File: llvm-D37939-Mem2Reg-Also-handle-memcpy.patch

package info (click to toggle)
julia 1.0.3%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 49,452 kB
  • sloc: lisp: 236,453; ansic: 55,579; cpp: 25,603; makefile: 1,685; pascal: 1,130; sh: 956; asm: 86; xml: 76
file content (365 lines) | stat: -rw-r--r-- 14,727 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
From da4504b2d3c6629fbd58634bf76f1b85939d07cf Mon Sep 17 00:00:00 2001
From: Keno Fischer <keno@juliacomputing.com>
Date: Fri, 15 Sep 2017 18:30:59 -0400
Subject: [PATCH] [Mem2Reg] Also handle memcpy

Summary:
In julia, when we know we're moving data between two memory locations,
we always emit that as a memcpy rather than a load/store pair. However,
this can give worse optimization results in certain cases because some
optimizations that can handle load/store pairs cannot handle memcpys.
Mem2reg is one of these optimizations. This patch adds rudamentary
support for mem2reg for recognizing memcpys that cover the whole alloca
we're promoting. While several more sophisticated passes (SROA, GVN)
can get similar optimizations, it is preferable to have these kinds
of cases caught early to expose optimization opportunities before
getting to these later passes. The approach taken here is to split
the memcpy into a load/store pair early (after legality analysis)
and retain the rest of the analysis only on loads/stores. It would
be possible of course to leave the memcpy as is and generate the
left over load or store only on demand. However, that would entail
a significantly larger patch for unclear benefit.

Reviewers: chandlerc, dberlin

Subscribers: llvm-commits

Differential Revision: https://reviews.llvm.org/D37939
---
 lib/Transforms/Utils/PromoteMemoryToRegister.cpp | 166 ++++++++++++++++++++---
 test/Transforms/Mem2Reg/memcpy.ll                | 101 ++++++++++++++
 2 files changed, 251 insertions(+), 16 deletions(-)
 create mode 100644 test/Transforms/Mem2Reg/memcpy.ll

diff --git a/lib/Transforms/Utils/PromoteMemoryToRegister.cpp b/lib/Transforms/Utils/PromoteMemoryToRegister.cpp
index ac28f59..b08a0a1 100644
--- a/lib/Transforms/Utils/PromoteMemoryToRegister.cpp
+++ b/lib/Transforms/Utils/PromoteMemoryToRegister.cpp
@@ -49,6 +49,58 @@ STATISTIC(NumSingleStore,   "Number of alloca's promoted with a single store");
 STATISTIC(NumDeadAlloca,    "Number of dead alloca's removed");
 STATISTIC(NumPHIInsert,     "Number of PHI nodes inserted");
 
