File: adjtrans.jl

package info (click to toggle)
julia 1.0.3%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 49,452 kB
  • sloc: lisp: 236,453; ansic: 55,579; cpp: 25,603; makefile: 1,685; pascal: 1,130; sh: 956; asm: 86; xml: 76
file content (507 lines) | stat: -rw-r--r-- 30,693 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
# This file is a part of Julia. License is MIT: https://julialang.org/license

module TestAdjointTranspose

using Test, LinearAlgebra, SparseArrays

@testset "Adjoint and Transpose inner constructor basics" begin
    intvec, intmat = [1, 2], [1 2; 3 4]
    # Adjoint/Transpose eltype must match the type of the Adjoint/Transpose of the input eltype
    @test_throws ErrorException Adjoint{Float64,Vector{Int}}(intvec)
    @test_throws ErrorException Adjoint{Float64,Matrix{Int}}(intmat)
    @test_throws ErrorException Transpose{Float64,Vector{Int}}(intvec)
    @test_throws ErrorException Transpose{Float64,Matrix{Int}}(intmat)
    # Adjoint/Transpose wrapped array type must match the input array type
    @test_throws MethodError Adjoint{Int,Vector{Float64}}(intvec)
    @test_throws MethodError Adjoint{Int,Matrix{Float64}}(intmat)
    @test_throws MethodError Transpose{Int,Vector{Float64}}(intvec)
    @test_throws MethodError Transpose{Int,Matrix{Float64}}(intmat)
    # Adjoint/Transpose inner constructor basic functionality, concrete scalar eltype
    @test (Adjoint{Int,Vector{Int}}(intvec)::Adjoint{Int,Vector{Int}}).parent === intvec
    @test (Adjoint{Int,Matrix{Int}}(intmat)::Adjoint{Int,Matrix{Int}}).parent === intmat
    @test (Transpose{Int,Vector{Int}}(intvec)::Transpose{Int,Vector{Int}}).parent === intvec
    @test (Transpose{Int,Matrix{Int}}(intmat)::Transpose{Int,Matrix{Int}}).parent === intmat
    # Adjoint/Transpose inner constructor basic functionality, abstract scalar eltype
    anyvec, anymat = Any[1, 2], Any[1 2; 3 4]
    @test (Adjoint{Any,Vector{Any}}(anyvec)::Adjoint{Any,Vector{Any}}).parent === anyvec
    @test (Adjoint{Any,Matrix{Any}}(anymat)::Adjoint{Any,Matrix{Any}}).parent === anymat
    @test (Transpose{Any,Vector{Any}}(anyvec)::Transpose{Any,Vector{Any}}).parent === anyvec
    @test (Transpose{Any,Matrix{Any}}(anymat)::Transpose{Any,Matrix{Any}}).parent === anymat
    # Adjoint/Transpose inner constructor basic functionality, concrete array eltype
    intvecvec = [[1, 2], [3, 4]]
    intmatmat = [[[1 2]] [[3 4]] [[5 6]]; [[7 8]] [[9 10]] [[11 12]]]
    @test (X = Adjoint{Adjoint{Int,Vector{Int}},Vector{Vector{Int}}}(intvecvec);
            isa(X, Adjoint{Adjoint{Int,Vector{Int}},Vector{Vector{Int}}}) && X.parent === intvecvec)
    @test (X = Adjoint{Adjoint{Int,Matrix{Int}},Matrix{Matrix{Int}}}(intmatmat);
            isa(X, Adjoint{Adjoint{Int,Matrix{Int}},Matrix{Matrix{Int}}}) && X.parent === intmatmat)
    @test (X = Transpose{Transpose{Int,Vector{Int}},Vector{Vector{Int}}}(intvecvec);
            isa(X, Transpose{Transpose{Int,Vector{Int}},Vector{Vector{Int}}}) && X.parent === intvecvec)
    @test (X = Transpose{Transpose{Int,Matrix{Int}},Matrix{Matrix{Int}}}(intmatmat);
            isa(X, Transpose{Transpose{Int,Matrix{Int}},Matrix{Matrix{Int}}}) && X.parent === intmatmat)
end

@testset "Adjoint and Transpose outer constructor basics" begin
    intvec, intmat = [1, 2], [1 2; 3 4]
    # the wrapped array's eltype strictly determines the Adjoint/Transpose eltype
    # so Adjoint{T}/Transpose{T} constructors are somewhat unnecessary and error-prone
    # so ascertain that such calls throw whether or not T and the input eltype are compatible
    @test_throws MethodError Adjoint{Int}(intvec)
    @test_throws MethodError Adjoint{Int}(intmat)
    @test_throws MethodError Adjoint{Float64}(intvec)
    @test_throws MethodError Adjoint{Float64}(intmat)
    @test_throws MethodError Transpose{Int}(intvec)
    @test_throws MethodError Transpose{Int}(intmat)
    @test_throws MethodError Transpose{Float64}(intvec)
    @test_throws MethodError Transpose{Float64}(intmat)
    # Adjoint/Transpose outer constructor basic functionality, concrete scalar eltype
    @test (Adjoint(intvec)::Adjoint{Int,Vector{Int}}).parent === intvec
    @test (Adjoint(intmat)::Adjoint{Int,Matrix{Int}}).parent === intmat
    @test (Transpose(intvec)::Transpose{Int,Vector{Int}}).parent === intvec
    @test (Transpose(intmat)::Transpose{Int,Matrix{Int}}).parent === intmat
    # the tests for the inner constructors exercise abstract scalar and concrete array eltype, forgoing here
end

