1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707
|
# This file is a part of Julia. License is MIT: https://julialang.org/license
# Twice-precision arithmetic.
# Necessary for creating nicely-behaved ranges like r = 0.1:0.1:0.3
# that return r[3] == 0.3. Otherwise, we have roundoff error due to
# 0.1 + 2*0.1 = 0.30000000000000004
"""
hi, lo = splitprec(F::Type{<:AbstractFloat}, i::Integer)
Represent an integer `i` as a pair of floating-point numbers `hi` and
`lo` (of type `F`) such that:
- `widen(hi) + widen(lo) ≈ i`. It is exact if 1.5 * (number of precision bits in `F`) is greater than the number of bits in `i`.
- all bits in `hi` are more significant than any of the bits in `lo`
- `hi` can be exactly multiplied by the `hi` component of another call to `splitprec`.
In particular, while `convert(Float64, i)` can be lossy since Float64
has only 53 bits of precision, `splitprec(Float64, i)` is exact for
any Int64/UInt64.
"""
function splitprec(::Type{F}, i::Integer) where {F<:AbstractFloat}
hi = truncbits(F(i), cld(precision(F), 2))
ihi = oftype(i, hi)
hi, F(i - ihi)
end
function truncmask(x::F, mask) where {F<:IEEEFloat}
reinterpret(F, mask & reinterpret(uinttype(F), x))
end
truncmask(x, mask) = x
function truncbits(x::F, nb) where {F<:IEEEFloat}
truncmask(x, typemax(uinttype(F)) << nb)
end
truncbits(x, nb) = x
## Dekker arithmetic
"""
hi, lo = canonicalize2(big, little)
Generate a representation where all the nonzero bits in `hi` are more
significant than any of the nonzero bits in `lo`. `big` must be larger
in absolute value than `little`.
"""
function canonicalize2(big, little)
h = big+little
h, (big - h) + little
end
"""
zhi, zlo = add12(x, y)
A high-precision representation of `x + y` for floating-point
numbers. Mathematically, `zhi + zlo = x + y`, where `zhi` contains the
most significant bits and `zlo` the least significant.
Because of the way floating-point numbers are printed, `lo` may not
look the way you might expect from the standpoint of decimal
representation, even though it is exact from the standpoint of binary
representation.
Example:
```julia
julia> 1.0 + 1.0001e-15
1.000000000000001
julia> big(1.0) + big(1.0001e-15)
1.000000000000001000100000000000020165767380775934141445417482375879192346701529
julia> hi, lo = Base.add12(1.0, 1.0001e-15)
(1.000000000000001, -1.1012302462515652e-16)
julia> big(hi) + big(lo)
1.000000000000001000100000000000020165767380775934141445417482375879192346701529
```
`lo` differs from 1.0e-19 because `hi` is not exactly equal to
the first 16 decimal digits of the answer.
"""
function add12(x::T, y::T) where {T}
x, y = ifelse(abs(y) > abs(x), (y, x), (x, y))
canonicalize2(x, y)
end
add12(x, y) = add12(promote(x, y)...)
"""
zhi, zlo = mul12(x, y)
A high-precision representation of `x * y` for floating-point
numbers. Mathematically, `zhi + zlo = x * y`, where `zhi` contains the
most significant bits and `zlo` the least significant.
Example:
```julia
julia> x = Float32(π)
3.1415927f0
julia> x * x
9.869605f0
julia> Float64(x) * Float64(x)
9.869604950382893
julia> hi, lo = Base.mul12(x, x)
(9.869605f0, -1.140092f-7)
julia> Float64(hi) + Float64(lo)
9.869604950382893
```
"""
function mul12(x::T, y::T) where {T<:AbstractFloat}
h = x * y
ifelse(iszero(h) | !isfinite(h), (h, h), canonicalize2(h, fma(x, y, -h)))
end
mul12(x::T, y::T) where {T} = (p = x * y; (p, zero(p)))
mul12(x, y) = mul12(promote(x, y)...)
