1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
|
# This file is a part of Julia. License is MIT: https://julialang.org/license
module TestAdjointTranspose
using Test, LinearAlgebra, SparseArrays
@testset "Adjoint and Transpose inner constructor basics" begin
intvec, intmat = [1, 2], [1 2; 3 4]
# Adjoint/Transpose eltype must match the type of the Adjoint/Transpose of the input eltype
@test_throws ErrorException Adjoint{Float64,Vector{Int}}(intvec)
@test_throws ErrorException Adjoint{Float64,Matrix{Int}}(intmat)
@test_throws ErrorException Transpose{Float64,Vector{Int}}(intvec)
@test_throws ErrorException Transpose{Float64,Matrix{Int}}(intmat)
# Adjoint/Transpose wrapped array type must match the input array type
@test_throws MethodError Adjoint{Int,Vector{Float64}}(intvec)
@test_throws MethodError Adjoint{Int,Matrix{Float64}}(intmat)
@test_throws MethodError Transpose{Int,Vector{Float64}}(intvec)
@test_throws MethodError Transpose{Int,Matrix{Float64}}(intmat)
# Adjoint/Transpose inner constructor basic functionality, concrete scalar eltype
@test (Adjoint{Int,Vector{Int}}(intvec)::Adjoint{Int,Vector{Int}}).parent === intvec
@test (Adjoint{Int,Matrix{Int}}(intmat)::Adjoint{Int,Matrix{Int}}).parent === intmat
@test (Transpose{Int,Vector{Int}}(intvec)::Transpose{Int,Vector{Int}}).parent === intvec
@test (Transpose{Int,Matrix{Int}}(intmat)::Transpose{Int,Matrix{Int}}).parent === intmat
# Adjoint/Transpose inner constructor basic functionality, abstract scalar eltype
anyvec, anymat = Any[1, 2], Any[1 2; 3 4]
@test (Adjoint{Any,Vector{Any}}(anyvec)::Adjoint{Any,Vector{Any}}).parent === anyvec
@test (Adjoint{Any,Matrix{Any}}(anymat)::Adjoint{Any,Matrix{Any}}).parent === anymat
@test (Transpose{Any,Vector{Any}}(anyvec)::Transpose{Any,Vector{Any}}).parent === anyvec
@test (Transpose{Any,Matrix{Any}}(anymat)::Transpose{Any,Matrix{Any}}).parent === anymat
# Adjoint/Transpose inner constructor basic functionality, concrete array eltype
intvecvec = [[1, 2], [3, 4]]
intmatmat = [[[1 2]] [[3 4]] [[5 6]]; [[7 8]] [[9 10]] [[11 12]]]
@test (X = Adjoint{Adjoint{Int,Vector{Int}},Vector{Vector{Int}}}(intvecvec);
isa(X, Adjoint{Adjoint{Int,Vector{Int}},Vector{Vector{Int}}}) && X.parent === intvecvec)
@test (X = Adjoint{Adjoint{Int,Matrix{Int}},Matrix{Matrix{Int}}}(intmatmat);
isa(X, Adjoint{Adjoint{Int,Matrix{Int}},Matrix{Matrix{Int}}}) && X.parent === intmatmat)
@test (X = Transpose{Transpose{Int,Vector{Int}},Vector{Vector{Int}}}(intvecvec);
isa(X, Transpose{Transpose{Int,Vector{Int}},Vector{Vector{Int}}}) && X.parent === intvecvec)
@test (X = Transpose{Transpose{Int,Matrix{Int}},Matrix{Matrix{Int}}}(intmatmat);
isa(X, Transpose{Transpose{Int,Matrix{Int}},Matrix{Matrix{Int}}}) && X.parent === intmatmat)
end
@testset "Adjoint and Transpose outer constructor basics" begin
intvec, intmat = [1, 2], [1 2; 3 4]
# the wrapped array's eltype strictly determines the Adjoint/Transpose eltype
# so Adjoint{T}/Transpose{T} constructors are somewhat unnecessary and error-prone
# so ascertain that such calls throw whether or not T and the input eltype are compatible
@test_throws MethodError Adjoint{Int}(intvec)
@test_throws MethodError Adjoint{Int}(intmat)
@test_throws MethodError Adjoint{Float64}(intvec)
@test_throws MethodError Adjoint{Float64}(intmat)
@test_throws MethodError Transpose{Int}(intvec)
@test_throws MethodError Transpose{Int}(intmat)
@test_throws MethodError Transpose{Float64}(intvec)
@test_throws MethodError Transpose{Float64}(intmat)
