1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
|
# This file is a part of Julia. License is MIT: https://julialang.org/license
abstract type AbstractCartesianIndex{N} end # This is a hacky forward declaration for CartesianIndex
const ViewIndex = Union{Real, AbstractArray}
const ScalarIndex = Real
# L is true if the view itself supports fast linear indexing
struct SubArray{T,N,P,I,L} <: AbstractArray{T,N}
parent::P
indices::I
offset1::Int # for linear indexing and pointer, only valid when L==true
stride1::Int # used only for linear indexing
function SubArray{T,N,P,I,L}(parent, indices, offset1, stride1) where {T,N,P,I,L}
@_inline_meta
check_parent_index_match(parent, indices)
new(parent, indices, offset1, stride1)
end
end
# Compute the linear indexability of the indices, and combine it with the linear indexing of the parent
function SubArray(parent::AbstractArray, indices::Tuple)
@_inline_meta
SubArray(IndexStyle(viewindexing(indices), IndexStyle(parent)), parent, ensure_indexable(indices), index_dimsum(indices...))
end
function SubArray(::IndexCartesian, parent::P, indices::I, ::NTuple{N,Any}) where {P,I,N}
@_inline_meta
SubArray{eltype(P), N, P, I, false}(parent, indices, 0, 0)
end
function SubArray(::IndexLinear, parent::P, indices::I, ::NTuple{N,Any}) where {P,I,N}
@_inline_meta
# Compute the stride and offset
stride1 = compute_stride1(parent, indices)
SubArray{eltype(P), N, P, I, true}(parent, indices, compute_offset1(parent, stride1, indices), stride1)
end
check_parent_index_match(parent, indices) = check_parent_index_match(parent, index_ndims(indices...))
check_parent_index_match(parent::AbstractArray{T,N}, ::NTuple{N, Bool}) where {T,N} = nothing
check_parent_index_match(parent, ::NTuple{N, Bool}) where {N} =
throw(ArgumentError("number of indices ($N) must match the parent dimensionality ($(ndims(parent)))"))
# This computes the linear indexing compatibility for a given tuple of indices
viewindexing() = IndexLinear()
# Leading scalar indices simply increase the stride
viewindexing(I::Tuple{ScalarIndex, Vararg{Any}}) = (@_inline_meta; viewindexing(tail(I)))
# Slices may begin a section which may be followed by any number of Slices
viewindexing(I::Tuple{Slice, Slice, Vararg{Any}}) = (@_inline_meta; viewindexing(tail(I)))
# A UnitRange can follow Slices, but only if all other indices are scalar
viewindexing(I::Tuple{Slice, AbstractUnitRange, Vararg{ScalarIndex}}) = IndexLinear()
viewindexing(I::Tuple{Slice, Slice, Vararg{ScalarIndex}}) = IndexLinear() # disambiguate
# In general, ranges are only fast if all other indices are scalar
viewindexing(I::Tuple{AbstractRange, Vararg{ScalarIndex}}) = IndexLinear()
# All other index combinations are slow
viewindexing(I::Tuple{Vararg{Any}}) = IndexCartesian()
# Of course, all other array types are slow
viewindexing(I::Tuple{AbstractArray, Vararg{Any}}) = IndexCartesian()
# Simple utilities
size(V::SubArray) = (@_inline_meta; map(n->Int(unsafe_length(n)), axes(V)))
similar(V::SubArray, T::Type, dims::Dims) = similar(V.parent, T, dims)
sizeof(V::SubArray) = length(V) * sizeof(eltype(V))
parent(V::SubArray) = V.parent
parentindices(V::SubArray) = V.indices
"""
parentindices(A)
Return the indices in the [`parent`](@ref) which correspond to the array view `A`.
# Examples
```jldoctest
julia> A = [1 2; 3 4];
julia> V = view(A, 1, :)
2-element view(::Array{Int64,2}, 1, :) with eltype Int64:
1
2
julia> parentindices(V)
(1, Base.Slice(Base.OneTo(2)))
```
"""
parentindices(a::AbstractArray) = map(OneTo, size(a))
## Aliasing detection
dataids(A::SubArray) = (dataids(A.parent)..., _splatmap(dataids, A.indices)...)