"""
zhi, zlo = div12(x, y)
A high-precision representation of `x / y` for floating-point
numbers. Mathematically, `zhi + zlo ≈ x / y`, where `zhi` contains the
most significant bits and `zlo` the least significant.
Example:
```julia
julia> x, y = Float32(π), 3.1f0
(3.1415927f0, 3.1f0)
julia> x / y
1.013417f0
julia> Float64(x) / Float64(y)
1.0134170444063078
julia> hi, lo = Base.div12(x, y)
(1.013417f0, 3.8867366f-8)
julia> Float64(hi) + Float64(lo)
1.0134170444063066
"""
function div12(x::T, y::T) where {T<:AbstractFloat}
# We lose precision if any intermediate calculation results in a subnormal.
# To prevent this from happening, standardize the values.
xs, xe = frexp(x)
ys, ye = frexp(y)
r = xs / ys
rh, rl = canonicalize2(r, -fma(r, ys, -xs)/ys)
ifelse(iszero(r) | !isfinite(r), (r, r), (ldexp(rh, xe-ye), ldexp(rl, xe-ye)))
end
div12(x::T, y::T) where {T} = (p = x / y; (p, zero(p)))
div12(x, y) = div12(promote(x, y)...)
## TwicePrecision
"""
TwicePrecision{T}(hi::T, lo::T)
TwicePrecision{T}((num, denom))
A number with twice the precision of `T`, e.g., quad-precision if `T =
Float64`. `hi` represents the high bits (most significant bits) and
`lo` the low bits (least significant bits). Rational values
`num//denom` can be approximated conveniently using the syntax
`TwicePrecision{T}((num, denom))`.
When used with `T<:Union{Float16,Float32,Float64}` to construct an "exact"
`StepRangeLen`, `ref` should be the range element with smallest
magnitude and `offset` set to the corresponding index. For
efficiency, multiplication of `step` by the index is not performed at
twice precision: `step.hi` should have enough trailing zeros in its
`bits` representation that `(0:len-1)*step.hi` is exact (has no
roundoff error). If `step` has an exact rational representation
`num//denom`, then you can construct `step` using
step = TwicePrecision{T}((num, denom), nb)
where `nb` is the number of trailing zero bits of `step.hi`. For
ranges, you can set `nb = ceil(Int, log2(len-1))`.
"""
struct TwicePrecision{T}
hi::T # most significant bits
lo::T # least significant bits
end
TwicePrecision{T}(x::T) where {T} = TwicePrecision{T}(x, zero(T))
function TwicePrecision{T}(x) where {T}
xT = convert(T, x)
Δx = x - xT
TwicePrecision{T}(xT, T(Δx))
end
TwicePrecision{T}(i::Integer) where {T<:AbstractFloat} =
TwicePrecision{T}(canonicalize2(splitprec(T, i)...)...)
TwicePrecision(x) = TwicePrecision{typeof(x)}(x)
# Numerator/Denominator constructors
function TwicePrecision{T}(nd::Tuple{Integer,Integer}) where {T<:Union{Float16,Float32}}
n, d = nd
TwicePrecision{T}(n/d)
end
function TwicePrecision{T}(nd::Tuple{Any,Any}) where {T}
n, d = nd
TwicePrecision{T}(n) / d
end
function TwicePrecision{T}(nd::Tuple{I,I}, nb::Integer) where {T,I}
twiceprecision(TwicePrecision{T}(nd), nb)
