x::Real) = pi*x # Fallback
"""
sinpi(x)
Compute ``\\sin(\\pi x)`` more accurately than `sin(pi*x)`, especially for large `x`.
"""
function sinpi(x::T) where T<:AbstractFloat
if !isfinite(x)
isnan(x) && return x
throw(DomainError(x, "`x` cannot be infinite."))
end
ax = abs(x)
s = maxintfloat(T)/2
ax >= s && return copysign(zero(T),x) # integer-valued
# reduce to interval [-1,1]
# assumes RoundNearest rounding mode
t = 3*s
rx = x-((x+t)-t) # zeros may be incorrectly signed
arx = abs(rx)
if (arx == 0) | (arx == 1)
copysign(zero(T),x)
elseif arx < 0.25
sin_kernel(mulpi_ext(rx))
elseif arx < 0.75
y = mulpi_ext(T(0.5) - arx)
copysign(cos_kernel(y),rx)
else
y = mulpi_ext(copysign(one(T),rx) - rx)
sin_kernel(y)
end
end
# Integers and Rationals
function sinpi(x::T) where T<:Union{Integer,Rational}
Tf = float(T)
if !isfinite(x)
throw(DomainError(x, "`x` must be finite."))
end
# until we get an IEEE remainder function (#9283)
rx = rem(x,2)
if rx > 1
rx -= 2
elseif rx < -1
rx += 2
end
arx = abs(rx)
if (arx == 0) | (arx == 1)
copysign(zero(Tf),x)
elseif arx < 0.25
sin_kernel(mulpi_ext(rx))
elseif arx < 0.75
y = mulpi_ext(T(0.5) - arx)
copysign(cos_kernel(y),rx)
else
y = mulpi_ext(copysign(one(T),rx) - rx)
sin_kernel(y)
end
end
"""
cospi(x)
Compute ``\\cos(\\pi x)`` more accurately than `cos(pi*x)`, especially for large `x`.
"""
function cospi(x::T) where T<:AbstractFloat
if !isfinite(x)
isnan(x) && return x
throw(DomainError(x, "`x` cannot be infinite."))
end
ax = abs(x)
s = maxintfloat(T)
ax >= s && return one(T) # even integer-valued
# reduce to interval [-1,1], then [0,1]
# assumes RoundNearest rounding mode
rx = abs(ax-((ax+s)-s))
if rx <= 0.25
cos_kernel(mulpi_ext(rx))
elseif rx < 0.75
y = mulpi_ext(T(0.5) - rx)
sin_kernel(y)
else
y = mulpi_ext(one(T) - rx)
-cos_kernel(y)
end
end
# Integers and Rationals
function cospi(x::T) where T<:Union{Integer,Rational}
if !isfinite(x)
throw(DomainError(x, "`x` must be finite."))
end
ax = abs(x)
# until we get an IEEE remainder function (#9283)
rx = rem(ax,2)
if rx > 1
rx = 2-rx
end
if rx <= 0.25
cos_kernel(mulpi_ext(rx))
elseif rx < 0.75
y = mulpi_ext(T(0.5) - rx)
sin_kernel(y)
else
y = mulpi_ext(one(T) - rx)
-cos_kernel(y)
end
end
sinpi(x::Integer) = x >= 0 ? zero(float(x)) : -zero(float(x))
cospi(x::Integer) = isodd(x) ? -one(float(x)) : one(float(x))
sinpi(x::Real) = sinpi(float(x))
cospi(x::Real) = cospi(float(x))
function sinpi(z::Complex{T}) where T
F = float(T)
zr, zi = reim(z)
if isinteger(zr)
# zr = ...,-2,-1,0,1,2,...
# sin(pi*zr) == ±0
# cos(pi*zr) == ±1
# cosh(pi*zi) > 0
s = copysign(zero(F),zr)
c_pos = isa(zr,Integer) ? iseven(zr) : isinteger(zr/2)
sh = sinh(pi*zi)
Complex(s, c_pos ? sh : -sh)
elseif isinteger(2*zr)