@testset "Adjoint and Transpose add additional layers to already-wrapped objects" begin
    intvec, intmat = [1, 2], [1 2; 3 4]
    @test (A = Adjoint(Adjoint(intvec))::Adjoint{Int,Adjoint{Int,Vector{Int}}}; A.parent.parent === intvec)
    @test (A = Adjoint(Adjoint(intmat))::Adjoint{Int,Adjoint{Int,Matrix{Int}}}; A.parent.parent === intmat)
    @test (A = Transpose(Transpose(intvec))::Transpose{Int,Transpose{Int,Vector{Int}}}; A.parent.parent === intvec)
    @test (A = Transpose(Transpose(intmat))::Transpose{Int,Transpose{Int,Matrix{Int}}}; A.parent.parent === intmat)
end

@testset "Adjoint and Transpose basic AbstractArray functionality" begin
    # vectors and matrices with real scalar eltype, and their adjoints/transposes
    intvec, intmat = [1, 2], [1 2 3; 4 5 6]
    tintvec, tintmat = [1 2], [1 4; 2 5; 3 6]
    @testset "length methods" begin
        @test length(Adjoint(intvec)) == length(intvec)
        @test length(Adjoint(intmat)) == length(intmat)
        @test length(Transpose(intvec)) == length(intvec)
        @test length(Transpose(intmat)) == length(intmat)
    end
    @testset "size methods" begin
        @test size(Adjoint(intvec)) == (1, length(intvec))
        @test size(Adjoint(intmat)) == reverse(size(intmat))
        @test size(Transpose(intvec)) == (1, length(intvec))
        @test size(Transpose(intmat)) == reverse(size(intmat))
    end
    @testset "indices methods" begin
        @test axes(Adjoint(intvec)) == (Base.OneTo(1), Base.OneTo(length(intvec)))
        @test axes(Adjoint(intmat)) == reverse(axes(intmat))
        @test axes(Transpose(intvec)) == (Base.OneTo(1), Base.OneTo(length(intvec)))
        @test axes(Transpose(intmat)) == reverse(axes(intmat))
    end
    @testset "IndexStyle methods" begin
        @test IndexStyle(Adjoint(intvec)) == IndexLinear()
        @test IndexStyle(Adjoint(intmat)) == IndexCartesian()
        @test IndexStyle(Transpose(intvec)) == IndexLinear()
        @test IndexStyle(Transpose(intmat)) == IndexCartesian()
    end
    # vectors and matrices with complex scalar eltype, and their adjoints/transposes
    complexintvec, complexintmat = [1im, 2im], [1im 2im 3im; 4im 5im 6im]
    tcomplexintvec, tcomplexintmat = [1im 2im], [1im 4im; 2im 5im; 3im 6im]
    acomplexintvec, acomplexintmat = conj.(tcomplexintvec), conj.(tcomplexintmat)
    # vectors and matrices with real-vector and real-matrix eltype, and their adjoints/transposes
    intvecvec = [[1, 2], [3, 4]]
    tintvecvec = [[[1 2]] [[3 4]]]
    intmatmat = [[[1 2]] [[3  4]] [[ 5  6]];
                 [[7 8]] [[9 10]] [[11 12]]]
    tintmatmat = [[hcat([1, 2])] [hcat([7, 8])];
                  [hcat([3, 4])] [hcat([9, 10])];
                  [hcat([5, 6])] [hcat([11, 12])]]
    # vectors and matrices with complex-vector and complex-matrix eltype, and their adjoints/transposes
    complexintvecvec, complexintmatmat = im .* (intvecvec, intmatmat)
    tcomplexintvecvec, tcomplexintmatmat = im .* (tintvecvec, tintmatmat)
    acomplexintvecvec, acomplexintmatmat = conj.(tcomplexintvecvec), conj.(tcomplexintmatmat)
    @testset "getindex methods, elementary" begin
        # implicitly test elementary definitions, for arrays with concrete real scalar eltype
        @test Adjoint(intvec) == tintvec
        @test Adjoint(intmat) == tintmat
        @test Transpose(intvec) == tintvec
        @test Transpose(intmat) == tintmat
        # implicitly test elementary definitions, for arrays with concrete complex scalar eltype
        @test Adjoint(complexintvec) == acomplexintvec
        @test Adjoint(complexintmat) == acomplexintmat
        @test Transpose(complexintvec) == tcomplexintvec
        @test Transpose(complexintmat) == tcomplexintmat
        # implicitly test elementary definitions, for arrays with concrete real-array eltype
        @test Adjoint(intvecvec) == tintvecvec
        @test Adjoint(intmatmat) == tintmatmat
        @test Transpose(intvecvec) == tintvecvec
        @test Transpose(intmatmat) == tintmatmat
        # implicitly test elementary definitions, for arrays with concrete complex-array type
        @test Adjoint(complexintvecvec) == acomplexintvecvec
        @test Adjoint(complexintmatmat) == acomplexintmatmat
        @test Transpose(complexintvecvec) == tcomplexintvecvec
        @test Transpose(complexintmatmat) == tcomplexintmatmat
    end
    @testset "getindex(::AdjOrTransVec, ::Colon, ::AbstractArray{Int}) methods that preserve wrapper type" begin
        # for arrays with concrete scalar eltype
        @test Adjoint(intvec)[:, [1, 2]] == Adjoint(intvec)
        @test Transpose(intvec)[:, [1, 2]] == Transpose(intvec)
        @test Adjoint(complexintvec)[:, [1, 2]] == Adjoint(complexintvec)
        @test Transpose(complexintvec)[:, [1, 2]] == Transpose(complexintvec)
        # for arrays with concrete array eltype
        @test Adjoint(intvecvec)[:, [1, 2]] == Adjoint(intvecvec)
        @test Transpose(intvecvec)[:, [1, 2]] == Transpose(intvecvec)