end
# Truncating constructors. Useful for generating values that can be
# exactly multiplied by small integers.
function twiceprecision(val::T, nb::Integer) where {T<:IEEEFloat}
hi = truncbits(val, nb)
TwicePrecision{T}(hi, val - hi)
end
function twiceprecision(val::TwicePrecision{T}, nb::Integer) where {T<:IEEEFloat}
hi = truncbits(val.hi, nb)
TwicePrecision{T}(hi, (val.hi - hi) + val.lo)
end
nbitslen(r::StepRangeLen) = nbitslen(eltype(r), length(r), r.offset)
nbitslen(::Type{T}, len, offset) where {T<:IEEEFloat} =
min(cld(precision(T), 2), nbitslen(len, offset))
# The +1 here is for safety, because the precision of the significand
# is 1 bit higher than the number that are explicitly stored.
nbitslen(len, offset) = len < 2 ? 0 : ceil(Int, log2(max(offset-1, len-offset))) + 1
eltype(::Type{TwicePrecision{T}}) where {T} = T
promote_rule(::Type{TwicePrecision{R}}, ::Type{TwicePrecision{S}}) where {R,S} =
TwicePrecision{promote_type(R,S)}
promote_rule(::Type{TwicePrecision{R}}, ::Type{S}) where {R,S<:Number} =
TwicePrecision{promote_type(R,S)}
(::Type{T})(x::TwicePrecision) where {T<:Number} = T(x.hi + x.lo)::T
TwicePrecision{T}(x::Number) where {T} = TwicePrecision{T}(T(x), zero(T))
convert(::Type{TwicePrecision{T}}, x::TwicePrecision{T}) where {T} = x
convert(::Type{TwicePrecision{T}}, x::TwicePrecision) where {T} =
TwicePrecision{T}(convert(T, x.hi), convert(T, x.lo))
convert(::Type{T}, x::TwicePrecision) where {T<:Number} = T(x)
convert(::Type{TwicePrecision{T}}, x::Number) where {T} = TwicePrecision{T}(x)
float(x::TwicePrecision{<:AbstractFloat}) = x
float(x::TwicePrecision) = TwicePrecision(float(x.hi), float(x.lo))
big(x::TwicePrecision) = big(x.hi) + big(x.lo)
-(x::TwicePrecision) = TwicePrecision(-x.hi, -x.lo)
zero(::Type{TwicePrecision{T}}) where {T} = TwicePrecision{T}(0, 0)
# Arithmetic
function +(x::TwicePrecision, y::Number)
s_hi, s_lo = add12(x.hi, y)
TwicePrecision(canonicalize2(s_hi, s_lo+x.lo)...)
end
+(x::Number, y::TwicePrecision) = y+x
function +(x::TwicePrecision{T}, y::TwicePrecision{T}) where T
r = x.hi + y.hi
s = abs(x.hi) > abs(y.hi) ? (((x.hi - r) + y.hi) + y.lo) + x.lo : (((y.hi - r) + x.hi) + x.lo) + y.lo
TwicePrecision(canonicalize2(r, s)...)
end
+(x::TwicePrecision, y::TwicePrecision) = +(promote(x, y)...)
-(x::TwicePrecision, y::TwicePrecision) = x + (-y)
-(x::TwicePrecision, y::Number) = x + (-y)
-(x::Number, y::TwicePrecision) = x + (-y)
function *(x::TwicePrecision, v::Number)
v == 0 && return TwicePrecision(x.hi*v, x.lo*v)
x * TwicePrecision(oftype(x.hi*v, v))
end
function *(x::TwicePrecision{<:IEEEFloat}, v::Integer)
v == 0 && return TwicePrecision(x.hi*v, x.lo*v)
nb = ceil(Int, log2(abs(v)))
u = truncbits(x.hi, nb)
TwicePrecision(canonicalize2(u*v, ((x.hi-u) + x.lo)*v)...)
end
*(v::Number, x::TwicePrecision) = x*v
function *(x::TwicePrecision{T}, y::TwicePrecision{T}) where {T}
zh, zl = mul12(x.hi, y.hi)
ret = TwicePrecision{T}(canonicalize2(zh, (x.hi * y.lo + x.lo * y.hi) + zl)...)
ifelse(iszero(zh) | !isfinite(zh), TwicePrecision{T}(zh, zh), ret)
end
*(x::TwicePrecision, y::TwicePrecision) = *(promote(x, y)...)