# zr = ...,-1.5,-0.5,0.5,1.5,2.5,...
# sin(pi*zr) == ±1
# cos(pi*zr) == +0
# sign(sinh(pi*zi)) == sign(zi)
s_pos = isinteger((2*zr-1)/4)
ch = cosh(pi*zi)
Complex(s_pos ? ch : -ch, isnan(zi) ? zero(F) : copysign(zero(F),zi))
elseif !isfinite(zr)
if zi == 0 || isinf(zi)
Complex(F(NaN), F(zi))
else
Complex(F(NaN), F(NaN))
end
else
pizi = pi*zi
Complex(sinpi(zr)*cosh(pizi), cospi(zr)*sinh(pizi))
end
end
function cospi(z::Complex{T}) where T
F = float(T)
zr, zi = reim(z)
if isinteger(zr)
# zr = ...,-2,-1,0,1,2,...
# sin(pi*zr) == ±0
# cos(pi*zr) == ±1
# sign(sinh(pi*zi)) == sign(zi)
# cosh(pi*zi) > 0
s = copysign(zero(F),zr)
c_pos = isa(zr,Integer) ? iseven(zr) : isinteger(zr/2)
ch = cosh(pi*zi)
Complex(c_pos ? ch : -ch, isnan(zi) ? s : -flipsign(s,zi))
elseif isinteger(2*zr)
# zr = ...,-1.5,-0.5,0.5,1.5,2.5,...
# sin(pi*zr) == ±1
# cos(pi*zr) == +0
# sign(sinh(pi*zi)) == sign(zi)
s_pos = isinteger((2*zr-1)/4)
sh = sinh(pi*zi)
Complex(zero(F), s_pos ? -sh : sh)
elseif !isfinite(zr)
if zi == 0
Complex(F(NaN), isnan(zr) ? zero(F) : -flipsign(F(zi),zr))
elseif isinf(zi)
Complex(F(Inf), F(NaN))
else
Complex(F(NaN), F(NaN))
end
else
pizi = pi*zi
Complex(cospi(zr)*cosh(pizi), -sinpi(zr)*sinh(pizi))
end
end
"""
sinc(x)
Compute ``\\sin(\\pi x) / (\\pi x)`` if ``x \\neq 0``, and ``1`` if ``x = 0``.
"""
sinc(x::Number) = x==0 ? one(x) : oftype(x,sinpi(x)/(pi*x))
sinc(x::Integer) = x==0 ? one(x) : zero(x)
sinc(x::Complex{<:AbstractFloat}) = x==0 ? one(x) : oftype(x, sinpi(x)/(pi*x))
sinc(x::Complex) = sinc(float(x))
sinc(x::Real) = x==0 ? one(x) : isinf(x) ? zero(x) : sinpi(x)/(pi*x)
"""
cosc(x)
Compute ``\\cos(\\pi x) / x - \\sin(\\pi x) / (\\pi x^2)`` if ``x \\neq 0``, and ``0`` if
``x = 0``. This is the derivative of `sinc(x)`.
"""
cosc(x::Number) = x==0 ? zero(x) : oftype(x,(cospi(x)-sinpi(x)/(pi*x))/x)
cosc(x::Integer) = cosc(float(x))
cosc(x::Complex{<:AbstractFloat}) = x==0 ? zero(x) : oftype(x,(cospi(x)-sinpi(x)/(pi*x))/x)
cosc(x::Complex) = cosc(float(x))
cosc(x::Real) = x==0 || isinf(x) ? zero(x) : (cospi(x)-sinpi(x)/(pi*x))/x
for (finv, f, finvh, fh, finvd, fd, fn) in ((:sec, :cos, :sech, :cosh, :secd, :cosd, "secant"),
(:csc, :sin, :csch, :sinh, :cscd, :sind, "cosecant"),
(:cot, :tan, :coth, :tanh, :cotd, :tand, "cotangent"))
name = string(finv)
hname = string(finvh)
dname = string(finvd)
@eval begin
@doc """
$($name)(x)
Compute the $($fn) of `x`, where `x` is in radians.
""" ($finv)(z::T) where {T<:Number} = one(T) / (($f)(z))
@doc """
$($hname)(x)
Compute the hyperbolic $($fn) of `x`.
""" ($finvh)(z::T) where {T<:Number} = one(T) / (($fh)(z))
@doc """
$($dname)(x)
Compute the $($fn) of `x`, where `x` is in degrees.
