1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
|
# This file is a part of Julia. License is MIT: https://julialang.org/license
module TestBidiagonal
using Test, LinearAlgebra, SparseArrays, Random
using LinearAlgebra: BlasReal, BlasFloat
include("testutils.jl") # test_approx_eq_modphase
n = 10 #Size of test matrix
Random.seed!(1)
@testset for relty in (Int, Float32, Float64, BigFloat), elty in (relty, Complex{relty})
if relty <: AbstractFloat
dv = convert(Vector{elty}, randn(n))
ev = convert(Vector{elty}, randn(n-1))
if (elty <: Complex)
dv += im*convert(Vector{elty}, randn(n))
ev += im*convert(Vector{elty}, randn(n-1))
end
elseif relty <: Integer
dv = convert(Vector{elty}, rand(1:10, n))
ev = convert(Vector{elty}, rand(1:10, n-1))
if (elty <: Complex)
dv += im*convert(Vector{elty}, rand(1:10, n))
ev += im*convert(Vector{elty}, rand(1:10, n-1))
end
end
@testset "Constructors" begin
for (x, y) in ((dv, ev), (GenericArray(dv), GenericArray(ev)))
# from vectors
ubd = Bidiagonal(x, y, :U)
lbd = Bidiagonal(x, y, :L)
@test ubd != lbd
@test ubd.dv === x
@test lbd.ev === y
@test_throws ArgumentError Bidiagonal(x, y, :R)
@test_throws DimensionMismatch Bidiagonal(x, x, :U)
@test_throws MethodError Bidiagonal(x, y)
# from matrix
@test Bidiagonal(ubd, :U) == Bidiagonal(Matrix(ubd), :U) == ubd
@test Bidiagonal(lbd, :L) == Bidiagonal(Matrix(lbd), :L) == lbd
end
@test eltype(Bidiagonal{elty}([1,2,3,4], [1.0f0,2.0f0,3.0f0], :U)) == elty
@test isa(Bidiagonal{elty,Vector{elty}}(GenericArray(dv), ev, :U), Bidiagonal{elty,Vector{elty}})
@test_throws MethodError Bidiagonal(dv, GenericArray(ev), :U)
@test_throws MethodError Bidiagonal(GenericArray(dv), ev, :U)
BI = Bidiagonal([1,2,3,4], [1,2,3], :U)
@test Bidiagonal(BI) === BI
@test isa(Bidiagonal{elty}(BI), Bidiagonal{elty})
end
@testset "getindex, setindex!, size, and similar" begin
ubd = Bidiagonal(dv, ev, :U)
lbd = Bidiagonal(dv, ev, :L)
# bidiagonal getindex / upper & lower
@test_throws BoundsError ubd[n + 1, 1]
@test_throws BoundsError ubd[1, n + 1]
@test ubd[2, 2] == dv[2]
# bidiagonal getindex / upper
@test ubd[2, 3] == ev[2]
@test iszero(ubd[3, 2])
# bidiagonal getindex / lower
@test lbd[3, 2] == ev[2]
@test iszero(lbd[2, 3])
# bidiagonal setindex! / upper
cubd = copy(ubd)
@test_throws ArgumentError ubd[2, 1] = 1
@test_throws ArgumentError ubd[3, 1] = 1
@test (cubd[2, 1] = 0; cubd == ubd)
@test ((cubd[1, 2] = 10) == 10; cubd[1, 2] == 10)
# bidiagonal setindex! / lower
clbd = copy(lbd)
@test_throws ArgumentError lbd[1, 2] = 1
@test_throws ArgumentError lbd[1, 3] = 1
@test (clbd[1, 2] = 0; clbd == lbd)
@test ((clbd[2, 1] = 10) == 10; clbd[2, 1] == 10)
# bidiagonal setindex! / upper & lower
@test_throws BoundsError ubd[n + 1, 1] = 1