        @test Adjoint(complexintvecvec)[:, [1, 2]] == Adjoint(complexintvecvec)
        @test Transpose(complexintvecvec)[:, [1, 2]] == Transpose(complexintvecvec)
    end
    @testset "getindex(::AdjOrTransVec, ::Colon, ::Colon) methods that preserve wrapper type" begin
        # for arrays with concrete scalar eltype
        @test Adjoint(intvec)[:, :] == Adjoint(intvec)
        @test Transpose(intvec)[:, :] == Transpose(intvec)
        @test Adjoint(complexintvec)[:, :] == Adjoint(complexintvec)
        @test Transpose(complexintvec)[:, :] == Transpose(complexintvec)
        # for arrays with concrete array elype
        @test Adjoint(intvecvec)[:, :] == Adjoint(intvecvec)
        @test Transpose(intvecvec)[:, :] == Transpose(intvecvec)
        @test Adjoint(complexintvecvec)[:, :] == Adjoint(complexintvecvec)
        @test Transpose(complexintvecvec)[:, :] == Transpose(complexintvecvec)
    end
    @testset "getindex(::AdjOrTransVec, ::Colon, ::Int) should preserve wrapper type on result entries" begin
        # for arrays with concrete scalar eltype
        @test Adjoint(intvec)[:, 2] == intvec[2:2]
        @test Transpose(intvec)[:, 2] == intvec[2:2]
        @test Adjoint(complexintvec)[:, 2] == conj.(complexintvec[2:2])
        @test Transpose(complexintvec)[:, 2] == complexintvec[2:2]
        # for arrays with concrete array eltype
        @test Adjoint(intvecvec)[:, 2] == Adjoint.(intvecvec[2:2])
        @test Transpose(intvecvec)[:, 2] == Transpose.(intvecvec[2:2])
        @test Adjoint(complexintvecvec)[:, 2] == Adjoint.(complexintvecvec[2:2])
        @test Transpose(complexintvecvec)[:, 2] == Transpose.(complexintvecvec[2:2])
    end
    @testset "setindex! methods" begin
        # for vectors with real scalar eltype
        @test (wv = Adjoint(copy(intvec));
                wv === setindex!(wv, 3, 2) &&
                 wv == setindex!(copy(tintvec), 3, 1, 2)    )
        @test (wv = Transpose(copy(intvec));
                wv === setindex!(wv, 4, 2) &&
                 wv == setindex!(copy(tintvec), 4, 1, 2)    )
        # for matrices with real scalar eltype
        @test (wA = Adjoint(copy(intmat));
                wA === setindex!(wA, 7, 3, 1) &&
                 wA == setindex!(copy(tintmat), 7, 3, 1)    )
        @test (wA = Transpose(copy(intmat));
                wA === setindex!(wA, 7, 3, 1) &&
                 wA == setindex!(copy(tintmat), 7, 3, 1)    )
        # for vectors with complex scalar eltype
        @test (wz = Adjoint(copy(complexintvec));
                wz === setindex!(wz, 3im, 2) &&
                 wz == setindex!(copy(acomplexintvec), 3im, 1, 2)   )
        @test (wz = Transpose(copy(complexintvec));
                wz === setindex!(wz, 4im, 2) &&
                 wz == setindex!(copy(tcomplexintvec), 4im, 1, 2)   )
        # for  matrices with complex scalar eltype
        @test (wZ = Adjoint(copy(complexintmat));
                wZ === setindex!(wZ, 7im, 3, 1) &&
                 wZ == setindex!(copy(acomplexintmat), 7im, 3, 1)   )
        @test (wZ = Transpose(copy(complexintmat));
                wZ === setindex!(wZ, 7im, 3, 1) &&
                 wZ == setindex!(copy(tcomplexintmat), 7im, 3, 1)   )
        # for vectors with concrete real-vector eltype
        @test (wv = Adjoint(copy(intvecvec));
                wv === setindex!(wv, Adjoint([5, 6]), 2) &&
                 wv == setindex!(copy(tintvecvec), [5 6], 2))
        @test (wv = Transpose(copy(intvecvec));
                wv === setindex!(wv, Transpose([5, 6]), 2) &&
                 wv == setindex!(copy(tintvecvec), [5 6], 2))
        # for matrices with concrete real-matrix eltype
        @test (wA = Adjoint(copy(intmatmat));
                wA === setindex!(wA, Adjoint([13 14]), 3, 1) &&
                 wA == setindex!(copy(tintmatmat), hcat([13, 14]), 3, 1))
        @test (wA = Transpose(copy(intmatmat));
                wA === setindex!(wA, Transpose([13 14]), 3, 1) &&
                 wA == setindex!(copy(tintmatmat), hcat([13, 14]), 3, 1))
        # for vectors with concrete complex-vector eltype
        @test (wz = Adjoint(copy(complexintvecvec));
                wz === setindex!(wz, Adjoint([5im, 6im]), 2) &&
                 wz == setindex!(copy(acomplexintvecvec), [-5im -6im], 2))
        @test (wz = Transpose(copy(complexintvecvec));
                wz === setindex!(wz, Transpose([5im, 6im]), 2) &&
                 wz == setindex!(copy(tcomplexintvecvec), [5im 6im], 2))
        # for matrices with concrete complex-matrix eltype
        @test (wZ = Adjoint(copy(complexintmatmat));
                wZ === setindex!(wZ, Adjoint([13im 14im]), 3, 1) &&
                 wZ == setindex!(copy(acomplexintmatmat), hcat([-13im, -14im]), 3, 1))
        @test (wZ = Transpose(copy(complexintmatmat));
                wZ === setindex!(wZ, Transpose([13im 14im]), 3, 1) &&
                 wZ == setindex!(copy(tcomplexintmatmat), hcat([13im, 14im]), 3, 1))
    end
end