_splatmap(f, ::Tuple{}) = ()
_splatmap(f, t::Tuple) = (f(t[1])..., _splatmap(f, tail(t))...)
unaliascopy(A::SubArray) = typeof(A)(unaliascopy(A.parent), map(unaliascopy, A.indices), A.offset1, A.stride1)
# When the parent is an Array we can trim the size down a bit. In the future this
# could possibly be extended to any mutable array.
function unaliascopy(V::SubArray{T,N,A,I,LD}) where {T,N,A<:Array,I<:Tuple{Vararg{Union{Real,AbstractRange,Array}}},LD}
dest = Array{T}(undef, index_lengths(V.indices...))
copyto!(dest, V)
SubArray{T,N,A,I,LD}(dest, map(_trimmedindex, V.indices), 0, Int(LD))
end
# Transform indices to be "dense"
_trimmedindex(i::Real) = oftype(i, 1)
_trimmedindex(i::AbstractUnitRange) = oftype(i, OneTo(length(i)))
_trimmedindex(i::AbstractArray) = oftype(i, reshape(eachindex(IndexLinear(), i), axes(i)))
## SubArray creation
# We always assume that the dimensionality of the parent matches the number of
# indices that end up getting passed to it, so we store the parent as a
# ReshapedArray view if necessary. The trouble is that arrays of `CartesianIndex`
# can make the number of effective indices not equal to length(I).
_maybe_reshape_parent(A::AbstractArray, ::NTuple{1, Bool}) = reshape(A, Val(1))
_maybe_reshape_parent(A::AbstractArray{<:Any,1}, ::NTuple{1, Bool}) = reshape(A, Val(1))
_maybe_reshape_parent(A::AbstractArray{<:Any,N}, ::NTuple{N, Bool}) where {N} = A
_maybe_reshape_parent(A::AbstractArray, ::NTuple{N, Bool}) where {N} = reshape(A, Val(N))
"""
view(A, inds...)
Like [`getindex`](@ref), but returns a view into the parent array `A` with the
given indices instead of making a copy. Calling [`getindex`](@ref) or
[`setindex!`](@ref) on the returned `SubArray` computes the
indices to the parent array on the fly without checking bounds.
# Examples
```jldoctest
julia> A = [1 2; 3 4]
2×2 Array{Int64,2}:
1 2
3 4
julia> b = view(A, :, 1)
2-element view(::Array{Int64,2}, :, 1) with eltype Int64:
1
3
julia> fill!(b, 0)
2-element view(::Array{Int64,2}, :, 1) with eltype Int64:
0
0
julia> A # Note A has changed even though we modified b
2×2 Array{Int64,2}:
0 2
0 4
```
"""
function view(A::AbstractArray, I::Vararg{Any,N}) where {N}
@_inline_meta
J = map(i->unalias(A,i), to_indices(A, I))
@boundscheck checkbounds(A, J...)
unsafe_view(_maybe_reshape_parent(A, index_ndims(J...)), J...)
end
function unsafe_view(A::AbstractArray, I::Vararg{ViewIndex,N}) where {N}
@_inline_meta
SubArray(A, I)