@test_throws BoundsError ubd[1, n + 1] = 1
@test ((cubd[2, 2] = 10) == 10; cubd[2, 2] == 10)
# bidiagonal size
@test_throws ArgumentError size(ubd, 0)
@test size(ubd, 1) == size(ubd, 2) == n
@test size(ubd, 3) == 1
# bidiagonal similar
@test isa(similar(ubd), Bidiagonal{elty})
@test similar(ubd).uplo == ubd.uplo
@test isa(similar(ubd, Int), Bidiagonal{Int})
@test similar(ubd, Int).uplo == ubd.uplo
@test isa(similar(ubd, (3, 2)), SparseMatrixCSC)
@test isa(similar(ubd, Int, (3, 2)), SparseMatrixCSC{Int})
end
@testset "show" begin
BD = Bidiagonal(dv, ev, :U)
dstring = sprint(Base.print_matrix,BD.dv')
estring = sprint(Base.print_matrix,BD.ev')
@test sprint(show,BD) == "$(summary(BD)):\n diag:$dstring\n super:$estring"
BD = Bidiagonal(dv,ev,:L)
@test sprint(show,BD) == "$(summary(BD)):\n diag:$dstring\n sub:$estring"
end
@testset for uplo in (:U, :L)
T = Bidiagonal(dv, ev, uplo)
@testset "Constructor and basic properties" begin
@test size(T, 1) == size(T, 2) == n
@test size(T) == (n, n)
@test Array(T) == diagm(0 => dv, (uplo == :U ? 1 : -1) => ev)
@test Bidiagonal(Array(T), uplo) == T
@test big.(T) == T
@test Array(abs.(T)) == abs.(diagm(0 => dv, (uplo == :U ? 1 : -1) => ev))
@test Array(real(T)) == real(diagm(0 => dv, (uplo == :U ? 1 : -1) => ev))
@test Array(imag(T)) == imag(diagm(0 => dv, (uplo == :U ? 1 : -1) => ev))
end
@testset for func in (conj, transpose, adjoint)
@test func(func(T)) == T
end
@testset "triu and tril" begin
zerosdv = zeros(elty, length(dv))
zerosev = zeros(elty, length(ev))
bidiagcopy(dv, ev, uplo) = Bidiagonal(copy(dv), copy(ev), uplo)
@test istril(Bidiagonal(dv,ev,:L))
@test !istril(Bidiagonal(dv,ev,:U))
@test tril!(bidiagcopy(dv,ev,:U),-1) == Bidiagonal(zerosdv,zerosev,:U)
@test tril!(bidiagcopy(dv,ev,:L),-1) == Bidiagonal(zerosdv,ev,:L)
@test tril!(bidiagcopy(dv,ev,:U),-2) == Bidiagonal(zerosdv,zerosev,:U)
@test tril!(bidiagcopy(dv,ev,:L),-2) == Bidiagonal(zerosdv,zerosev,:L)
@test tril!(bidiagcopy(dv,ev,:U),1) == Bidiagonal(dv,ev,:U)
@test tril!(bidiagcopy(dv,ev,:L),1) == Bidiagonal(dv,ev,:L)
@test tril!(bidiagcopy(dv,ev,:U)) == Bidiagonal(dv,zerosev,:U)
@test tril!(bidiagcopy(dv,ev,:L)) == Bidiagonal(dv,ev,:L)
@test_throws ArgumentError tril!(bidiagcopy(dv, ev, :U), -n - 2)
@test_throws ArgumentError tril!(bidiagcopy(dv, ev, :U), n)
@test istriu(Bidiagonal(dv,ev,:U))
@test !istriu(Bidiagonal(dv,ev,:L))
@test triu!(bidiagcopy(dv,ev,:L),1) == Bidiagonal(zerosdv,zerosev,:L)
@test triu!(bidiagcopy(dv,ev,:U),1) == Bidiagonal(zerosdv,ev,:U)
@test triu!(bidiagcopy(dv,ev,:U),2) == Bidiagonal(zerosdv,zerosev,:U)
@test triu!(bidiagcopy(dv,ev,:L),2) == Bidiagonal(zerosdv,zerosev,:L)
@test triu!(bidiagcopy(dv,ev,:U),-1) == Bidiagonal(dv,ev,:U)
@test triu!(bidiagcopy(dv,ev,:L),-1) == Bidiagonal(dv,ev,:L)