# Adjoint/Transpose outer constructor basic functionality, concrete scalar eltype
@test (Adjoint(intvec)::Adjoint{Int,Vector{Int}}).parent === intvec
@test (Adjoint(intmat)::Adjoint{Int,Matrix{Int}}).parent === intmat
@test (Transpose(intvec)::Transpose{Int,Vector{Int}}).parent === intvec
@test (Transpose(intmat)::Transpose{Int,Matrix{Int}}).parent === intmat
# the tests for the inner constructors exercise abstract scalar and concrete array eltype, forgoing here
end
@testset "Adjoint and Transpose add additional layers to already-wrapped objects" begin
intvec, intmat = [1, 2], [1 2; 3 4]
@test (A = Adjoint(Adjoint(intvec))::Adjoint{Int,Adjoint{Int,Vector{Int}}}; A.parent.parent === intvec)
@test (A = Adjoint(Adjoint(intmat))::Adjoint{Int,Adjoint{Int,Matrix{Int}}}; A.parent.parent === intmat)
@test (A = Transpose(Transpose(intvec))::Transpose{Int,Transpose{Int,Vector{Int}}}; A.parent.parent === intvec)
@test (A = Transpose(Transpose(intmat))::Transpose{Int,Transpose{Int,Matrix{Int}}}; A.parent.parent === intmat)
end
@testset "Adjoint and Transpose basic AbstractArray functionality" begin
# vectors and matrices with real scalar eltype, and their adjoints/transposes
intvec, intmat = [1, 2], [1 2 3; 4 5 6]
tintvec, tintmat = [1 2], [1 4; 2 5; 3 6]
@testset "length methods" begin
@test length(Adjoint(intvec)) == length(intvec)
@test length(Adjoint(intmat)) == length(intmat)
@test length(Transpose(intvec)) == length(intvec)
@test length(Transpose(intmat)) == length(intmat)
end
@testset "size methods" begin
@test size(Adjoint(intvec)) == (1, length(intvec))
@test size(Adjoint(intmat)) == reverse(size(intmat))
@test size(Transpose(intvec)) == (1, length(intvec))
@test size(Transpose(intmat)) == reverse(size(intmat))
end
@testset "indices methods" begin
@test axes(Adjoint(intvec)) == (Base.OneTo(1), Base.OneTo(length(intvec)))
@test axes(Adjoint(intmat)) == reverse(axes(intmat))
@test axes(Transpose(intvec)) == (Base.OneTo(1), Base.OneTo(length(intvec)))
@test axes(Transpose(intmat)) == reverse(axes(intmat))
end
@testset "IndexStyle methods" begin
@test IndexStyle(Adjoint(intvec)) == IndexLinear()
@test IndexStyle(Adjoint(intmat)) == IndexCartesian()
@test IndexStyle(Transpose(intvec)) == IndexLinear()
@test IndexStyle(Transpose(intmat)) == IndexCartesian()
end
# vectors and matrices with complex scalar eltype, and their adjoints/transposes
complexintvec, complexintmat = [1im, 2im], [1im 2im 3im; 4im 5im 6im]
tcomplexintvec, tcomplexintmat = [1im 2im], [1im 4im; 2im 5im; 3im 6im]
acomplexintvec, acomplexintmat = conj.(tcomplexintvec), conj.(tcomplexintmat)
# vectors and matrices with real-vector and real-matrix eltype, and their adjoints/transposes
intvecvec = [[1, 2], [3, 4]]
tintvecvec = [[[1 2]] [[3 4]]]
intmatmat = [[[1 2]] [[3 4]] [[ 5 6]];
[[7 8]] [[9 10]] [[11 12]]]
tintmatmat = [[hcat([1, 2])] [hcat([7, 8])];
[hcat([3, 4])] [hcat([9, 10])];
[hcat([5, 6])] [hcat([11, 12])]]
# vectors and matrices with complex-vector and complex-matrix eltype, and their adjoints/transposes
complexintvecvec, complexintmatmat = im .* (intvecvec, intmatmat)
tcomplexintvecvec, tcomplexintmatmat = im .* (tintvecvec, tintmatmat)
acomplexintvecvec, acomplexintmatmat = conj.(tcomplexintvecvec), conj.(tcomplexintmatmat)
@testset "getindex methods, elementary" begin
# implicitly test elementary definitions, for arrays with concrete real scalar eltype
@test Adjoint(intvec) == tintvec
@test Adjoint(intmat) == tintmat
@test Transpose(intvec) == tintvec