function /(x::TwicePrecision, v::Number)
x / TwicePrecision(oftype(x.hi/v, v))
end
function /(x::TwicePrecision, y::TwicePrecision)
hi = x.hi / y.hi
uh, ul = mul12(hi, y.hi)
lo = ((((x.hi - uh) - ul) + x.lo) - hi*y.lo)/y.hi
ret = TwicePrecision(canonicalize2(hi, lo)...)
ifelse(iszero(hi) | !isfinite(hi), TwicePrecision(hi, hi), ret)
end
## StepRangeLen
# Use TwicePrecision only for Float64; use Float64 for T<:Union{Float16,Float32}
# See also _linspace1
# Ratio-of-integers constructors
function steprangelen_hp(::Type{Float64}, ref::Tuple{Integer,Integer},
step::Tuple{Integer,Integer}, nb::Integer,
len::Integer, offset::Integer)
StepRangeLen(TwicePrecision{Float64}(ref),
TwicePrecision{Float64}(step, nb), Int(len), offset)
end
function steprangelen_hp(::Type{T}, ref::Tuple{Integer,Integer},
step::Tuple{Integer,Integer}, nb::Integer,
len::Integer, offset::Integer) where {T<:IEEEFloat}
StepRangeLen{T}(ref[1]/ref[2], step[1]/step[2], Int(len), offset)
end
# AbstractFloat constructors (can supply a single number or a 2-tuple
const F_or_FF = Union{AbstractFloat, Tuple{AbstractFloat,AbstractFloat}}
asF64(x::AbstractFloat) = Float64(x)
asF64(x::Tuple{AbstractFloat,AbstractFloat}) = Float64(x[1]) + Float64(x[2])
# Defined to prevent splatting in the function below which here has a performance impact
_TP(x) = TwicePrecision{Float64}(x)
_TP(x::Tuple{Any, Any}) = TwicePrecision{Float64}(x[1], x[2])
function steprangelen_hp(::Type{Float64}, ref::F_or_FF,
step::F_or_FF, nb::Integer,
len::Integer, offset::Integer)
StepRangeLen(_TP(ref),
twiceprecision(_TP(step), nb), Int(len), offset)
end
function steprangelen_hp(::Type{T}, ref::F_or_FF,
step::F_or_FF, nb::Integer,
len::Integer, offset::Integer) where {T<:IEEEFloat}
StepRangeLen{T}(asF64(ref),
asF64(step), Int(len), offset)
end
StepRangeLen(ref::TwicePrecision{T}, step::TwicePrecision{T},
len::Integer, offset::Integer=1) where {T} =
StepRangeLen{T,TwicePrecision{T},TwicePrecision{T}}(ref, step, len, offset)
# Construct range for rational start=start_n/den, step=step_n/den
function floatrange(::Type{T}, start_n::Integer, step_n::Integer, len::Integer, den::Integer) where T
if len < 2 || step_n == 0
return steprangelen_hp(T, (start_n, den), (step_n, den), 0, Int(len), 1)
end
# index of smallest-magnitude value
imin = clamp(round(Int, -start_n/step_n+1), 1, Int(len))
# Compute smallest-magnitude element to 2x precision
ref_n = start_n+(imin-1)*step_n # this shouldn't overflow, so don't check
nb = nbitslen(T, len, imin)
steprangelen_hp(T, (ref_n, den), (step_n, den), nb, Int(len), imin)
end
function floatrange(a::AbstractFloat, st::AbstractFloat, len::Real, divisor::AbstractFloat)
T = promote_type(typeof(a), typeof(st), typeof(divisor))
m = maxintfloat(T, Int)
if abs(a) <= m && abs(st) <= m && abs(divisor) <= m
ia, ist, idivisor = round(Int, a), round(Int, st), round(Int, divisor)
if ia == a && ist == st && idivisor == divisor
# We can return the high-precision range
return floatrange(T, ia, ist, Int(len), idivisor)
end
end
# Fallback (misses the opportunity to set offset different from 1,
# but otherwise this is still high-precision)
steprangelen_hp(T, (a,divisor), (st,divisor), nbitslen(T, len, 1), Int(len), 1)
end
function (:)(start::T, step::T, stop::T) where T<:Union{Float16,Float32,Float64}
step == 0 && throw(ArgumentError("range step cannot be zero"))
# see if the inputs have exact rational approximations (and if so,
# perform all computations in terms of the rationals)
step_n, step_d = rat(step)
if step_d != 0 && T(step_n/step_d) == step
start_n, start_d = rat(start)
stop_n, stop_d = rat(stop)
if start_d != 0 && stop_d != 0 &&
T(start_n/start_d) == start && T(stop_n/stop_d) == stop
den = lcm(start_d, step_d) # use same denominator for start and step
m = maxintfloat(T, Int)
if den != 0 && abs(start*den) <= m && abs(step*den) <= m && # will round succeed?