end
# When we take the view of a view, it's often possible to "reindex" the parent
# view's indices such that we can "pop" the parent view and keep just one layer
# of indirection. But we can't always do this because arrays of `CartesianIndex`
# might span multiple parent indices, making the reindex calculation very hard.
# So we use _maybe_reindex to figure out if there are any arrays of
# `CartesianIndex`, and if so, we punt and keep two layers of indirection.
unsafe_view(V::SubArray, I::Vararg{ViewIndex,N}) where {N} =
(@_inline_meta; _maybe_reindex(V, I))
_maybe_reindex(V, I) = (@_inline_meta; _maybe_reindex(V, I, I))
_maybe_reindex(V, I, ::Tuple{AbstractArray{<:AbstractCartesianIndex}, Vararg{Any}}) =
(@_inline_meta; SubArray(V, I))
# But allow arrays of CartesianIndex{1}; they behave just like arrays of Ints
_maybe_reindex(V, I, A::Tuple{AbstractArray{<:AbstractCartesianIndex{1}}, Vararg{Any}}) =
(@_inline_meta; _maybe_reindex(V, I, tail(A)))
_maybe_reindex(V, I, A::Tuple{Any, Vararg{Any}}) = (@_inline_meta; _maybe_reindex(V, I, tail(A)))
function _maybe_reindex(V, I, ::Tuple{})
@_inline_meta
@inbounds idxs = to_indices(V.parent, reindex(V, V.indices, I))
SubArray(V.parent, idxs)
end
## Re-indexing is the heart of a view, transforming A[i, j][x, y] to A[i[x], j[y]]
#
# Recursively look through the heads of the parent- and sub-indices, considering
# the following cases:
# * Parent index is array -> re-index that with one or more sub-indices (one per dimension)
# * Parent index is Colon -> just use the sub-index as provided
# * Parent index is scalar -> that dimension was dropped, so skip the sub-index and use the index as is
AbstractZeroDimArray{T} = AbstractArray{T, 0}
reindex(V, ::Tuple{}, ::Tuple{}) = ()
# Skip dropped scalars, so simply peel them off the parent indices and continue
reindex(V, idxs::Tuple{ScalarIndex, Vararg{Any}}, subidxs::Tuple{Vararg{Any}}) =
(@_propagate_inbounds_meta; (idxs[1], reindex(V, tail(idxs), subidxs)...))
# Slices simply pass their subindices straight through
reindex(V, idxs::Tuple{Slice, Vararg{Any}}, subidxs::Tuple{Any, Vararg{Any}}) =
(@_propagate_inbounds_meta; (subidxs[1], reindex(V, tail(idxs), tail(subidxs))...))
# Re-index into parent vectors with one subindex
reindex(V, idxs::Tuple{AbstractVector, Vararg{Any}}, subidxs::Tuple{Any, Vararg{Any}}) =
(@_propagate_inbounds_meta; (idxs[1][subidxs[1]], reindex(V, tail(idxs), tail(subidxs))...))
# Parent matrices are re-indexed with two sub-indices
reindex(V, idxs::Tuple{AbstractMatrix, Vararg{Any}}, subidxs::Tuple{Any, Any, Vararg{Any}}) =
(@_propagate_inbounds_meta; (idxs[1][subidxs[1], subidxs[2]], reindex(V, tail(idxs), tail(tail(subidxs)))...))
# In general, we index N-dimensional parent arrays with N indices
@generated function reindex(V, idxs::Tuple{AbstractArray{T,N}, Vararg{Any}}, subidxs::Tuple{Vararg{Any}}) where {T,N}
if length(subidxs.parameters) >= N
subs = [:(subidxs[$d]) for d in 1:N]
tail = [:(subidxs[$d]) for d in N+1:length(subidxs.parameters)]
:(@_propagate_inbounds_meta; (idxs[1][$(subs...)], reindex(V, tail(idxs), ($(tail...),))...))
else
:(throw(ArgumentError("cannot re-index $(ndims(V)) dimensional SubArray with fewer than $(ndims(V)) indices\nThis should not occur; please submit a bug report.")))
end
end
# In general, we simply re-index the parent indices by the provided ones
SlowSubArray{T,N,P,I} = SubArray{T,N,P,I,false}
function getindex(V::SlowSubArray{T,N}, I::Vararg{Int,N}) where {T,N}
@_inline_meta
@boundscheck checkbounds(V, I...)
@inbounds r = V.parent[reindex(V, V.indices, I)...]
r
end
FastSubArray{T,N,P,I} = SubArray{T,N,P,I,true}
function getindex(V::FastSubArray, i::Int)
@_inline_meta
@boundscheck checkbounds(V, i)
@inbounds r = V.parent[V.offset1 + V.stride1*i]
r
end
# We can avoid a multiplication if the first parent index is a Colon or AbstractUnitRange
FastContiguousSubArray{T,N,P,I<:Tuple{Union{Slice, AbstractUnitRange}, Vararg{Any}}} = SubArray{T,N,P,I,true}
function getindex(V::FastContiguousSubArray, i::Int)
@_inline_meta
@boundscheck checkbounds(V, i)
@inbounds r = V.parent[V.offset1 + i]
r
end
function setindex!(V::SlowSubArray{T,N}, x, I::Vararg{Int,N}) where {T,N}
@_inline_meta
@boundscheck checkbounds(V, I...)