@test Transpose(intmat) == tintmat
# implicitly test elementary definitions, for arrays with concrete complex scalar eltype
@test Adjoint(complexintvec) == acomplexintvec
@test Adjoint(complexintmat) == acomplexintmat
@test Transpose(complexintvec) == tcomplexintvec
@test Transpose(complexintmat) == tcomplexintmat
# implicitly test elementary definitions, for arrays with concrete real-array eltype
@test Adjoint(intvecvec) == tintvecvec
@test Adjoint(intmatmat) == tintmatmat
@test Transpose(intvecvec) == tintvecvec
@test Transpose(intmatmat) == tintmatmat
# implicitly test elementary definitions, for arrays with concrete complex-array type
@test Adjoint(complexintvecvec) == acomplexintvecvec
@test Adjoint(complexintmatmat) == acomplexintmatmat
@test Transpose(complexintvecvec) == tcomplexintvecvec
@test Transpose(complexintmatmat) == tcomplexintmatmat
end
@testset "getindex(::AdjOrTransVec, ::Colon, ::AbstractArray{Int}) methods that preserve wrapper type" begin
# for arrays with concrete scalar eltype
@test Adjoint(intvec)[:, [1, 2]] == Adjoint(intvec)
@test Transpose(intvec)[:, [1, 2]] == Transpose(intvec)
@test Adjoint(complexintvec)[:, [1, 2]] == Adjoint(complexintvec)
@test Transpose(complexintvec)[:, [1, 2]] == Transpose(complexintvec)
# for arrays with concrete array eltype
@test Adjoint(intvecvec)[:, [1, 2]] == Adjoint(intvecvec)
@test Transpose(intvecvec)[:, [1, 2]] == Transpose(intvecvec)
@test Adjoint(complexintvecvec)[:, [1, 2]] == Adjoint(complexintvecvec)
@test Transpose(complexintvecvec)[:, [1, 2]] == Transpose(complexintvecvec)
end
@testset "getindex(::AdjOrTransVec, ::Colon, ::Colon) methods that preserve wrapper type" begin
# for arrays with concrete scalar eltype
@test Adjoint(intvec)[:, :] == Adjoint(intvec)
@test Transpose(intvec)[:, :] == Transpose(intvec)
@test Adjoint(complexintvec)[:, :] == Adjoint(complexintvec)
@test Transpose(complexintvec)[:, :] == Transpose(complexintvec)
# for arrays with concrete array elype
@test Adjoint(intvecvec)[:, :] == Adjoint(intvecvec)
@test Transpose(intvecvec)[:, :] == Transpose(intvecvec)
@test Adjoint(complexintvecvec)[:, :] == Adjoint(complexintvecvec)
@test Transpose(complexintvecvec)[:, :] == Transpose(complexintvecvec)
end
@testset "getindex(::AdjOrTransVec, ::Colon, ::Int) should preserve wrapper type on result entries" begin
# for arrays with concrete scalar eltype
@test Adjoint(intvec)[:, 2] == intvec[2:2]
@test Transpose(intvec)[:, 2] == intvec[2:2]
@test Adjoint(complexintvec)[:, 2] == conj.(complexintvec[2:2])
@test Transpose(complexintvec)[:, 2] == complexintvec[2:2]
# for arrays with concrete array eltype
@test Adjoint(intvecvec)[:, 2] == Adjoint.(intvecvec[2:2])
@test Transpose(intvecvec)[:, 2] == Transpose.(intvecvec[2:2])
@test Adjoint(complexintvecvec)[:, 2] == Adjoint.(complexintvecvec[2:2])
@test Transpose(complexintvecvec)[:, 2] == Transpose.(complexintvecvec[2:2])
end
@testset "setindex! methods" begin
# for vectors with real scalar eltype
@test (wv = Adjoint(copy(intvec));
wv === setindex!(wv, 3, 2) &&
wv == setindex!(copy(tintvec), 3, 1, 2) )
@test (wv = Transpose(copy(intvec));
wv === setindex!(wv, 4, 2) &&
wv == setindex!(copy(tintvec), 4, 1, 2) )
# for matrices with real scalar eltype
@test (wA = Adjoint(copy(intmat));
wA === setindex!(wA, 7, 3, 1) &&
wA == setindex!(copy(tintmat), 7, 3, 1) )
@test (wA = Transpose(copy(intmat));
wA === setindex!(wA, 7, 3, 1) &&
wA == setindex!(copy(tintmat), 7, 3, 1) )
# for vectors with complex scalar eltype
@test (wz = Adjoint(copy(complexintvec));