@test triu!(bidiagcopy(dv,ev,:L)) == Bidiagonal(dv,zerosev,:L)
@test triu!(bidiagcopy(dv,ev,:U)) == Bidiagonal(dv,ev,:U)
@test_throws ArgumentError triu!(bidiagcopy(dv, ev, :U), -n)
@test_throws ArgumentError triu!(bidiagcopy(dv, ev, :U), n + 2)
end
Tfull = Array(T)
@testset "Linear solves" begin
if relty <: AbstractFloat
c = convert(Matrix{elty}, randn(n,n))
b = convert(Matrix{elty}, randn(n, 2))
if (elty <: Complex)
b += im*convert(Matrix{elty}, randn(n, 2))
end
elseif relty <: Integer
c = convert(Matrix{elty}, rand(1:10, n, n))
b = convert(Matrix{elty}, rand(1:10, n, 2))
if (elty <: Complex)
b += im*convert(Matrix{elty}, rand(1:10, n, 2))
end
end
condT = cond(map(ComplexF64,Tfull))
promty = typeof((zero(relty)*zero(relty) + zero(relty)*zero(relty))/one(relty))
if relty != BigFloat
x = transpose(T)\transpose(c)
tx = transpose(Tfull) \ transpose(c)
elty <: AbstractFloat && @test norm(x-tx,Inf) <= 4*condT*max(eps()*norm(tx,Inf), eps(promty)*norm(x,Inf))
@test_throws DimensionMismatch transpose(T)\transpose(b)
x = T'\copy(transpose(c))
tx = Tfull'\copy(transpose(c))
@test norm(x-tx,Inf) <= 4*condT*max(eps()*norm(tx,Inf), eps(promty)*norm(x,Inf))
@test_throws DimensionMismatch T'\copy(transpose(b))
x = T\transpose(c)
tx = Tfull\transpose(c)
@test norm(x-tx,Inf) <= 4*condT*max(eps()*norm(tx,Inf), eps(promty)*norm(x,Inf))
@test_throws DimensionMismatch T\transpose(b)
end
offsizemat = Matrix{elty}(undef, n+1, 2)
@test_throws DimensionMismatch T \ offsizemat
@test_throws DimensionMismatch transpose(T) \ offsizemat
@test_throws DimensionMismatch T' \ offsizemat
let bb = b, cc = c
for atype in ("Array", "SubArray")
if atype == "Array"
b = bb
c = cc
else
b = view(bb, 1:n)
c = view(cc, 1:n, 1:2)
end
end
x = T \ b
tx = Tfull \ b
@test_throws DimensionMismatch LinearAlgebra.naivesub!(T,Vector{elty}(undef,n+1))
@test norm(x-tx,Inf) <= 4*condT*max(eps()*norm(tx,Inf), eps(promty)*norm(x,Inf))
@testset "Generic Mat-vec ops" begin
@test T*b ≈ Tfull*b
@test T'*b ≈ Tfull'*b
if relty != BigFloat # not supported by pivoted QR
@test T/b' ≈ Tfull/b'
end
end
end
end
if elty <: BlasReal
@testset "$f" for f in (floor, trunc, round, ceil)
@test (f.(Int, T))::Bidiagonal == Bidiagonal(f.(Int, T.dv), f.(Int, T.ev), T.uplo)
@test (f.(T))::Bidiagonal == Bidiagonal(f.(T.dv), f.(T.ev), T.uplo)
end
end
@testset "diag" begin
@test (@inferred diag(T))::typeof(dv) == dv
@test (@inferred diag(T, uplo == :U ? 1 : -1))::typeof(dv) == ev
@test (@inferred diag(T,2))::typeof(dv) == zeros(elty, n-2)
@test_throws ArgumentError diag(T, -n - 1)
@test_throws ArgumentError diag(T, n + 1)
# test diag with another wrapped vector type
gdv, gev = GenericArray(dv), GenericArray(ev)
G = Bidiagonal(gdv, gev, uplo)