+static bool isSplittableMemCpy(const MemCpyInst *MCI, const AllocaInst *AI) {
+  // Punt if this alloca is an array allocation
+  if (AI->isArrayAllocation())
+    return false;
+  if (MCI->isVolatile())
+    return false;
+  Value *Length = MCI->getLength();
+  if (!isa<ConstantInt>(Length))
+    return false;
+  // Anything less than the full alloca, we leave for SROA
+  const DataLayout &DL = AI->getModule()->getDataLayout();
+  size_t AIElSize = DL.getTypeAllocSize(AI->getAllocatedType());
+  if (cast<ConstantInt>(Length)->getZExtValue() != AIElSize)
+    return false;
+  // If the other argument is also an alloca, we need to be sure that either
+  // the types are bitcastable, or the other alloca is not eligible for
+  // promotion (e.g. because the memcpy is for less than the whole size of
+  // that alloca), otherwise we risk turning an allocatable alloca into a
+  // non-allocatable one when splitting the memcpy.
+  AllocaInst *OtherAI = dyn_cast<AllocaInst>(
+      AI == MCI->getSource() ? MCI->getDest() : MCI->getSource());
+  if (OtherAI) {
+    if (!CastInst::isBitCastable(AI->getAllocatedType(),
+                                 OtherAI->getAllocatedType()) &&
+        DL.getTypeAllocSize(OtherAI->getAllocatedType()) == AIElSize)
+      return false;
+  }
+  return true;
+}
+
+/// Look at the result of a bitcast and see if it's only used by lifetime
+/// intrinsics or splittable memcpys. This is needed, because IRBuilder
+/// will always insert a bitcast to i8* for these intrinsics.
+static bool onlyHasCanonicalizableUsers(const AllocaInst *AI, const Value *V) {
+  for (const User *U : V->users()) {
+    const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
+    if (!II)
+      return false;
+
+    if (isa<MemCpyInst>(II)) {
+      if (!isSplittableMemCpy(cast<MemCpyInst>(II), AI))
+        return false;
+      continue;
+    }
+
+    if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
+        II->getIntrinsicID() != Intrinsic::lifetime_end)
+      return false;
+  }
+  return true;
+}
+
 bool llvm::isAllocaPromotable(const AllocaInst *AI) {
   // FIXME: If the memory unit is of pointer or integer type, we can permit
   // assignments to subsections of the memory unit.
@@ -68,6 +120,9 @@ bool llvm::isAllocaPromotable(const AllocaInst *AI) {
       // not have any meaning for a local alloca.
       if (SI->isVolatile())
         return false;
+    } else if (const MemCpyInst *MCI = dyn_cast<MemCpyInst>(U)) {
+      if (!isSplittableMemCpy(MCI, AI))
+        return false;
     } else if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) {
       if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
           II->getIntrinsicID() != Intrinsic::lifetime_end)
@@ -75,7 +130,7 @@ bool llvm::isAllocaPromotable(const AllocaInst *AI) {
     } else if (const BitCastInst *BCI = dyn_cast<BitCastInst>(U)) {
       if (BCI->getType() != Type::getInt8PtrTy(U->getContext(), AS))
         return false;
-      if (!onlyUsedByLifetimeMarkers(BCI))
+      if (!onlyHasCanonicalizableUsers(AI, BCI))
         return false;
     } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
       if (GEPI->getType() != Type::getInt8PtrTy(U->getContext(), AS))
@@ -181,7 +235,13 @@ public:
   /// This code only looks at accesses to allocas.
   static bool isInterestingInstruction(const Instruction *I) {
+    if (isa<MemCpyInst>(I)) {
+      const MemCpyInst *MCI = cast<MemCpyInst>(I);
+      return isa<AllocaInst>(MCI->getSource()) ||
+             isa<AllocaInst>(MCI->getDest());
+    } else {
     return (isa<LoadInst>(I) && isa<AllocaInst>(I->getOperand(0))) ||
            (isa<StoreInst>(I) && isa<AllocaInst>(I->getOperand(1)));
   }
+  }
 
   /// Get or calculate the index of the specified instruction.
@@ -208,6 +264,25 @@ public:
     return It->second;
   }
 
+  // When we split a memcpy intrinsic, we need to update the numbering in this
+  // struct. To make sure the relative ordering remains the same, we give both
+  // the LI and the SI the number that the MCI used to have (if they are both
+  // interesting). This means that they will have equal numbers, which usually
+  // can't happen. However, since they can never reference the same alloca
+  // (since memcpy operands may not overlap), this is fine, because we will
+  // never compare instruction indices for instructions that operate on distinct
+  // allocas.
+  void splitMemCpy(MemCpyInst *MCI, LoadInst *LI, StoreInst *SI) {
+    DenseMap<const Instruction *, unsigned>::iterator It =
+        InstNumbers.find(MCI);
+    if (It == InstNumbers.end())
+      return;
+    unsigned MemCpyNumber = It->second;
+    InstNumbers[LI] = MemCpyNumber;
+    InstNumbers[SI] = MemCpyNumber;
+    deleteValue(MCI);
+  }
+
   void deleteValue(const Instruction *I) { InstNumbers.erase(I); }
 
   void clear() { InstNumbers.clear(); }
@@ -305,9 +380,58 @@ static void addAssumeNonNull(AssumptionCache *AC, LoadInst *LI) {
   AC->registerAssumption(CI);
 }
 
