1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
|
# This file is a part of Julia. License is MIT: https://julialang.org/license
module TestBunchKaufman
using Test, LinearAlgebra, Random
using LinearAlgebra: BlasComplex, BlasFloat, BlasReal, QRPivoted
using Base: getproperty
n = 10
# Split n into 2 parts for tests needing two matrices
n1 = div(n, 2)
n2 = 2*n1
Random.seed!(1234321)
areal = randn(n,n)/2
aimg = randn(n,n)/2
a2real = randn(n,n)/2
a2img = randn(n,n)/2
breal = randn(n,2)/2
bimg = randn(n,2)/2
@testset "$eltya argument A" for eltya in (Float32, Float64, ComplexF32, ComplexF64, Int)
a = eltya == Int ? rand(1:7, n, n) : convert(Matrix{eltya}, eltya <: Complex ? complex.(areal, aimg) : areal)
a2 = eltya == Int ? rand(1:7, n, n) : convert(Matrix{eltya}, eltya <: Complex ? complex.(a2real, a2img) : a2real)
asym = transpose(a) + a # symmetric indefinite
aher = a' + a # Hermitian indefinite
apd = a' * a # Positive-definite
for (a, a2, aher, apd) in ((a, a2, aher, apd),
(view(a, 1:n, 1:n),
view(a2, 1:n, 1:n),
view(aher, 1:n, 1:n),
view(apd , 1:n, 1:n)))
ε = εa = eps(abs(float(one(eltya))))
# check that factorize gives a Bunch-Kaufman
@test isa(factorize(asym), LinearAlgebra.BunchKaufman)
@test isa(factorize(aher), LinearAlgebra.BunchKaufman)
@testset "$uplo Bunch-Kaufman factor of indefinite matrix" for uplo in (:L, :U)
bc1 = bunchkaufman(Hermitian(aher, uplo))
@test LinearAlgebra.issuccess(bc1)
@test logabsdet(bc1)[1] ≈ log(abs(det(bc1)))
if eltya <: Real
@test logabsdet(bc1)[2] == sign(det(bc1))
else
@test logabsdet(bc1)[2] ≈ sign(det(bc1))
end
@test inv(bc1)*aher ≈ Matrix(I, n, n)
@testset for rook in (false, true)
@test inv(bunchkaufman(Symmetric(transpose(a) + a, uplo), rook))*(transpose(a) + a) ≈ Matrix(I, n, n)
if eltya <: BlasFloat
# test also bunchkaufman! without explicit type tag
# no bunchkaufman! method for Int ... yet
@test inv(bunchkaufman!(transpose(a) + a, rook))*(transpose(a) + a) ≈ Matrix(I, n, n)
end
@test size(bc1) == size(bc1.LD)
@test size(bc1, 1) == size(bc1.LD, 1)
@test size(bc1, 2) == size(bc1.LD, 2)
if eltya <: BlasReal
@test_throws ArgumentError bunchkaufman(a)
end
# Test extraction of factors
if eltya <: Real
@test getproperty(bc1, uplo)*bc1.D*getproperty(bc1, uplo)' ≈ aher[bc1.p, bc1.p]
@test getproperty(bc1, uplo)*bc1.D*getproperty(bc1, uplo)' ≈ bc1.P*aher*bc1.P'
end
bc1 = bunchkaufman(Symmetric(asym, uplo))
@test getproperty(bc1, uplo)*bc1.D*transpose(getproperty(bc1, uplo)) ≈ asym[bc1.p, bc1.p]
@test getproperty(bc1, uplo)*bc1.D*transpose(getproperty(bc1, uplo)) ≈ bc1.P*asym*transpose(bc1.P)
@test_throws ErrorException bc1.Z
@test_throws ArgumentError uplo == :L ? bc1.U : bc1.L
end
end
@testset "$eltyb argument B" for eltyb in (Float32, Float64, ComplexF32, ComplexF64, Int)
b = eltyb == Int ? rand(1:5, n, 2) : convert(Matrix{eltyb}, eltyb <: Complex ? complex.(breal, bimg) : breal)
for b in (b, view(b, 1:n, 1:2))
εb = eps(abs(float(one(eltyb))))
ε = max(εa,εb)
@testset "$uplo Bunch-Kaufman factor of indefinite matrix" for uplo in (:L, :U)
bc1 = bunchkaufman(Hermitian(aher, uplo))
@test aher*(bc1\b) ≈ b atol=1000ε
end
@testset "$uplo Bunch-Kaufman factors of a pos-def matrix" for uplo in (:U, :L)
@testset "rook pivoting: $rook" for rook in (false, true)
bc2 = bunchkaufman(Hermitian(apd, uplo), rook)
@test LinearAlgebra.issuccess(bc2)
bks = split(sprint(show, "text/plain", bc2), "\n")
@test bks[1] == summary(bc2)
@test bks[2] == "D factor:"
@test bks[4+n] == "$uplo factor:"
@test bks[6+2n] == "permutation:"
@test logdet(bc2) ≈ log(det(bc2))
@test logabsdet(bc2)[1] ≈ log(abs(det(bc2)))
@test logabsdet(bc2)[2] == sign(det(bc2))
@test inv(bc2)*apd ≈ Matrix(I, n, n)
@test apd*(bc2\b) ≈ b rtol=eps(cond(apd))
@test ishermitian(bc2) == !issymmetric(bc2)
end
end
end
end
end
end
@testset "Singular matrices" begin
R = Float64[1 0; 0 0]
C = ComplexF64[1 0; 0 0]
for A in (R, Symmetric(R), C, Hermitian(C))
@test_throws SingularException bunchkaufman(A)
@test_throws SingularException bunchkaufman!(copy(A))
@test_throws SingularException bunchkaufman(A; check = true)
@test_throws SingularException bunchkaufman!(copy(A); check = true)
@test !issuccess(bunchkaufman(A; check = false))
@test !issuccess(bunchkaufman!(copy(A); check = false))
end
F = bunchkaufman(R; check = false)
@test sprint(show, "text/plain", F) == "Failed factorization of type $(typeof(F))"
end
@testset "test example due to @timholy in PR 15354" begin
A = rand(6,5); A = complex(A'*A) # to avoid calling the real-lhs-complex-rhs method
F = cholesky(A);
v6 = rand(ComplexF64, 6)
v5 = view(v6, 1:5)
@test F\v5 == F\v6[1:5]
end
@test_throws DomainError logdet(bunchkaufman([-1 -1; -1 1]))
@test logabsdet(bunchkaufman([8 4; 4 2]; check = false))[1] == -Inf
@test isa(bunchkaufman(Symmetric(ones(0,0))), BunchKaufman) # 0x0 matrix
end # module TestBunchKaufman
|