@inbounds V.parent[reindex(V, V.indices, I)...] = x
V
end
function setindex!(V::FastSubArray, x, i::Int)
@_inline_meta
@boundscheck checkbounds(V, i)
@inbounds V.parent[V.offset1 + V.stride1*i] = x
V
end
function setindex!(V::FastContiguousSubArray, x, i::Int)
@_inline_meta
@boundscheck checkbounds(V, i)
@inbounds V.parent[V.offset1 + i] = x
V
end
IndexStyle(::Type{<:FastSubArray}) = IndexLinear()
IndexStyle(::Type{<:SubArray}) = IndexCartesian()
# Strides are the distance in memory between adjacent elements in a given dimension
# which we determine from the strides of the parent
strides(V::SubArray) = substrides(V.parent, V.indices)
substrides(parent, I::Tuple) = substrides(parent, strides(parent), I)
substrides(parent, strds::Tuple{}, ::Tuple{}) = ()
substrides(parent, strds::NTuple{N,Int}, I::Tuple{ScalarIndex, Vararg{Any}}) where N = (substrides(parent, tail(strds), tail(I))...,)
substrides(parent, strds::NTuple{N,Int}, I::Tuple{Slice, Vararg{Any}}) where N = (first(strds), substrides(parent, tail(strds), tail(I))...)
substrides(parent, strds::NTuple{N,Int}, I::Tuple{AbstractRange, Vararg{Any}}) where N = (first(strds)*step(I[1]), substrides(parent, tail(strds), tail(I))...)
substrides(parent, strds, I::Tuple{Any, Vararg{Any}}) = throw(ArgumentError("strides is invalid for SubArrays with indices of type $(typeof(I[1]))"))
stride(V::SubArray, d::Integer) = d <= ndims(V) ? strides(V)[d] : strides(V)[end] * size(V)[end]
compute_stride1(parent::AbstractArray, I::NTuple{N,Any}) where {N} =
(@_inline_meta; compute_stride1(1, fill_to_length(axes(parent), OneTo(1), Val(N)), I))
compute_stride1(s, inds, I::Tuple{}) = s
compute_stride1(s, inds, I::Tuple{ScalarIndex, Vararg{Any}}) =
(@_inline_meta; compute_stride1(s*unsafe_length(inds[1]), tail(inds), tail(I)))
compute_stride1(s, inds, I::Tuple{AbstractRange, Vararg{Any}}) = s*step(I[1])
compute_stride1(s, inds, I::Tuple{Slice, Vararg{Any}}) = s
compute_stride1(s, inds, I::Tuple{Any, Vararg{Any}}) = throw(ArgumentError("invalid strided index type $(typeof(I[1]))"))
elsize(::Type{<:SubArray{<:Any,<:Any,P}}) where {P} = elsize(P)
iscontiguous(A::SubArray) = iscontiguous(typeof(A))
iscontiguous(::Type{<:SubArray}) = false
iscontiguous(::Type{<:FastContiguousSubArray}) = true
first_index(V::FastSubArray) = V.offset1 + V.stride1 # cached for fast linear SubArrays
function first_index(V::SubArray)
P, I = parent(V), V.indices
s1 = compute_stride1(P, I)
s1 + compute_offset1(P, s1, I)