-static void removeLifetimeIntrinsicUsers(AllocaInst *AI) {
-  // Knowing that this alloca is promotable, we know that it's safe to kill all
-  // instructions except for load and store.
+/// Split a memcpy instruction into the corresponding load/store. It is a little
+/// more complicated than one might imagine, because we need to deal with the
+/// fact that the side of the copy we're not currently processing might also
+/// be a promotable alloca. We need to be careful to not break the promotable
+/// predicate for that other alloca (if any).
+static void doMemCpySplit(LargeBlockInfo &LBI, MemCpyInst *MCI,
+                          AllocaInst *AI) {
+  AAMDNodes AA;
+  MCI->getAAMetadata(AA);
+  Value *MCISrc = MCI->getSource();
+  Type *LoadType = AI->getAllocatedType();
+  AllocaInst *SrcAI = dyn_cast<AllocaInst>(MCISrc);
+  if (SrcAI && SrcAI->getType() != AI->getType()) {
+    if (CastInst::isBitCastable(SrcAI->getAllocatedType(), LoadType))
+      LoadType = SrcAI->getAllocatedType();
+  }
+  if (cast<PointerType>(MCISrc->getType())->getElementType() != LoadType)
+    MCISrc = CastInst::Create(
+        Instruction::BitCast, MCISrc,
+        LoadType->getPointerTo(
+            cast<PointerType>(MCISrc->getType())->getAddressSpace()),
+        "", MCI);
+  // This might add to the end of the use list, but that's fine. At worst,
+  // we'd not visit the instructions we insert here, but we don't care
+  // about them in this loop anyway.
+  LoadInst *LI = new LoadInst(LoadType, MCISrc, "", MCI->isVolatile(),
+                              MCI->getAlignment(), MCI);
+  Value *Val = LI;
+  Value *MCIDest = MCI->getDest();
+  AllocaInst *DestAI = dyn_cast<AllocaInst>(MCIDest);
+  Type *DestElTy = DestAI ? DestAI->getAllocatedType() : AI->getAllocatedType();
+  if (LI->getType() != DestElTy &&
+      CastInst::isBitCastable(LI->getType(), DestElTy))
+    Val = CastInst::Create(Instruction::BitCast, Val, DestElTy, "", MCI);
+  if (cast<PointerType>(MCIDest->getType())->getElementType() != Val->getType())
+    MCIDest = CastInst::Create(
+        Instruction::BitCast, MCIDest,
+        Val->getType()->getPointerTo(
+            cast<PointerType>(MCIDest->getType())->getAddressSpace()),
+        "", MCI);
+  StoreInst *SI =
+      new StoreInst(Val, MCIDest, MCI->isVolatile(), MCI->getAlignment(), MCI);
+  LI->setAAMetadata(AA);
+  SI->setAAMetadata(AA);
+  LBI.splitMemCpy(MCI, LI, SI);
+  MCI->eraseFromParent();
+}
+
+static void canonicalizeUsers(LargeBlockInfo &LBI, AllocaInst *AI) {
+  // Knowing that this alloca is promotable, we know that it's safe to split
+  // MTIs into load/store and to kill all other instructions except for
+  // load and store.
 
   for (auto UI = AI->user_begin(), UE = AI->user_end(); UI != UE;) {
     Instruction *I = cast<Instruction>(*UI);
@@ -315,14 +439,24 @@ static void removeLifetimeIntrinsicUsers(AllocaInst *AI) {
     if (isa<LoadInst>(I) || isa<StoreInst>(I))
       continue;
 
+    if (isa<MemCpyInst>(I)) {
+      MemCpyInst *MCI = cast<MemCpyInst>(I);
+      doMemCpySplit(LBI, MCI, AI);
+      continue;
+    }
+
     if (!I->getType()->isVoidTy()) {
-      // The only users of this bitcast/GEP instruction are lifetime intrinsics.
-      // Follow the use/def chain to erase them now instead of leaving it for
-      // dead code elimination later.
+      // The only users of this bitcast/GEP instruction are lifetime/memcpy
+      // intrinsics. Split memcpys and delete lifetime intrinsics.
       for (auto UUI = I->user_begin(), UUE = I->user_end(); UUI != UUE;) {
         Instruction *Inst = cast<Instruction>(*UUI);
         ++UUI;
-        Inst->eraseFromParent();
+        if (isa<MemCpyInst>(Inst)) {
+          doMemCpySplit(LBI, cast<MemCpyInst>(Inst), AI);
+        } else {
+          // Must be a lifetime intrinsic
+          Inst->eraseFromParent();
+        }
       }
     }
     I->eraseFromParent();
@@ -542,7 +676,7 @@ void PromoteMem2Reg::run() {
     assert(AI->getParent()->getParent() == &F &&
            "All allocas should be in the same function, which is same as DF!");
 
-    removeLifetimeIntrinsicUsers(AI);
+    canonicalizeUsers(LBI, AI);
 