rem(den, start_d) == 0 && rem(den, step_d) == 0 # check lcm overflow
start_n = round(Int, start*den)
step_n = round(Int, step*den)
len = max(0, div(den*stop_n - stop_d*start_n + step_n*stop_d, step_n*stop_d))
# Integer ops could overflow, so check that this makes sense
if isbetween(start, start + (len-1)*step, stop + step/2) &&
!isbetween(start, start + len*step, stop)
# Return a 2x precision range
return floatrange(T, start_n, step_n, len, den)
end
end
end
end
# Fallback, taking start and step literally
lf = (stop-start)/step
if lf < 0
len = 0
elseif lf == 0
len = 1
else
len = round(Int, lf) + 1
stop′ = start + (len-1)*step
# if we've overshot the end, subtract one:
len -= (start < stop < stop′) + (start > stop > stop′)
end
steprangelen_hp(T, start, step, 0, len, 1)
end
function _range(a::T, st::T, ::Nothing, len::Integer) where T<:Union{Float16,Float32,Float64}
start_n, start_d = rat(a)
step_n, step_d = rat(st)
if start_d != 0 && step_d != 0 &&
T(start_n/start_d) == a && T(step_n/step_d) == st
den = lcm(start_d, step_d)
m = maxintfloat(T, Int)
if abs(den*a) <= m && abs(den*st) <= m &&
rem(den, start_d) == 0 && rem(den, step_d) == 0
start_n = round(Int, den*a)
step_n = round(Int, den*st)
return floatrange(T, start_n, step_n, len, den)
end
end
steprangelen_hp(T, a, st, 0, len, 1)
end
# This assumes that r.step has already been split so that (0:len-1)*r.step.hi is exact
function unsafe_getindex(r::StepRangeLen{T,<:TwicePrecision,<:TwicePrecision}, i::Integer) where T
# Very similar to _getindex_hiprec, but optimized to avoid a 2nd call to add12
@_inline_meta
u = i - r.offset
shift_hi, shift_lo = u*r.step.hi, u*r.step.lo
x_hi, x_lo = add12(r.ref.hi, shift_hi)
T(x_hi + (x_lo + (shift_lo + r.ref.lo)))
end
function _getindex_hiprec(r::StepRangeLen{<:Any,<:TwicePrecision,<:TwicePrecision}, i::Integer)
u = i - r.offset
shift_hi, shift_lo = u*r.step.hi, u*r.step.lo
x_hi, x_lo = add12(r.ref.hi, shift_hi)
x_hi, x_lo = add12(x_hi, x_lo + (shift_lo + r.ref.lo))
TwicePrecision(x_hi, x_lo)
end
function getindex(r::StepRangeLen{T,<:TwicePrecision,<:TwicePrecision}, s::OrdinalRange{<:Integer}) where T
@boundscheck checkbounds(r, s)
soffset = 1 + round(Int, (r.offset - first(s))/step(s))
soffset = clamp(soffset, 1, length(s))
ioffset = first(s) + (soffset-1)*step(s)
if step(s) == 1 || length(s) < 2
newstep = r.step
else
newstep = twiceprecision(r.step*step(s), nbitslen(T, length(s), soffset))
end
if ioffset == r.offset
StepRangeLen(r.ref, newstep, length(s), max(1,soffset))