end
# Computing the first index simply steps through the indices, accumulating the
# sum of index each multiplied by the parent's stride.
# The running sum is `f`; the cumulative stride product is `s`.
# If the parent is a vector, then we offset the parent's own indices with parameters of I
compute_offset1(parent::AbstractVector, stride1::Integer, I::Tuple{AbstractRange}) =
(@_inline_meta; first(I[1]) - first(axes1(I[1]))*stride1)
# If the result is one-dimensional and it's a Colon, then linear
# indexing uses the indices along the given dimension. Otherwise
# linear indexing always starts with 1.
compute_offset1(parent, stride1::Integer, I::Tuple) =
(@_inline_meta; compute_offset1(parent, stride1, find_extended_dims(1, I...), find_extended_inds(I...), I))
compute_offset1(parent, stride1::Integer, dims::Tuple{Int}, inds::Tuple{Slice}, I::Tuple) =
(@_inline_meta; compute_linindex(parent, I) - stride1*first(axes(parent, dims[1]))) # index-preserving case
compute_offset1(parent, stride1::Integer, dims, inds, I::Tuple) =
(@_inline_meta; compute_linindex(parent, I) - stride1) # linear indexing starts with 1
function compute_linindex(parent, I::NTuple{N,Any}) where N
@_inline_meta
IP = fill_to_length(axes(parent), OneTo(1), Val(N))
compute_linindex(1, 1, IP, I)
end
function compute_linindex(f, s, IP::Tuple, I::Tuple{ScalarIndex, Vararg{Any}})
@_inline_meta
Δi = I[1]-first(IP[1])
compute_linindex(f + Δi*s, s*unsafe_length(IP[1]), tail(IP), tail(I))
end
function compute_linindex(f, s, IP::Tuple, I::Tuple{Any, Vararg{Any}})
@_inline_meta
Δi = first(I[1])-first(IP[1])
compute_linindex(f + Δi*s, s*unsafe_length(IP[1]), tail(IP), tail(I))
end
compute_linindex(f, s, IP::Tuple, I::Tuple{}) = f
find_extended_dims(dim, ::ScalarIndex, I...) = (@_inline_meta; find_extended_dims(dim + 1, I...))
find_extended_dims(dim, i1, I...) = (@_inline_meta; (dim, find_extended_dims(dim + 1, I...)...))
find_extended_dims(dim) = ()
find_extended_inds(::ScalarIndex, I...) = (@_inline_meta; find_extended_inds(I...))
find_extended_inds(i1, I...) = (@_inline_meta; (i1, find_extended_inds(I...)...))
find_extended_inds() = ()
unsafe_convert(::Type{Ptr{T}}, V::SubArray{T,N,P,<:Tuple{Vararg{RangeIndex}}}) where {T,N,P} =
unsafe_convert(Ptr{T}, V.parent) + (first_index(V)-1)*sizeof(T)
pointer(V::FastSubArray, i::Int) = pointer(V.parent, V.offset1 + V.stride1*i)
pointer(V::FastContiguousSubArray, i::Int) = pointer(V.parent, V.offset1 + i)
pointer(V::SubArray, i::Int) = _pointer(V, i)
_pointer(V::SubArray{<:Any,1}, i::Int) = pointer(V, (i,))
_pointer(V::SubArray, i::Int) = pointer(V, Base._ind2sub(axes(V), i))
function pointer(V::SubArray{T,N,<:Array,<:Tuple{Vararg{RangeIndex}}}, is::Tuple{Vararg{Int}}) where {T,N}
index = first_index(V)
strds = strides(V)
for d = 1:length(is)
index += (is[d]-1)*strds[d]
end
return pointer(V.parent, index)
end
# indices are taken from the range/vector
# Since bounds-checking is performance-critical and uses
# indices, it's worth optimizing these implementations thoroughly
axes(S::SubArray) = (@_inline_meta; _indices_sub(S, S.indices...))
_indices_sub(S::SubArray) = ()
_indices_sub(S::SubArray, ::Real, I...) = (@_inline_meta; _indices_sub(S, I...))
function _indices_sub(S::SubArray, i1::AbstractArray, I...)
@_inline_meta
(unsafe_indices(i1)..., _indices_sub(S, I...)...)
end
## Compatibility
# deprecate?
function parentdims(s::SubArray)
nd = ndims(s)
dimindex = Vector{Int}(undef, nd)
sp = strides(s.parent)
sv = strides(s)
j = 1
for i = 1:ndims(s.parent)
r = s.indices[i]
if j <= nd && (isa(r,Union{Slice,AbstractRange}) ? sp[i]*step(r) : sp[i]) == sv[j]
dimindex[j] = i
j += 1
end
end
dimindex
end
|