@test (@inferred diag(G))::typeof(gdv) == gdv
@test (@inferred diag(G, uplo == :U ? 1 : -1))::typeof(gdv) == gev
@test (@inferred diag(G,2))::typeof(gdv) == GenericArray(zeros(elty, n-2))
end
@testset "Eigensystems" begin
if relty <: AbstractFloat
d1, v1 = eigen(T)
d2, v2 = eigen(map(elty<:Complex ? ComplexF64 : Float64,Tfull))
@test (uplo == :U ? d1 : reverse(d1)) ≈ d2
if elty <: Real
test_approx_eq_modphase(v1, uplo == :U ? v2 : v2[:,n:-1:1])
end
end
end
@testset "Singular systems" begin
if (elty <: BlasReal)
@test AbstractArray(svd(T)) ≈ AbstractArray(svd!(copy(Tfull)))
@test svdvals(Tfull) ≈ svdvals(T)
u1, d1, v1 = svd(Tfull)
u2, d2, v2 = svd(T)
@test d1 ≈ d2
if elty <: Real
test_approx_eq_modphase(u1, u2)
test_approx_eq_modphase(copy(v1), copy(v2))
end
@test 0 ≈ norm(u2*Diagonal(d2)*v2'-Tfull) atol=n*max(n^2*eps(relty),norm(u1*Diagonal(d1)*v1'-Tfull))
@inferred svdvals(T)
@inferred svd(T)
end
end
@testset "Binary operations" begin
@test -T == Bidiagonal(-T.dv,-T.ev,T.uplo)
@test convert(elty,-1.0) * T == Bidiagonal(-T.dv,-T.ev,T.uplo)
@test T / convert(elty,-1.0) == Bidiagonal(-T.dv,-T.ev,T.uplo)
@test T * convert(elty,-1.0) == Bidiagonal(-T.dv,-T.ev,T.uplo)
@testset for uplo2 in (:U, :L)
dv = convert(Vector{elty}, relty <: AbstractFloat ? randn(n) : rand(1:10, n))
ev = convert(Vector{elty}, relty <: AbstractFloat ? randn(n-1) : rand(1:10, n-1))
T2 = Bidiagonal(dv, ev, uplo2)
Tfull2 = Array(T2)
for op in (+, -, *)
@test Array(op(T, T2)) ≈ op(Tfull, Tfull2)
end
end
# test pass-through of mul! for SymTridiagonal*Bidiagonal
TriSym = SymTridiagonal(T.dv, T.ev)
@test Array(TriSym*T) ≈ Array(TriSym)*Array(T)
# test pass-through of mul! for AbstractTriangular*Bidiagonal
Tri = UpperTriangular(diagm(1 => T.ev))
@test Array(Tri*T) ≈ Array(Tri)*Array(T)
end
@test inv(T)*Tfull ≈ Matrix(I, n, n)
end
BD = Bidiagonal(dv, ev, :U)
@test Matrix{Complex{Float64}}(BD) == BD
end
# Issue 10742 and similar
let A = Bidiagonal([1,2,3], [0,0], :U)
@test istril(A)
@test isdiag(A)
end
# test construct from range
@test Bidiagonal(1:3, 1:2, :U) == [1 1 0; 0 2 2; 0 0 3]
@testset "promote_rule" begin
A = Bidiagonal(fill(1f0,10),fill(1f0,9),:U)
B = rand(Float64,10,10)
C = Tridiagonal(rand(Float64,9),rand(Float64,10),rand(Float64,9))
@test promote_rule(Matrix{Float64}, Bidiagonal{Float64}) == Matrix{Float64}
@test promote(B,A) == (B, convert(Matrix{Float64}, A))
@test promote(B,A) isa Tuple{Matrix{Float64}, Matrix{Float64}}
@test promote(C,A) == (C,Tridiagonal(zeros(Float64,9),convert(Vector{Float64},A.dv),convert(Vector{Float64},A.ev)))
@test promote(C,A) isa Tuple{Tridiagonal, Tridiagonal}
end
using LinearAlgebra: fillstored!, UnitLowerTriangular
@testset "fill! and fillstored!" begin
let # fillstored!