wz === setindex!(wz, 3im, 2) &&
wz == setindex!(copy(acomplexintvec), 3im, 1, 2) )
@test (wz = Transpose(copy(complexintvec));
wz === setindex!(wz, 4im, 2) &&
wz == setindex!(copy(tcomplexintvec), 4im, 1, 2) )
# for matrices with complex scalar eltype
@test (wZ = Adjoint(copy(complexintmat));
wZ === setindex!(wZ, 7im, 3, 1) &&
wZ == setindex!(copy(acomplexintmat), 7im, 3, 1) )
@test (wZ = Transpose(copy(complexintmat));
wZ === setindex!(wZ, 7im, 3, 1) &&
wZ == setindex!(copy(tcomplexintmat), 7im, 3, 1) )
# for vectors with concrete real-vector eltype
@test (wv = Adjoint(copy(intvecvec));
wv === setindex!(wv, Adjoint([5, 6]), 2) &&
wv == setindex!(copy(tintvecvec), [5 6], 2))
@test (wv = Transpose(copy(intvecvec));
wv === setindex!(wv, Transpose([5, 6]), 2) &&
wv == setindex!(copy(tintvecvec), [5 6], 2))
# for matrices with concrete real-matrix eltype
@test (wA = Adjoint(copy(intmatmat));
wA === setindex!(wA, Adjoint([13 14]), 3, 1) &&
wA == setindex!(copy(tintmatmat), hcat([13, 14]), 3, 1))
@test (wA = Transpose(copy(intmatmat));
wA === setindex!(wA, Transpose([13 14]), 3, 1) &&
wA == setindex!(copy(tintmatmat), hcat([13, 14]), 3, 1))
# for vectors with concrete complex-vector eltype
@test (wz = Adjoint(copy(complexintvecvec));
wz === setindex!(wz, Adjoint([5im, 6im]), 2) &&
wz == setindex!(copy(acomplexintvecvec), [-5im -6im], 2))
@test (wz = Transpose(copy(complexintvecvec));
wz === setindex!(wz, Transpose([5im, 6im]), 2) &&
wz == setindex!(copy(tcomplexintvecvec), [5im 6im], 2))
# for matrices with concrete complex-matrix eltype
@test (wZ = Adjoint(copy(complexintmatmat));
wZ === setindex!(wZ, Adjoint([13im 14im]), 3, 1) &&
wZ == setindex!(copy(acomplexintmatmat), hcat([-13im, -14im]), 3, 1))
@test (wZ = Transpose(copy(complexintmatmat));
wZ === setindex!(wZ, Transpose([13im 14im]), 3, 1) &&
wZ == setindex!(copy(tcomplexintmatmat), hcat([13im, 14im]), 3, 1))
end
end
@testset "Adjoint and Transpose convert methods that convert underlying storage" begin
intvec, intmat = [1, 2], [1 2 3; 4 5 6]
@test convert(Adjoint{Float64,Vector{Float64}}, Adjoint(intvec))::Adjoint{Float64,Vector{Float64}} == Adjoint(intvec)
@test convert(Adjoint{Float64,Matrix{Float64}}, Adjoint(intmat))::Adjoint{Float64,Matrix{Float64}} == Adjoint(intmat)
@test convert(Transpose{Float64,Vector{Float64}}, Transpose(intvec))::Transpose{Float64,Vector{Float64}} == Transpose(intvec)
@test convert(Transpose{Float64,Matrix{Float64}}, Transpose(intmat))::Transpose{Float64,Matrix{Float64}} == Transpose(intmat)
end
@testset "Adjoint and Transpose similar methods" begin
intvec, intmat = [1, 2], [1 2 3; 4 5 6]
# similar with no additional specifications, vector (rewrapping) semantics
@test size(similar(Adjoint(intvec))::Adjoint{Int,Vector{Int}}) == size(Adjoint(intvec))
@test size(similar(Transpose(intvec))::Transpose{Int,Vector{Int}}) == size(Transpose(intvec))
# similar with no additional specifications, matrix (no-rewrapping) semantics
@test size(similar(Adjoint(intmat))::Matrix{Int}) == size(Adjoint(intmat))
@test size(similar(Transpose(intmat))::Matrix{Int}) == size(Transpose(intmat))
# similar with element type specification, vector (rewrapping) semantics
@test size(similar(Adjoint(intvec), Float64)::Adjoint{Float64,Vector{Float64}}) == size(Adjoint(intvec))
@test size(similar(Transpose(intvec), Float64)::Transpose{Float64,Vector{Float64}}) == size(Transpose(intvec))