@testset "Adjoint and Transpose convert methods that convert underlying storage" begin
    intvec, intmat = [1, 2], [1 2 3; 4 5 6]
    @test convert(Adjoint{Float64,Vector{Float64}}, Adjoint(intvec))::Adjoint{Float64,Vector{Float64}} == Adjoint(intvec)
    @test convert(Adjoint{Float64,Matrix{Float64}}, Adjoint(intmat))::Adjoint{Float64,Matrix{Float64}} == Adjoint(intmat)
    @test convert(Transpose{Float64,Vector{Float64}}, Transpose(intvec))::Transpose{Float64,Vector{Float64}} == Transpose(intvec)
    @test convert(Transpose{Float64,Matrix{Float64}}, Transpose(intmat))::Transpose{Float64,Matrix{Float64}} == Transpose(intmat)
end

@testset "Adjoint and Transpose similar methods" begin
    intvec, intmat = [1, 2], [1 2 3; 4 5 6]
    # similar with no additional specifications, vector (rewrapping) semantics
    @test size(similar(Adjoint(intvec))::Adjoint{Int,Vector{Int}}) == size(Adjoint(intvec))
    @test size(similar(Transpose(intvec))::Transpose{Int,Vector{Int}}) == size(Transpose(intvec))
    # similar with no additional specifications, matrix (no-rewrapping) semantics
    @test size(similar(Adjoint(intmat))::Matrix{Int}) == size(Adjoint(intmat))
    @test size(similar(Transpose(intmat))::Matrix{Int}) == size(Transpose(intmat))
    # similar with element type specification, vector (rewrapping) semantics
    @test size(similar(Adjoint(intvec), Float64)::Adjoint{Float64,Vector{Float64}}) == size(Adjoint(intvec))
    @test size(similar(Transpose(intvec), Float64)::Transpose{Float64,Vector{Float64}}) == size(Transpose(intvec))
    # similar with element type specification, matrix (no-rewrapping) semantics
    @test size(similar(Adjoint(intmat), Float64)::Matrix{Float64}) == size(Adjoint(intmat))
    @test size(similar(Transpose(intmat), Float64)::Matrix{Float64}) == size(Transpose(intmat))
    # similar with element type and arbitrary dims specifications
    shape = (2, 2, 2)
    @test size(similar(Adjoint(intvec), Float64, shape)::Array{Float64,3}) == shape
    @test size(similar(Adjoint(intmat), Float64, shape)::Array{Float64,3}) == shape
    @test size(similar(Transpose(intvec), Float64, shape)::Array{Float64,3}) == shape
    @test size(similar(Transpose(intmat), Float64, shape)::Array{Float64,3}) == shape
end