A = Tridiagonal(randn(2), randn(3), randn(2))
@test fillstored!(A, 3) == Tridiagonal([3, 3], [3, 3, 3], [3, 3])
B = Bidiagonal(randn(3), randn(2), :U)
@test fillstored!(B, 2) == Bidiagonal([2,2,2], [2,2], :U)
S = SymTridiagonal(randn(3), randn(2))
@test fillstored!(S, 1) == SymTridiagonal([1,1,1], [1,1])
Ult = UnitLowerTriangular(randn(3,3))
@test fillstored!(Ult, 3) == UnitLowerTriangular([1 0 0; 3 1 0; 3 3 1])
end
let # fill!(exotic, 0)
exotic_arrays = Any[Tridiagonal(randn(3), randn(4), randn(3)),
Bidiagonal(randn(3), randn(2), rand([:U,:L])),
SymTridiagonal(randn(3), randn(2)),
sparse(randn(3,4)),
Diagonal(randn(5)),
sparse(rand(3)),
# LowerTriangular(randn(3,3)), # AbstractTriangular fill! deprecated, see below
# UpperTriangular(randn(3,3)) # AbstractTriangular fill! deprecated, see below
]
for A in exotic_arrays
@test iszero(fill!(A, 0))
end
# Diagonal fill! is no longer deprecated. See #29780
# AbstractTriangular fill! was defined as fillstored!,
# not matching the general behavior of fill!, and so it has been deprecated.
# In a future dev cycle, this fill! methods should probably be reintroduced
# with behavior matching that of fill! for other structured matrix types.
# In the interim, equivalently test fillstored! below
@test iszero(fillstored!(Diagonal(fill(1, 3)), 0))
@test iszero(fillstored!(LowerTriangular(fill(1, 3, 3)), 0))
@test iszero(fillstored!(UpperTriangular(fill(1, 3, 3)), 0))
end
let # fill!(small, x)
val = randn()
b = Bidiagonal(randn(1,1), :U)
st = SymTridiagonal(randn(1,1))
d = Diagonal(rand(1))
for x in (b, st, d)
@test Array(fill!(x, val)) == fill!(Array(x), val)
end
b = Bidiagonal(randn(2,2), :U)
st = SymTridiagonal(randn(3), randn(2))
t = Tridiagonal(randn(3,3))
d = Diagonal(rand(3))
for x in (b, t, st, d)
@test_throws ArgumentError fill!(x, val)
@test Array(fill!(x, 0)) == fill!(Array(x), 0)
end
end
end
@testset "pathological promotion (#24707)" begin
@test promote_type(Matrix{Int}, Bidiagonal{Tuple{S}} where S<:Integer) <: Matrix
@test promote_type(Matrix{Tuple{T}} where T<:Integer, Bidiagonal{Tuple{S}} where S<:Integer) <: Matrix
@test promote_type(Matrix{Tuple{T}} where T<:Integer, Bidiagonal{Int}) <: Matrix
@test promote_type(Tridiagonal{Int}, Bidiagonal{Tuple{S}} where S<:Integer) <: Tridiagonal
@test promote_type(Tridiagonal{Tuple{T}} where T<:Integer, Bidiagonal{Tuple{S}} where S<:Integer) <: Tridiagonal
@test promote_type(Tridiagonal{Tuple{T}} where T<:Integer, Bidiagonal{Int}) <: Tridiagonal
end
@testset "solve with matrix elements" begin
A = triu(tril(randn(9, 9), 3), -3)
b = randn(9)
Alb = Bidiagonal(Any[tril(A[1:3,1:3]), tril(A[4:6,4:6]), tril(A[7:9,7:9])],
Any[triu(A[4:6,1:3]), triu(A[7:9,4:6])], 'L')
Aub = Bidiagonal(Any[triu(A[1:3,1:3]), triu(A[4:6,4:6]), triu(A[7:9,7:9])],
Any[tril(A[1:3,4:6]), tril(A[4:6,7:9])], 'U')
bb = Any[b[1:3], b[4:6], b[7:9]]
@test vcat((Alb\bb)...) ≈ LowerTriangular(A)\b
@test vcat((Aub\bb)...) ≈ UpperTriangular(A)\b
end
end # module TestBidiagonal
|