# similar with element type specification, matrix (no-rewrapping) semantics
@test size(similar(Adjoint(intmat), Float64)::Matrix{Float64}) == size(Adjoint(intmat))
@test size(similar(Transpose(intmat), Float64)::Matrix{Float64}) == size(Transpose(intmat))
# similar with element type and arbitrary dims specifications
shape = (2, 2, 2)
@test size(similar(Adjoint(intvec), Float64, shape)::Array{Float64,3}) == shape
@test size(similar(Adjoint(intmat), Float64, shape)::Array{Float64,3}) == shape
@test size(similar(Transpose(intvec), Float64, shape)::Array{Float64,3}) == shape
@test size(similar(Transpose(intmat), Float64, shape)::Array{Float64,3}) == shape
end
@testset "Adjoint and Transpose parent methods" begin
intvec, intmat = [1, 2], [1 2 3; 4 5 6]
@test parent(Adjoint(intvec)) === intvec
@test parent(Adjoint(intmat)) === intmat
@test parent(Transpose(intvec)) === intvec
@test parent(Transpose(intmat)) === intmat
end
@testset "Adjoint and Transpose vector vec methods" begin
intvec = [1, 2]
@test vec(Adjoint(intvec)) == intvec
@test vec(Transpose(intvec)) === intvec
cvec = [1 + 1im]
@test vec(cvec')[1] == cvec[1]'
end
@testset "horizontal concatenation of Adjoint/Transpose-wrapped vectors and Numbers" begin
# horizontal concatenation of Adjoint/Transpose-wrapped vectors and Numbers
# should preserve the Adjoint/Transpose-wrapper to preserve semantics downstream
vec, tvec, avec = [1im, 2im], [1im 2im], [-1im -2im]
vecvec = [[1im, 2im], [3im, 4im]]
tvecvec = [[[1im 2im]] [[3im 4im]]]
avecvec = [[[-1im -2im]] [[-3im -4im]]]
# for arrays with concrete scalar eltype
@test hcat(Adjoint(vec), Adjoint(vec))::Adjoint{Complex{Int},Vector{Complex{Int}}} == hcat(avec, avec)
@test hcat(Adjoint(vec), 1, Adjoint(vec))::Adjoint{Complex{Int},Vector{Complex{Int}}} == hcat(avec, 1, avec)
@test hcat(Transpose(vec), Transpose(vec))::Transpose{Complex{Int},Vector{Complex{Int}}} == hcat(tvec, tvec)
@test hcat(Transpose(vec), 1, Transpose(vec))::Transpose{Complex{Int},Vector{Complex{Int}}} == hcat(tvec, 1, tvec)
# for arrays with concrete array eltype
@test hcat(Adjoint(vecvec), Adjoint(vecvec))::Adjoint{Adjoint{Complex{Int},Vector{Complex{Int}}},Vector{Vector{Complex{Int}}}} == hcat(avecvec, avecvec)
@test hcat(Transpose(vecvec), Transpose(vecvec))::Transpose{Transpose{Complex{Int},Vector{Complex{Int}}},Vector{Vector{Complex{Int}}}} == hcat(tvecvec, tvecvec)
end
@testset "map/broadcast over Adjoint/Transpose-wrapped vectors and Numbers" begin
# map and broadcast over Adjoint/Transpose-wrapped vectors and Numbers
# should preserve the Adjoint/Transpose-wrapper to preserve semantics downstream
vec, tvec, avec = [1im, 2im], [1im 2im], [-1im -2im]
vecvec = [[1im, 2im], [3im, 4im]]
tvecvec = [[[1im 2im]] [[3im 4im]]]
avecvec = [[[-1im -2im]] [[-3im -4im]]]
# unary map over wrapped vectors with concrete scalar eltype
@test map(-, Adjoint(vec))::Adjoint{Complex{Int},Vector{Complex{Int}}} == -avec
@test map(-, Transpose(vec))::Transpose{Complex{Int},Vector{Complex{Int}}} == -tvec
# unary map over wrapped vectors with concrete array eltype
@test map(-, Adjoint(vecvec))::Adjoint{Adjoint{Complex{Int},Vector{Complex{Int}}},Vector{Vector{Complex{Int}}}} == -avecvec
@test map(-, Transpose(vecvec))::Transpose{Transpose{Complex{Int},Vector{Complex{Int}}},Vector{Vector{Complex{Int}}}} == -tvecvec
# binary map over wrapped vectors with concrete scalar eltype
@test map(+, Adjoint(vec), Adjoint(vec))::Adjoint{Complex{Int},Vector{Complex{Int}}} == avec + avec
@test map(+, Transpose(vec), Transpose(vec))::Transpose{Complex{Int},Vector{Complex{Int}}} == tvec + tvec