@testset "Adjoint and Transpose parent methods" begin
    intvec, intmat = [1, 2], [1 2 3; 4 5 6]
    @test parent(Adjoint(intvec)) === intvec
    @test parent(Adjoint(intmat)) === intmat
    @test parent(Transpose(intvec)) === intvec
    @test parent(Transpose(intmat)) === intmat
end

@testset "Adjoint and Transpose vector vec methods" begin
    intvec = [1, 2]
    @test vec(Adjoint(intvec)) == intvec
    @test vec(Transpose(intvec)) === intvec
    cvec = [1 + 1im]
    @test vec(cvec')[1] == cvec[1]'
end

@testset "horizontal concatenation of Adjoint/Transpose-wrapped vectors and Numbers" begin
    # horizontal concatenation of Adjoint/Transpose-wrapped vectors and Numbers
    # should preserve the Adjoint/Transpose-wrapper to preserve semantics downstream
    vec, tvec, avec = [1im, 2im], [1im 2im], [-1im -2im]
    vecvec = [[1im, 2im], [3im, 4im]]
    tvecvec = [[[1im 2im]] [[3im 4im]]]
    avecvec = [[[-1im -2im]] [[-3im -4im]]]
    # for arrays with concrete scalar eltype
    @test hcat(Adjoint(vec), Adjoint(vec))::Adjoint{Complex{Int},Vector{Complex{Int}}} == hcat(avec, avec)
    @test hcat(Adjoint(vec), 1, Adjoint(vec))::Adjoint{Complex{Int},Vector{Complex{Int}}} == hcat(avec, 1, avec)
    @test hcat(Transpose(vec), Transpose(vec))::Transpose{Complex{Int},Vector{Complex{Int}}} == hcat(tvec, tvec)
    @test hcat(Transpose(vec), 1, Transpose(vec))::Transpose{Complex{Int},Vector{Complex{Int}}} == hcat(tvec, 1, tvec)
    # for arrays with concrete array eltype
    @test hcat(Adjoint(vecvec), Adjoint(vecvec))::Adjoint{Adjoint{Complex{Int},Vector{Complex{Int}}},Vector{Vector{Complex{Int}}}} == hcat(avecvec, avecvec)
    @test hcat(Transpose(vecvec), Transpose(vecvec))::Transpose{Transpose{Complex{Int},Vector{Complex{Int}}},Vector{Vector{Complex{Int}}}} == hcat(tvecvec, tvecvec)
end