     if (AI->use_empty()) {
       // If there are no uses of the alloca, just delete it now.
diff --git a/test/Transforms/Mem2Reg/memcpy.ll b/test/Transforms/Mem2Reg/memcpy.ll
new file mode 100644
index 0000000..fbc4096
--- /dev/null
+++ b/test/Transforms/Mem2Reg/memcpy.ll
@@ -0,0 +1,101 @@
+; RUN: opt < %s -mem2reg -S | FileCheck %s
+
+target datalayout = "e-m:o-i64:64-f80:128-n8:16:32:64-S128"
+
+declare void @llvm.memcpy.p0i128.p0i64.i32(i128 *, i64 *, i32, i32, i1)
+declare void @llvm.memcpy.p0i8.p0i8.i32(i8 *, i8 *, i32, i32, i1)
+declare void @llvm.memcpy.p0i64.p0i64.i32(i64 *, i64 *, i32, i32, i1)
+declare void @llvm.memcpy.p0f64.p0i64.i32(double *, i64 *, i32, i32, i1)
+
+define i128 @test_cpy_different(i64) {
+; CHECK-LABEL: @test_cpy_different
+; CHECK-NOT: alloca i64
+; CHECK: store i64 %0
+    %a = alloca i64
+    %b = alloca i128
+    store i128 0, i128 *%b
+    store i64 %0, i64 *%a
+    call void @llvm.memcpy.p0i128.p0i64.i32(i128 *%b, i64 *%a, i32 8, i32 0, i1 0)
+    %loaded = load i128, i128 *%b
+    ret i128 %loaded
+}
+
+define i64 @test_cpy_same(i64) {
+; CHECK-LABEL: @test_cpy_same
+; CHECK-NOT: alloca
+; CHECK: ret i64 %0
+    %a = alloca i64
+    %b = alloca i64
+    store i64 %0, i64 *%a
+    call void @llvm.memcpy.p0i64.p0i64.i32(i64 *%b, i64 *%a, i32 8, i32 0, i1 0)
+    %loaded = load i64, i64 *%b
+    ret i64 %loaded
+}
+
+define double @test_cpy_different_type(i64) {
+; CHECK-LABEL: @test_cpy_different_type
+; CHECK-NOT: alloca
+; CHECK: bitcast i64 %0 to double
+    %a = alloca i64
+    %b = alloca double
+    store i64 %0, i64 *%a
+    call void @llvm.memcpy.p0f64.p0i64.i32(double *%b, i64 *%a, i32 8, i32 0, i1 0)
+    %loaded = load double, double *%b
+    ret double %loaded
+}
+
+define i128 @test_cpy_differenti8(i64) {
+; CHECK-LABEL: @test_cpy_differenti8
+; CHECK-NOT: alloca i64
+; CHECK: store i64 %0
+    %a = alloca i64
+    %b = alloca i128
+    store i128 0, i128 *%b
+    store i64 %0, i64 *%a
+    %acast = bitcast i64* %a to i8*
+    %bcast = bitcast i128* %b to i8*
+    call void @llvm.memcpy.p0i8.p0i8.i32(i8 *%bcast, i8 *%acast, i32 8, i32 0, i1 0)
+    %loaded = load i128, i128 *%b
+    ret i128 %loaded
+}
+
+define i64 @test_cpy_samei8(i64) {
+; CHECK-LABEL: @test_cpy_samei8
+; CHECK-NOT: alloca
+; CHECK: ret i64 %0
+    %a = alloca i64
+    %b = alloca i64
+    store i64 %0, i64 *%a
+    %acast = bitcast i64* %a to i8*
+    %bcast = bitcast i64* %b to i8*
+    call void @llvm.memcpy.p0i8.p0i8.i32(i8 *%bcast, i8 *%acast, i32 8, i32 0, i1 0)
+    %loaded = load i64, i64 *%b
+    ret i64 %loaded
+}
+
+define double @test_cpy_different_typei8(i64) {
+; CHECK-LABEL: @test_cpy_different_typei8
+; CHECK-NOT: alloca
+; CHECK: bitcast i64 %0 to double
+    %a = alloca i64
+    %b = alloca double
+    store i64 %0, i64 *%a
+    %acast = bitcast i64* %a to i8*
+    %bcast = bitcast double* %b to i8*
+    call void @llvm.memcpy.p0i8.p0i8.i32(i8 *%bcast, i8 *%acast, i32 8, i32 0, i1 0)
+    %loaded = load double, double *%b
+    ret double %loaded
+}
+
+define i64 @test_cpy_differenti8_reverse(i128) {
+; CHECK-LABEL: @test_cpy_differenti8_reverse
+; CHECK-NOT: alloca i64
+    %a = alloca i64
+    %b = alloca i128
+    store i128 %0, i128 *%b
+    %acast = bitcast i64* %a to i8*
+    %bcast = bitcast i128* %b to i8*
+    call void @llvm.memcpy.p0i8.p0i8.i32(i8 *%acast, i8 *%bcast, i32 8, i32 0, i1 0)
+    %loaded = load i64, i64 *%a
+    ret i64 %loaded
+}
-- 
2.9.3