# binary map over wrapped vectors with concrete array eltype
@test map(+, Adjoint(vecvec), Adjoint(vecvec))::Adjoint{Adjoint{Complex{Int},Vector{Complex{Int}}},Vector{Vector{Complex{Int}}}} == avecvec + avecvec
@test map(+, Transpose(vecvec), Transpose(vecvec))::Transpose{Transpose{Complex{Int},Vector{Complex{Int}}},Vector{Vector{Complex{Int}}}} == tvecvec + tvecvec
# unary broadcast over wrapped vectors with concrete scalar eltype
@test broadcast(-, Adjoint(vec))::Adjoint{Complex{Int},Vector{Complex{Int}}} == -avec
@test broadcast(-, Transpose(vec))::Transpose{Complex{Int},Vector{Complex{Int}}} == -tvec
# unary broadcast over wrapped vectors with concrete array eltype
@test broadcast(-, Adjoint(vecvec))::Adjoint{Adjoint{Complex{Int},Vector{Complex{Int}}},Vector{Vector{Complex{Int}}}} == -avecvec
@test broadcast(-, Transpose(vecvec))::Transpose{Transpose{Complex{Int},Vector{Complex{Int}}},Vector{Vector{Complex{Int}}}} == -tvecvec
# binary broadcast over wrapped vectors with concrete scalar eltype
@test broadcast(+, Adjoint(vec), Adjoint(vec))::Adjoint{Complex{Int},Vector{Complex{Int}}} == avec + avec
@test broadcast(+, Transpose(vec), Transpose(vec))::Transpose{Complex{Int},Vector{Complex{Int}}} == tvec + tvec
# binary broadcast over wrapped vectors with concrete array eltype
@test broadcast(+, Adjoint(vecvec), Adjoint(vecvec))::Adjoint{Adjoint{Complex{Int},Vector{Complex{Int}}},Vector{Vector{Complex{Int}}}} == avecvec + avecvec
@test broadcast(+, Transpose(vecvec), Transpose(vecvec))::Transpose{Transpose{Complex{Int},Vector{Complex{Int}}},Vector{Vector{Complex{Int}}}} == tvecvec + tvecvec
# trinary broadcast over wrapped vectors with concrete scalar eltype and numbers
@test broadcast(+, Adjoint(vec), 1, Adjoint(vec))::Adjoint{Complex{Int},Vector{Complex{Int}}} == avec + avec .+ 1
@test broadcast(+, Transpose(vec), 1, Transpose(vec))::Transpose{Complex{Int},Vector{Complex{Int}}} == tvec + tvec .+ 1
@test broadcast(+, Adjoint(vec), 1im, Adjoint(vec))::Adjoint{Complex{Int},Vector{Complex{Int}}} == avec + avec .+ 1im
@test broadcast(+, Transpose(vec), 1im, Transpose(vec))::Transpose{Complex{Int},Vector{Complex{Int}}} == tvec + tvec .+ 1im
# ascertain inference friendliness, ref. https://github.com/JuliaLang/julia/pull/25083#issuecomment-353031641
sparsevec = SparseVector([1.0, 2.0, 3.0])
@test map(-, Adjoint(sparsevec), Adjoint(sparsevec)) isa Adjoint{Float64,SparseVector{Float64,Int}}
@test map(-, Transpose(sparsevec), Transpose(sparsevec)) isa Transpose{Float64,SparseVector{Float64,Int}}
@test broadcast(-, Adjoint(sparsevec), Adjoint(sparsevec)) isa Adjoint{Float64,SparseVector{Float64,Int}}
@test broadcast(-, Transpose(sparsevec), Transpose(sparsevec)) isa Transpose{Float64,SparseVector{Float64,Int}}
@test broadcast(+, Adjoint(sparsevec), 1.0, Adjoint(sparsevec)) isa Adjoint{Float64,SparseVector{Float64,Int}}
@test broadcast(+, Transpose(sparsevec), 1.0, Transpose(sparsevec)) isa Transpose{Float64,SparseVector{Float64,Int}}
end
@testset "Adjoint/Transpose-wrapped vector multiplication" begin
realvec, realmat = [1, 2, 3], [1 2 3; 4 5 6; 7 8 9]
complexvec, complexmat = [1im, 2, -3im], [1im 2 3; 4 5 -6im; 7im 8 9]
# Adjoint/Transpose-vector * vector
@test Adjoint(realvec) * realvec == dot(realvec, realvec)
@test Transpose(realvec) * realvec == dot(realvec, realvec)
@test Adjoint(complexvec) * complexvec == dot(complexvec, complexvec)
@test Transpose(complexvec) * complexvec == dot(conj(complexvec), complexvec)