@testset "map/broadcast over Adjoint/Transpose-wrapped vectors and Numbers" begin
    # map and broadcast over Adjoint/Transpose-wrapped vectors and Numbers
    # should preserve the Adjoint/Transpose-wrapper to preserve semantics downstream
    vec, tvec, avec = [1im, 2im], [1im 2im], [-1im -2im]
    vecvec = [[1im, 2im], [3im, 4im]]
    tvecvec = [[[1im 2im]] [[3im 4im]]]
    avecvec = [[[-1im -2im]] [[-3im -4im]]]
    # unary map over wrapped vectors with concrete scalar eltype
    @test map(-, Adjoint(vec))::Adjoint{Complex{Int},Vector{Complex{Int}}} == -avec
    @test map(-, Transpose(vec))::Transpose{Complex{Int},Vector{Complex{Int}}} == -tvec
    # unary map over wrapped vectors with concrete array eltype
    @test map(-, Adjoint(vecvec))::Adjoint{Adjoint{Complex{Int},Vector{Complex{Int}}},Vector{Vector{Complex{Int}}}} == -avecvec
    @test map(-, Transpose(vecvec))::Transpose{Transpose{Complex{Int},Vector{Complex{Int}}},Vector{Vector{Complex{Int}}}} == -tvecvec
    # binary map over wrapped vectors with concrete scalar eltype
    @test map(+, Adjoint(vec), Adjoint(vec))::Adjoint{Complex{Int},Vector{Complex{Int}}} == avec + avec
    @test map(+, Transpose(vec), Transpose(vec))::Transpose{Complex{Int},Vector{Complex{Int}}} == tvec + tvec
    # binary map over wrapped vectors with concrete array eltype
    @test map(+, Adjoint(vecvec), Adjoint(vecvec))::Adjoint{Adjoint{Complex{Int},Vector{Complex{Int}}},Vector{Vector{Complex{Int}}}} == avecvec + avecvec
    @test map(+, Transpose(vecvec), Transpose(vecvec))::Transpose{Transpose{Complex{Int},Vector{Complex{Int}}},Vector{Vector{Complex{Int}}}} == tvecvec + tvecvec
    # unary broadcast over wrapped vectors with concrete scalar eltype
    @test broadcast(-, Adjoint(vec))::Adjoint{Complex{Int},Vector{Complex{Int}}} == -avec
    @test broadcast(-, Transpose(vec))::Transpose{Complex{Int},Vector{Complex{Int}}} == -tvec
    # unary broadcast over wrapped vectors with concrete array eltype
    @test broadcast(-, Adjoint(vecvec))::Adjoint{Adjoint{Complex{Int},Vector{Complex{Int}}},Vector{Vector{Complex{Int}}}} == -avecvec
    @test broadcast(-, Transpose(vecvec))::Transpose{Transpose{Complex{Int},Vector{Complex{Int}}},Vector{Vector{Complex{Int}}}} == -tvecvec
    # binary broadcast over wrapped vectors with concrete scalar eltype
    @test broadcast(+, Adjoint(vec), Adjoint(vec))::Adjoint{Complex{Int},Vector{Complex{Int}}} == avec + avec
    @test broadcast(+, Transpose(vec), Transpose(vec))::Transpose{Complex{Int},Vector{Complex{Int}}} == tvec + tvec
    # binary broadcast over wrapped vectors with concrete array eltype
    @test broadcast(+, Adjoint(vecvec), Adjoint(vecvec))::Adjoint{Adjoint{Complex{Int},Vector{Complex{Int}}},Vector{Vector{Complex{Int}}}} == avecvec + avecvec
    @test broadcast(+, Transpose(vecvec), Transpose(vecvec))::Transpose{Transpose{Complex{Int},Vector{Complex{Int}}},Vector{Vector{Complex{Int}}}} == tvecvec + tvecvec
    # trinary broadcast over wrapped vectors with concrete scalar eltype and numbers
    @test broadcast(+, Adjoint(vec), 1, Adjoint(vec))::Adjoint{Complex{Int},Vector{Complex{Int}}} == avec + avec .+ 1
    @test broadcast(+, Transpose(vec), 1, Transpose(vec))::Transpose{Complex{Int},Vector{Complex{Int}}} == tvec + tvec .+ 1
    @test broadcast(+, Adjoint(vec), 1im, Adjoint(vec))::Adjoint{Complex{Int},Vector{Complex{Int}}} == avec + avec .+ 1im
    @test broadcast(+, Transpose(vec), 1im, Transpose(vec))::Transpose{Complex{Int},Vector{Complex{Int}}} == tvec + tvec .+ 1im
    # ascertain inference friendliness, ref. https://github.com/JuliaLang/julia/pull/25083#issuecomment-353031641
    sparsevec = SparseVector([1.0, 2.0, 3.0])
    @test map(-, Adjoint(sparsevec), Adjoint(sparsevec)) isa Adjoint{Float64,SparseVector{Float64,Int}}
    @test map(-, Transpose(sparsevec), Transpose(sparsevec)) isa Transpose{Float64,SparseVector{Float64,Int}}
    @test broadcast(-, Adjoint(sparsevec), Adjoint(sparsevec)) isa Adjoint{Float64,SparseVector{Float64,Int}}
    @test broadcast(-, Transpose(sparsevec), Transpose(sparsevec)) isa Transpose{Float64,SparseVector{Float64,Int}}
    @test broadcast(+, Adjoint(sparsevec), 1.0, Adjoint(sparsevec)) isa Adjoint{Float64,SparseVector{Float64,Int}}
    @test broadcast(+, Transpose(sparsevec), 1.0, Transpose(sparsevec)) isa Transpose{Float64,SparseVector{Float64,Int}}
end