else
StepRangeLen(r.ref + (ioffset-r.offset)*r.step, newstep, length(s), max(1,soffset))
end
end
*(x::Real, r::StepRangeLen{<:Real,<:TwicePrecision}) =
StepRangeLen(x*r.ref, twiceprecision(x*r.step, nbitslen(r)), length(r), r.offset)
*(r::StepRangeLen{<:Real,<:TwicePrecision}, x::Real) = x*r
/(r::StepRangeLen{<:Real,<:TwicePrecision}, x::Real) =
StepRangeLen(r.ref/x, twiceprecision(r.step/x, nbitslen(r)), length(r), r.offset)
StepRangeLen{T,R,S}(r::StepRangeLen{T,R,S}) where {T<:AbstractFloat,R<:TwicePrecision,S<:TwicePrecision} = r
StepRangeLen{T,R,S}(r::StepRangeLen) where {T<:AbstractFloat,R<:TwicePrecision,S<:TwicePrecision} =
_convertSRL(StepRangeLen{T,R,S}, r)
(::Type{StepRangeLen{Float64}})(r::StepRangeLen) =
_convertSRL(StepRangeLen{Float64,TwicePrecision{Float64},TwicePrecision{Float64}}, r)
StepRangeLen{T}(r::StepRangeLen) where {T<:IEEEFloat} =
_convertSRL(StepRangeLen{T,Float64,Float64}, r)
(::Type{StepRangeLen{Float64}})(r::AbstractRange) =
_convertSRL(StepRangeLen{Float64,TwicePrecision{Float64},TwicePrecision{Float64}}, r)
StepRangeLen{T}(r::AbstractRange) where {T<:IEEEFloat} =
_convertSRL(StepRangeLen{T,Float64,Float64}, r)
function _convertSRL(::Type{StepRangeLen{T,R,S}}, r::StepRangeLen{<:Integer}) where {T,R,S}
StepRangeLen{T,R,S}(R(r.ref), S(r.step), length(r), r.offset)
end
function _convertSRL(::Type{StepRangeLen{T,R,S}}, r::AbstractRange{<:Integer}) where {T,R,S}
StepRangeLen{T,R,S}(R(first(r)), S(step(r)), length(r))
end
function _convertSRL(::Type{StepRangeLen{T,R,S}}, r::AbstractRange{U}) where {T,R,S,U}
# if start and step have a rational approximation in the old type,
# then we transfer that rational approximation to the new type
f, s = first(r), step(r)
start_n, start_d = rat(f)
step_n, step_d = rat(s)
if start_d != 0 && step_d != 0 &&
U(start_n/start_d) == f && U(step_n/step_d) == s
den = lcm(start_d, step_d)
m = maxintfloat(T, Int)
if den != 0 && abs(f*den) <= m && abs(s*den) <= m &&
rem(den, start_d) == 0 && rem(den, step_d) == 0
start_n = round(Int, f*den)
step_n = round(Int, s*den)
return floatrange(T, start_n, step_n, length(r), den)
end
end
__convertSRL(StepRangeLen{T,R,S}, r)
end
function __convertSRL(::Type{StepRangeLen{T,R,S}}, r::StepRangeLen{U}) where {T,R,S,U}
StepRangeLen{T,R,S}(R(r.ref), S(r.step), length(r), r.offset)
end
function __convertSRL(::Type{StepRangeLen{T,R,S}}, r::AbstractRange{U}) where {T,R,S,U}
StepRangeLen{T,R,S}(R(first(r)), S(step(r)), length(r))
end
function sum(r::StepRangeLen)
l = length(r)