# vector * Adjoint/Transpose-vector
@test realvec * Adjoint(realvec) == broadcast(*, realvec, reshape(realvec, (1, 3)))
@test realvec * Transpose(realvec) == broadcast(*, realvec, reshape(realvec, (1, 3)))
@test complexvec * Adjoint(complexvec) == broadcast(*, complexvec, reshape(conj(complexvec), (1, 3)))
@test complexvec * Transpose(complexvec) == broadcast(*, complexvec, reshape(complexvec, (1, 3)))
# Adjoint/Transpose-vector * matrix
@test (Adjoint(realvec) * realmat)::Adjoint{Int,Vector{Int}} ==
reshape(copy(Adjoint(realmat)) * realvec, (1, 3))
@test (Transpose(realvec) * realmat)::Transpose{Int,Vector{Int}} ==
reshape(copy(Transpose(realmat)) * realvec, (1, 3))
@test (Adjoint(complexvec) * complexmat)::Adjoint{Complex{Int},Vector{Complex{Int}}} ==
reshape(conj(copy(Adjoint(complexmat)) * complexvec), (1, 3))
@test (Transpose(complexvec) * complexmat)::Transpose{Complex{Int},Vector{Complex{Int}}} ==
reshape(copy(Transpose(complexmat)) * complexvec, (1, 3))
# Adjoint/Transpose-vector * Adjoint/Transpose-matrix
@test (Adjoint(realvec) * Adjoint(realmat))::Adjoint{Int,Vector{Int}} ==
reshape(realmat * realvec, (1, 3))
@test (Transpose(realvec) * Transpose(realmat))::Transpose{Int,Vector{Int}} ==
reshape(realmat * realvec, (1, 3))
@test (Adjoint(complexvec) * Adjoint(complexmat))::Adjoint{Complex{Int},Vector{Complex{Int}}} ==
reshape(conj(complexmat * complexvec), (1, 3))
@test (Transpose(complexvec) * Transpose(complexmat))::Transpose{Complex{Int},Vector{Complex{Int}}} ==
reshape(complexmat * complexvec, (1, 3))
end
@testset "Adjoint/Transpose-wrapped vector pseudoinversion" begin
realvec, complexvec = [1, 2, 3, 4], [1im, 2, 3im, 4]
rowrealvec, rowcomplexvec = reshape(realvec, (1, 4)), reshape(complexvec, (1, 4))
# pinv(Adjoint/Transpose-vector) should match matrix equivalents
# TODO tighten type asserts once pinv yields Transpose/Adjoint
@test pinv(Adjoint(realvec))::Vector{Float64} ≈ pinv(rowrealvec)
@test pinv(Transpose(realvec))::Vector{Float64} ≈ pinv(rowrealvec)
@test pinv(Adjoint(complexvec))::Vector{Complex{Float64}} ≈ pinv(conj(rowcomplexvec))
@test pinv(Transpose(complexvec))::Vector{Complex{Float64}} ≈ pinv(rowcomplexvec)
end
@testset "Adjoint/Transpose-wrapped vector left-division" begin
realvec, complexvec = [1., 2., 3., 4.,], [1.0im, 2., 3.0im, 4.]
rowrealvec, rowcomplexvec = reshape(realvec, (1, 4)), reshape(complexvec, (1, 4))
# \(Adjoint/Transpose-vector, Adjoint/Transpose-vector) should mat matrix equivalents
@test Adjoint(realvec)\Adjoint(realvec) ≈ rowrealvec\rowrealvec
@test Transpose(realvec)\Transpose(realvec) ≈ rowrealvec\rowrealvec
@test Adjoint(complexvec)\Adjoint(complexvec) ≈ conj(rowcomplexvec)\conj(rowcomplexvec)
@test Transpose(complexvec)\Transpose(complexvec) ≈ rowcomplexvec\rowcomplexvec
end
@testset "Adjoint/Transpose-wrapped vector right-division" begin
realvec, realmat = [1, 2, 3], [1 0 0; 0 2 0; 0 0 3]
complexvec, complexmat = [1im, 2, -3im], [2im 0 0; 0 3 0; 0 0 -5im]
rowrealvec, rowcomplexvec = reshape(realvec, (1, 3)), reshape(complexvec, (1, 3))
# /(Adjoint/Transpose-vector, matrix)
@test (Adjoint(realvec) / realmat)::Adjoint ≈ rowrealvec / realmat
@test (Adjoint(complexvec) / complexmat)::Adjoint ≈ conj(rowcomplexvec) / complexmat
@test (Transpose(realvec) / realmat)::Transpose ≈ rowrealvec / realmat
@test (Transpose(complexvec) / complexmat)::Transpose ≈ rowcomplexvec / complexmat
# /(Adjoint/Transpose-vector, Adjoint matrix)
@test (Adjoint(realvec) / Adjoint(realmat))::Adjoint ≈ rowrealvec / copy(Adjoint(realmat))