@testset "Adjoint/Transpose-wrapped vector multiplication" begin
    realvec, realmat = [1, 2, 3], [1 2 3; 4 5 6; 7 8 9]
    complexvec, complexmat = [1im, 2, -3im], [1im 2 3; 4 5 -6im; 7im 8 9]
    # Adjoint/Transpose-vector * vector
    @test Adjoint(realvec) * realvec == dot(realvec, realvec)
    @test Transpose(realvec) * realvec == dot(realvec, realvec)
    @test Adjoint(complexvec) * complexvec == dot(complexvec, complexvec)
    @test Transpose(complexvec) * complexvec == dot(conj(complexvec), complexvec)
    # vector * Adjoint/Transpose-vector
    @test realvec * Adjoint(realvec) == broadcast(*, realvec, reshape(realvec, (1, 3)))
    @test realvec * Transpose(realvec) == broadcast(*, realvec, reshape(realvec, (1, 3)))
    @test complexvec * Adjoint(complexvec) == broadcast(*, complexvec, reshape(conj(complexvec), (1, 3)))
    @test complexvec * Transpose(complexvec) == broadcast(*, complexvec, reshape(complexvec, (1, 3)))
    # Adjoint/Transpose-vector * matrix
    @test (Adjoint(realvec) * realmat)::Adjoint{Int,Vector{Int}} ==
        reshape(copy(Adjoint(realmat)) * realvec, (1, 3))
    @test (Transpose(realvec) * realmat)::Transpose{Int,Vector{Int}} ==
        reshape(copy(Transpose(realmat)) * realvec, (1, 3))
    @test (Adjoint(complexvec) * complexmat)::Adjoint{Complex{Int},Vector{Complex{Int}}} ==
        reshape(conj(copy(Adjoint(complexmat)) * complexvec), (1, 3))
    @test (Transpose(complexvec) * complexmat)::Transpose{Complex{Int},Vector{Complex{Int}}} ==
        reshape(copy(Transpose(complexmat)) * complexvec, (1, 3))
    # Adjoint/Transpose-vector * Adjoint/Transpose-matrix
    @test (Adjoint(realvec) * Adjoint(realmat))::Adjoint{Int,Vector{Int}} ==
        reshape(realmat * realvec, (1, 3))
    @test (Transpose(realvec) * Transpose(realmat))::Transpose{Int,Vector{Int}} ==
        reshape(realmat * realvec, (1, 3))
    @test (Adjoint(complexvec) * Adjoint(complexmat))::Adjoint{Complex{Int},Vector{Complex{Int}}} ==
        reshape(conj(complexmat * complexvec), (1, 3))
    @test (Transpose(complexvec) * Transpose(complexmat))::Transpose{Complex{Int},Vector{Complex{Int}}} ==
        reshape(complexmat * complexvec, (1, 3))
end

@testset "Adjoint/Transpose-wrapped vector pseudoinversion" begin
    realvec, complexvec = [1, 2, 3, 4], [1im, 2, 3im, 4]
    rowrealvec, rowcomplexvec = reshape(realvec, (1, 4)), reshape(complexvec, (1, 4))
    # pinv(Adjoint/Transpose-vector) should match matrix equivalents
    # TODO tighten type asserts once pinv yields Transpose/Adjoint
    @test pinv(Adjoint(realvec))::Vector{Float64} ≈ pinv(rowrealvec)
    @test pinv(Transpose(realvec))::Vector{Float64} ≈ pinv(rowrealvec)
    @test pinv(Adjoint(complexvec))::Vector{Complex{Float64}} ≈ pinv(conj(rowcomplexvec))
    @test pinv(Transpose(complexvec))::Vector{Complex{Float64}} ≈ pinv(rowcomplexvec)
end

@testset "Adjoint/Transpose-wrapped vector left-division" begin
    realvec, complexvec = [1., 2., 3., 4.,], [1.0im, 2., 3.0im, 4.]
    rowrealvec, rowcomplexvec = reshape(realvec, (1, 4)), reshape(complexvec, (1, 4))
    # \(Adjoint/Transpose-vector, Adjoint/Transpose-vector) should mat matrix equivalents
    @test Adjoint(realvec)\Adjoint(realvec) ≈ rowrealvec\rowrealvec
    @test Transpose(realvec)\Transpose(realvec) ≈ rowrealvec\rowrealvec
    @test Adjoint(complexvec)\Adjoint(complexvec) ≈ conj(rowcomplexvec)\conj(rowcomplexvec)
    @test Transpose(complexvec)\Transpose(complexvec) ≈ rowcomplexvec\rowcomplexvec
end

@testset "Adjoint/Transpose-wrapped vector right-division" begin
    realvec, realmat = [1, 2, 3], [1 0 0; 0 2 0; 0 0 3]
    complexvec, complexmat = [1im, 2, -3im], [2im 0 0; 0 3 0; 0 0 -5im]
    rowrealvec, rowcomplexvec = reshape(realvec, (1, 3)), reshape(complexvec, (1, 3))
    # /(Adjoint/Transpose-vector, matrix)
    @test (Adjoint(realvec) / realmat)::Adjoint ≈ rowrealvec / realmat
    @test (Adjoint(complexvec) / complexmat)::Adjoint ≈ conj(rowcomplexvec) / complexmat
    @test (Transpose(realvec) / realmat)::Transpose ≈ rowrealvec / realmat
    @test (Transpose(complexvec) / complexmat)::Transpose ≈ rowcomplexvec / complexmat
    # /(Adjoint/Transpose-vector, Adjoint matrix)
    @test (Adjoint(realvec) / Adjoint(realmat))::Adjoint ≈ rowrealvec / copy(Adjoint(realmat))
    @test (Adjoint(complexvec) / Adjoint(complexmat))::Adjoint ≈ conj(rowcomplexvec) / copy(Adjoint(complexmat))
    @test (Transpose(realvec) / Adjoint(realmat))::Transpose ≈ rowrealvec / copy(Adjoint(realmat))
    @test (Transpose(complexvec) / Adjoint(complexmat))::Transpose ≈ rowcomplexvec / copy(Adjoint(complexmat))
    # /(Adjoint/Transpose-vector, Transpose matrix)
    @test (Adjoint(realvec) / Transpose(realmat))::Adjoint ≈ rowrealvec / copy(Transpose(realmat))
    @test (Adjoint(complexvec) / Transpose(complexmat))::Adjoint ≈ conj(rowcomplexvec) / copy(Transpose(complexmat))
    @test (Transpose(realvec) / Transpose(realmat))::Transpose ≈ rowrealvec / copy(Transpose(realmat))
    @test (Transpose(complexvec) / Transpose(complexmat))::Transpose ≈ rowcomplexvec / copy(Transpose(complexmat))
end