# Compute the contribution of step over all indices.
# Indexes on opposite side of r.offset contribute with opposite sign,
# r.step * (sum(1:np) - sum(1:nn))
np, nn = l - r.offset, r.offset - 1 # positive, negative
# To prevent overflow in sum(1:n), multiply its factors by the step
sp, sn = sumpair(np), sumpair(nn)
tp = _tp_prod(r.step, sp[1], sp[2])
tn = _tp_prod(r.step, sn[1], sn[2])
s_hi, s_lo = add12(tp.hi, -tn.hi)
s_lo += tp.lo - tn.lo
# Add in contributions of ref
ref = r.ref * l
sm_hi, sm_lo = add12(s_hi, ref.hi)
add12(sm_hi, sm_lo + ref.lo)[1]
end
# sum(1:n) as a product of two integers
sumpair(n::Integer) = iseven(n) ? (n+1, n>>1) : (n, (n+1)>>1)
function +(r1::StepRangeLen{T,R}, r2::StepRangeLen{T,R}) where T where R<:TwicePrecision
len = length(r1)
(len == length(r2) ||
throw(DimensionMismatch("argument dimensions must match")))
if r1.offset == r2.offset
imid = r1.offset
ref = r1.ref + r2.ref
else
imid = round(Int, (r1.offset+r2.offset)/2)
ref1mid = _getindex_hiprec(r1, imid)
ref2mid = _getindex_hiprec(r2, imid)
ref = ref1mid + ref2mid
end
step = twiceprecision(r1.step + r2.step, nbitslen(T, len, imid))
StepRangeLen{T,typeof(ref),typeof(step)}(ref, step, len, imid)
end
## LinRange
# For Float16, Float32, and Float64, this returns a StepRangeLen
function _range(start::T, ::Nothing, stop::T, len::Integer) where {T<:IEEEFloat}
len < 2 && return _linspace1(T, start, stop, len)
if start == stop
return steprangelen_hp(T, start, zero(T), 0, len, 1)
end
# Attempt to find exact rational approximations
start_n, start_d = rat(start)
stop_n, stop_d = rat(stop)
if start_d != 0 && stop_d != 0
den = lcm(start_d, stop_d)
m = maxintfloat(T, Int)
if den != 0 && abs(den*start) <= m && abs(den*stop) <= m
start_n = round(Int, den*start)
stop_n = round(Int, den*stop)
if T(start_n/den) == start && T(stop_n/den) == stop
return _linspace(T, start_n, stop_n, len, den)
end
end
end
_linspace(start, stop, len)
end
function _linspace(start::T, stop::T, len::Integer) where {T<:IEEEFloat}
(isfinite(start) && isfinite(stop)) || throw(ArgumentError("start and stop must be finite, got $start and $stop"))
# Find the index that returns the smallest-magnitude element
Δ, Δfac = stop-start, 1
if !isfinite(Δ) # handle overflow for large endpoints
Δ, Δfac = stop/len - start/len, Int(len)
end
tmin = -(start/Δ)/Δfac # t such that (1-t)*start + t*stop == 0
imin = round(Int, tmin*(len-1)+1) # index approximately corresponding to t
if 1 < imin < len
# The smallest-magnitude element is in the interior
t = (imin-1)/(len-1)
ref = T((1-t)*start + t*stop)
step = imin-1 < len-imin ? (ref-start)/(imin-1) : (stop-ref)/(len-imin)
elseif imin <= 1
imin = 1
ref = start
step = (Δ/(len-1))*Δfac
else
imin = Int(len)
ref = stop
step = (Δ/(len-1))*Δfac
end
if len == 2 && !isfinite(step)
# For very large endpoints where step overflows, exploit the
# split-representation to handle the overflow
return steprangelen_hp(T, start, (-start, stop), 0, 2, 1)
end