@test (Adjoint(complexvec) / Adjoint(complexmat))::Adjoint ≈ conj(rowcomplexvec) / copy(Adjoint(complexmat))
@test (Transpose(realvec) / Adjoint(realmat))::Transpose ≈ rowrealvec / copy(Adjoint(realmat))
@test (Transpose(complexvec) / Adjoint(complexmat))::Transpose ≈ rowcomplexvec / copy(Adjoint(complexmat))
# /(Adjoint/Transpose-vector, Transpose matrix)
@test (Adjoint(realvec) / Transpose(realmat))::Adjoint ≈ rowrealvec / copy(Transpose(realmat))
@test (Adjoint(complexvec) / Transpose(complexmat))::Adjoint ≈ conj(rowcomplexvec) / copy(Transpose(complexmat))
@test (Transpose(realvec) / Transpose(realmat))::Transpose ≈ rowrealvec / copy(Transpose(realmat))
@test (Transpose(complexvec) / Transpose(complexmat))::Transpose ≈ rowcomplexvec / copy(Transpose(complexmat))
end
@testset "norm and opnorm of Adjoint/Transpose-wrapped vectors" begin
# definitions are in base/linalg/generic.jl
realvec, complexvec = [3, -4], [3im, -4im]
# one norm result should be sum(abs.(realvec)) == 7
# two norm result should be sqrt(sum(abs.(realvec))) == 5
# inf norm result should be maximum(abs.(realvec)) == 4
for v in (realvec, complexvec)
@test norm(Adjoint(v)) ≈ 5
@test norm(Adjoint(v), 1) ≈ 7
@test norm(Adjoint(v), Inf) ≈ 4
@test norm(Transpose(v)) ≈ 5
@test norm(Transpose(v), 1) ≈ 7
@test norm(Transpose(v), Inf) ≈ 4
end
# one opnorm result should be maximum(abs.(realvec)) == 4
# two opnorm result should be sqrt(sum(abs.(realvec))) == 5
# inf opnorm result should be sum(abs.(realvec)) == 7
for v in (realvec, complexvec)
@test opnorm(Adjoint(v)) ≈ 5
@test opnorm(Adjoint(v), 1) ≈ 4
@test opnorm(Adjoint(v), Inf) ≈ 7
@test opnorm(Transpose(v)) ≈ 5
@test opnorm(Transpose(v), 1) ≈ 4
@test opnorm(Transpose(v), Inf) ≈ 7
end
end
@testset "adjoint and transpose of Numbers" begin
@test adjoint(1) == 1
@test adjoint(1.0) == 1.0
@test adjoint(1im) == -1im
@test adjoint(1.0im) == -1.0im
@test transpose(1) == 1
@test transpose(1.0) == 1.0
@test transpose(1im) == 1im
@test transpose(1.0im) == 1.0im
end
@testset "adjoint!(a, b) return a" begin
a = fill(1.0+im, 5)
b = fill(1.0+im, 1, 5)
@test adjoint!(a, b) === a
@test adjoint!(b, a) === b
end
@testset "aliasing with adjoint and transpose" begin
A = collect(reshape(1:25, 5, 5)) .+ rand.().*im
B = copy(A)
B .= B'
@test B == A'
B = copy(A)
B .= transpose(B)
@test B == transpose(A)
B = copy(A)
B .= B .* B'
@test B == A .* A'
end
@testset "test show methods for $t of Factorizations" for t in (Adjoint, Transpose)
A = randn(4, 4)
F = lu(A)
Fop = t(F)
@test "LinearAlgebra."*sprint(show, Fop) ==
"$t of "*sprint(show, parent(Fop))
@test "LinearAlgebra."*sprint((io, t) -> show(io, MIME"text/plain"(), t), Fop) ==
"$t of "*sprint((io, t) -> show(io, MIME"text/plain"(), t), parent(Fop))
end
const BASE_TEST_PATH = joinpath(Sys.BINDIR, "..", "share", "julia", "test")
isdefined(Main, :OffsetArrays) || @eval Main include(joinpath($(BASE_TEST_PATH), "testhelpers", "OffsetArrays.jl"))
using .Main.OffsetArrays
@testset "offset axes" begin
s = Base.Slice(-3:3)'
@test axes(s) === (Base.OneTo(1), Base.Slice(-3:3))
@test collect(LinearIndices(s)) == reshape(1:7, 1, 7)
@test collect(CartesianIndices(s)) == reshape([CartesianIndex(1,i) for i = -3:3], 1, 7)
@test s[1] == -3
@test s[7] == 3
@test s[4] == 0
@test_throws BoundsError s[0]
@test_throws BoundsError s[8]
@test s[1,-3] == -3
@test s[1, 3] == 3
@test s[1, 0] == 0
@test_throws BoundsError s[1,-4]
@test_throws BoundsError s[1, 4]
end
end # module TestAdjointTranspose
|