@testset "norm and opnorm of Adjoint/Transpose-wrapped vectors" begin
    # definitions are in base/linalg/generic.jl
    realvec, complexvec = [3, -4], [3im, -4im]
    # one norm result should be sum(abs.(realvec)) == 7
    # two norm result should be sqrt(sum(abs.(realvec))) == 5
    # inf norm result should be maximum(abs.(realvec)) == 4
    for v in (realvec, complexvec)
        @test norm(Adjoint(v)) ≈ 5
        @test norm(Adjoint(v), 1) ≈ 7
        @test norm(Adjoint(v), Inf) ≈ 4
        @test norm(Transpose(v)) ≈ 5
        @test norm(Transpose(v), 1) ≈ 7
        @test norm(Transpose(v), Inf) ≈ 4
    end
    # one opnorm result should be maximum(abs.(realvec)) == 4
    # two opnorm result should be sqrt(sum(abs.(realvec))) == 5
    # inf opnorm result should be sum(abs.(realvec)) == 7
    for v in (realvec, complexvec)
        @test opnorm(Adjoint(v)) ≈ 5
        @test opnorm(Adjoint(v), 1) ≈ 4
        @test opnorm(Adjoint(v), Inf) ≈ 7
        @test opnorm(Transpose(v)) ≈ 5
        @test opnorm(Transpose(v), 1) ≈ 4
        @test opnorm(Transpose(v), Inf) ≈ 7
    end
end

@testset "adjoint and transpose of Numbers" begin
    @test adjoint(1) == 1
    @test adjoint(1.0) == 1.0
    @test adjoint(1im) == -1im
    @test adjoint(1.0im) == -1.0im
    @test transpose(1) == 1
    @test transpose(1.0) == 1.0
    @test transpose(1im) == 1im
    @test transpose(1.0im) == 1.0im
end

@testset "adjoint!(a, b) return a" begin
    a = fill(1.0+im, 5)
    b = fill(1.0+im, 1, 5)
    @test adjoint!(a, b) === a
    @test adjoint!(b, a) === b
end

@testset "aliasing with adjoint and transpose" begin
    A = collect(reshape(1:25, 5, 5)) .+ rand.().*im
    B = copy(A)
    B .= B'
    @test B == A'
    B = copy(A)
    B .= transpose(B)
    @test B == transpose(A)
    B = copy(A)
    B .= B .* B'
    @test B == A .* A'
end

@testset "test show methods for $t of Factorizations" for t in (Adjoint, Transpose)
    A = randn(4, 4)
    F = lu(A)
    Fop = t(F)
    @test "LinearAlgebra."*sprint(show, Fop) ==
                  "$t of "*sprint(show, parent(Fop))
    @test "LinearAlgebra."*sprint((io, t) -> show(io, MIME"text/plain"(), t), Fop) ==
                  "$t of "*sprint((io, t) -> show(io, MIME"text/plain"(), t), parent(Fop))
end

const BASE_TEST_PATH = joinpath(Sys.BINDIR, "..", "share", "julia", "test")
isdefined(Main, :OffsetArrays) || @eval Main include(joinpath($(BASE_TEST_PATH), "testhelpers", "OffsetArrays.jl"))
using .Main.OffsetArrays

@testset "offset axes" begin
    s = Base.Slice(-3:3)'
    @test axes(s) === (Base.OneTo(1), Base.Slice(-3:3))
    @test collect(LinearIndices(s)) == reshape(1:7, 1, 7)
    @test collect(CartesianIndices(s)) == reshape([CartesianIndex(1,i) for i = -3:3], 1, 7)
    @test s[1] == -3
    @test s[7] ==  3
    @test s[4] ==  0
    @test_throws BoundsError s[0]
    @test_throws BoundsError s[8]
    @test s[1,-3] == -3
    @test s[1, 3] ==  3
    @test s[1, 0] ==  0
    @test_throws BoundsError s[1,-4]
    @test_throws BoundsError s[1, 4]
end

end # module TestAdjointTranspose