# 2x calculations to get high precision endpoint matching while also
# preventing overflow in ref_hi+(i-offset)*step_hi
m, k = prevfloat(floatmax(T)), max(imin-1, len-imin)
step_hi_pre = clamp(step, max(-(m+ref)/k, (-m+ref)/k), min((m-ref)/k, (m+ref)/k))
nb = nbitslen(T, len, imin)
step_hi = truncbits(step_hi_pre, nb)
x1_hi, x1_lo = add12((1-imin)*step_hi, ref)
x2_hi, x2_lo = add12((len-imin)*step_hi, ref)
a, b = (start - x1_hi) - x1_lo, (stop - x2_hi) - x2_lo
step_lo = (b - a)/(len - 1)
ref_lo = a - (1 - imin)*step_lo
steprangelen_hp(T, (ref, ref_lo), (step_hi, step_lo), 0, Int(len), imin)
end
# range for rational numbers, start = start_n/den, stop = stop_n/den
# Note this returns a StepRangeLen
_linspace(::Type{T}, start::Integer, stop::Integer, len::Integer) where {T<:IEEEFloat} = _linspace(T, start, stop, len, 1)
function _linspace(::Type{T}, start_n::Integer, stop_n::Integer, len::Integer, den::Integer) where T<:IEEEFloat
len < 2 && return _linspace1(T, start_n/den, stop_n/den, len)
start_n == stop_n && return steprangelen_hp(T, (start_n, den), (zero(start_n), den), 0, len, 1)
tmin = -start_n/(Float64(stop_n) - Float64(start_n))
imin = round(Int, tmin*(len-1)+1)
imin = clamp(imin, 1, Int(len))
ref_num = Int128(len-imin) * start_n + Int128(imin-1) * stop_n
ref_denom = Int128(len-1) * den
ref = (ref_num, ref_denom)
step_full = (Int128(stop_n) - Int128(start_n), ref_denom)
steprangelen_hp(T, ref, step_full, nbitslen(T, len, imin), Int(len), imin)
end
# For len < 2
function _linspace1(::Type{T}, start, stop, len::Integer) where T<:IEEEFloat
len >= 0 || throw(ArgumentError("range($start, stop=$stop, length=$len): negative length"))
if len <= 1
len == 1 && (start == stop || throw(ArgumentError("range($start, stop=$stop, length=$len): endpoints differ")))
# Ensure that first(r)==start and last(r)==stop even for len==0
# The output type must be consistent with steprangelen_hp
if T<:Union{Float32,Float16}
return StepRangeLen{T}(Float64(start), Float64(start) - Float64(stop), len, 1)
else
return StepRangeLen(TwicePrecision(start, zero(T)), TwicePrecision(start, -stop), len, 1)
end
end
throw(ArgumentError("should only be called for len < 2, got $len"))
end
### Numeric utilities
# Approximate x with a rational representation. Guaranteed to return,
# but not guaranteed to return a precise answer.
# https://en.wikipedia.org/wiki/Continued_fraction#Best_rational_approximations
function rat(x)
y = x
a = d = 1
b = c = 0
m = maxintfloat(narrow(typeof(x)), Int)
while abs(y) <= m
f = trunc(Int,y)
y -= f
a, c = f*a + c, a
b, d = f*b + d, b
max(abs(a), abs(b)) <= convert(Int,m) || return c, d
oftype(x,a)/oftype(x,b) == x && break
y = inv(y)
end
return a, b
end
narrow(::Type{T}) where {T<:AbstractFloat} = Float64
narrow(::Type{Float64}) = Float32
narrow(::Type{Float32}) = Float16
narrow(::Type{Float16}) = Float16
function _tp_prod(t::TwicePrecision, x, y...)
@_inline_meta
_tp_prod(t * x, y...)
end
_tp_prod(t::TwicePrecision) = t
<(x::TwicePrecision{T}, y::TwicePrecision{T}) where {T} =
x.hi < y.hi || ((x.hi == y.hi) & (x.lo < y.lo))
isbetween(a, x, b) = a <= x <= b || b <= x <= a
|