""" ($finvd)(z::T) where {T<:Number} = one(T) / (($fd)(z))
end
end
for (tfa, tfainv, hfa, hfainv, fn) in ((:asec, :acos, :asech, :acosh, "secant"),
(:acsc, :asin, :acsch, :asinh, "cosecant"),
(:acot, :atan, :acoth, :atanh, "cotangent"))
tname = string(tfa)
hname = string(hfa)
@eval begin
@doc """
$($tname)(x)
Compute the inverse $($fn) of `x`, where the output is in radians. """ ($tfa)(y::T) where {T<:Number} = ($tfainv)(one(T) / y)
@doc """
$($hname)(x)
Compute the inverse hyperbolic $($fn) of `x`. """ ($hfa)(y::T) where {T<:Number} = ($hfainv)(one(T) / y)
end
end
# multiply in extended precision
function deg2rad_ext(x::Float64)
m = 0.017453292519943295
m_hi = 0.01745329238474369
m_lo = 1.3519960527851425e-10
u = 134217729.0*x # 0x1p27 + 1
x_hi = u-(u-x)
x_lo = x-x_hi
y_hi = m*x
y_lo = x_hi * m_lo + (x_lo* m_hi + ((x_hi*m_hi-y_hi) + x_lo*m_lo))
DoubleFloat64(y_hi,y_lo)
end
deg2rad_ext(x::Float32) = DoubleFloat32(deg2rad(Float64(x)))
deg2rad_ext(x::Real) = deg2rad(x) # Fallback
function sind(x::Real)
if isinf(x)
return throw(DomainError(x, "`x` cannot be infinite."))
elseif isnan(x)
return oftype(x,NaN)
end
rx = copysign(float(rem(x,360)),x)
arx = abs(rx)
if rx == zero(rx)
return rx
elseif arx < oftype(rx,45)
return sin_kernel(deg2rad_ext(rx))
elseif arx <= oftype(rx,135)
y = deg2rad_ext(oftype(rx,90) - arx)
return copysign(cos_kernel(y),rx)
elseif arx == oftype(rx,180)
return copysign(zero(rx),rx)
elseif arx < oftype(rx,225)
y = deg2rad_ext((oftype(rx,180) - arx)*sign(rx))
return sin_kernel(y)
elseif arx <= oftype(rx,315)
y = deg2rad_ext(oftype(rx,270) - arx)
return -copysign(cos_kernel(y),rx)
else
y = deg2rad_ext(rx - copysign(oftype(rx,360),rx))
return sin_kernel(y)
end
end
function cosd(x::Real)
if isinf(x)
return throw(DomainError(x, "`x` cannot be infinite."))
elseif isnan(x)
return oftype(x,NaN)
end
rx = abs(float(rem(x,360)))
if rx <= oftype(rx,45)
return cos_kernel(deg2rad_ext(rx))
elseif rx < oftype(rx,135)
y = deg2rad_ext(oftype(rx,90) - rx)
return sin_kernel(y)
elseif rx <= oftype(rx,225)
y = deg2rad_ext(oftype(rx,180) - rx)
return -cos_kernel(y)
elseif rx < oftype(rx,315)
y = deg2rad_ext(rx - oftype(rx,270))
return sin_kernel(y)
else
y = deg2rad_ext(oftype(rx,360) - rx)
return cos_kernel(y)
end
end
tand(x::Real) = sind(x) / cosd(x)
for (fd, f, fn) in ((:sind, :sin, "sine"), (:cosd, :cos, "cosine"), (:tand, :tan, "tangent"))
name = string(fd)
@eval begin
@doc """
$($name)(x)
Compute $($fn) of `x`, where `x` is in degrees. """ ($fd)(z) = ($f)(deg2rad(z))
end
end
for (fd, f, fn) in ((:asind, :asin, "sine"), (:acosd, :acos, "cosine"),
(:asecd, :asec, "secant"), (:acscd, :acsc, "cosecant"), (:acotd, :acot, "cotangent"))
name = string(fd)
@eval begin
@doc """
$($name)(x)
Compute the inverse $($fn) of `x`, where the output is in degrees. """ ($fd)(y) = rad2deg(($f)(y))
end
end
"""
atand(y)
atand(y,x)
Compute the inverse tangent of `y` or `y/x`, respectively, where the output is in degrees.
"""
atand(y) = rad2deg(atan(y))
atand(y, x) = rad2deg(atan(y,x))
|