1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
|
# This file is a part of Julia. License is MIT: https://julialang.org/license
module TestCholesky
using Test, LinearAlgebra, Random
using LinearAlgebra: BlasComplex, BlasFloat, BlasReal, QRPivoted,
PosDefException, RankDeficientException, chkfullrank
function unary_ops_tests(a, ca, tol; n=size(a, 1))
@test inv(ca)*a ≈ Matrix(I, n, n)
@test a*inv(ca) ≈ Matrix(I, n, n)
@test abs((det(ca) - det(a))/det(ca)) <= tol # Ad hoc, but statistically verified, revisit
@test logdet(ca) ≈ logdet(a)
@test logdet(ca) ≈ log(det(ca)) # logdet is less likely to overflow
@test isposdef(ca)
@test_throws ErrorException ca.Z
@test size(ca) == size(a)
@test Array(copy(ca)) ≈ a
end
function factor_recreation_tests(a_U, a_L)
c_U = cholesky(a_U)
c_L = cholesky(a_L)
cl = c_L.U
ls = c_L.L
@test Array(c_U) ≈ Array(c_L) ≈ a_U
@test ls*ls' ≈ a_U
@test triu(c_U.factors) ≈ c_U.U
@test tril(c_L.factors) ≈ c_L.L
@test istriu(cl)
@test cl'cl ≈ a_U
@test cl'cl ≈ a_L
end
@testset "core functionality" begin
n = 10
# Split n into 2 parts for tests needing two matrices
n1 = div(n, 2)
n2 = 2*n1
Random.seed!(1234321)
areal = randn(n,n)/2
aimg = randn(n,n)/2
a2real = randn(n,n)/2
a2img = randn(n,n)/2
breal = randn(n,2)/2
bimg = randn(n,2)/2
for eltya in (Float32, Float64, ComplexF32, ComplexF64, BigFloat, Int)
a = eltya == Int ? rand(1:7, n, n) : convert(Matrix{eltya}, eltya <: Complex ? complex.(areal, aimg) : areal)
a2 = eltya == Int ? rand(1:7, n, n) : convert(Matrix{eltya}, eltya <: Complex ? complex.(a2real, a2img) : a2real)
ε = εa = eps(abs(float(one(eltya))))
# Test of symmetric pos. def. strided matrix
apd = a'*a
@inferred cholesky(apd)
capd = factorize(apd)
r = capd.U
κ = cond(apd, 1) #condition number
unary_ops_tests(apd, capd, ε*κ*n)
@testset "throw for non-square input" begin
A = rand(eltya, 2, 3)
@test_throws DimensionMismatch cholesky(A)
@test_throws DimensionMismatch cholesky!(A)
end
#Test error bound on reconstruction of matrix: LAWNS 14, Lemma 2.1
#these tests were failing on 64-bit linux when inside the inner loop
#for eltya = ComplexF32 and eltyb = Int. The E[i,j] had NaN32 elements
#but only with Random.seed!(1234321) set before the loops.
E = abs.(apd - r'*r)
for i=1:n, j=1:n
@test E[i,j] <= (n+1)ε/(1-(n+1)ε)*real(sqrt(apd[i,i]*apd[j,j]))
end
E = abs.(apd - Matrix(capd))
for i=1:n, j=1:n
@test E[i,j] <= (n+1)ε/(1-(n+1)ε)*real(sqrt(apd[i,i]*apd[j,j]))
end
@test LinearAlgebra.issuccess(capd)
@inferred(logdet(capd))
apos = apd[1,1]
@test all(x -> x ≈ √apos, cholesky(apos).factors)
# Test cholesky with Symmetric/Hermitian upper/lower
apds = Symmetric(apd)
apdsL = Symmetric(apd, :L)
apdh = Hermitian(apd)
apdhL = Hermitian(apd, :L)
if eltya <: Real
capds = cholesky(apds)
unary_ops_tests(apds, capds, ε*κ*n)
if eltya <: BlasReal
capds = cholesky!(copy(apds))
unary_ops_tests(apds, capds, ε*κ*n)
end
ulstring = sprint((t, s) -> show(t, "text/plain", s), capds.UL)
@test sprint((t, s) -> show(t, "text/plain", s), capds) == "$(typeof(capds))\nU factor:\n$ulstring"
else
capdh = cholesky(apdh)
unary_ops_tests(apdh, capdh, ε*κ*n)
capdh = cholesky!(copy(apdh))
unary_ops_tests(apdh, capdh, ε*κ*n)
capdh = cholesky!(copy(apd))
unary_ops_tests(apd, capdh, ε*κ*n)
ulstring = sprint((t, s) -> show(t, "text/plain", s), capdh.UL)
@test sprint((t, s) -> show(t, "text/plain", s), capdh) == "$(typeof(capdh))\nU factor:\n$ulstring"
end
# test cholesky of 2x2 Strang matrix
S = Matrix{eltya}(SymTridiagonal([2, 2], [-1]))
@test Matrix(cholesky(S).U) ≈ [2 -1; 0 sqrt(eltya(3))] / sqrt(eltya(2))
# test extraction of factor and re-creating original matrix
if eltya <: Real
factor_recreation_tests(apds, apdsL)
else
factor_recreation_tests(apdh, apdhL)
end
#pivoted upper Cholesky
if eltya != BigFloat
cpapd = cholesky(apdh, Val(true))
unary_ops_tests(apdh, cpapd, ε*κ*n)
@test rank(cpapd) == n
@test all(diff(diag(real(cpapd.factors))).<=0.) # diagonal should be non-increasing
@test cpapd.P*cpapd.L*cpapd.U*cpapd.P' ≈ apd
end
for eltyb in (Float32, Float64, ComplexF32, ComplexF64, Int)
b = eltyb == Int ? rand(1:5, n, 2) : convert(Matrix{eltyb}, eltyb <: Complex ? complex.(breal, bimg) : breal)
εb = eps(abs(float(one(eltyb))))
ε = max(εa,εb)
for b in (b, view(b, 1:n, 1)) # Array and SubArray
# Test error bound on linear solver: LAWNS 14, Theorem 2.1
# This is a surprisingly loose bound
x = capd\b
@test norm(x-apd\b,1)/norm(x,1) <= (3n^2 + n + n^3*ε)*ε/(1-(n+1)*ε)*κ
@test norm(apd*x-b,1)/norm(b,1) <= (3n^2 + n + n^3*ε)*ε/(1-(n+1)*ε)*κ
@test norm(a*(capd\(a'*b)) - b,1)/norm(b,1) <= ε*κ*n # Ad hoc, revisit
if eltya != BigFloat && eltyb != BigFloat
lapd = cholesky(apdhL)
@test norm(apd * (lapd\b) - b)/norm(b) <= ε*κ*n
@test norm(apd * (lapd\b[1:n]) - b[1:n])/norm(b[1:n]) <= ε*κ*n
end
if eltya != BigFloat && eltyb != BigFloat # Note! Need to implement pivoted Cholesky decomposition in julia
cpapd = cholesky(apdh, Val(true))
@test norm(apd * (cpapd\b) - b)/norm(b) <= ε*κ*n # Ad hoc, revisit
@test norm(apd * (cpapd\b[1:n]) - b[1:n])/norm(b[1:n]) <= ε*κ*n
lpapd = cholesky(apdhL, Val(true))
@test norm(apd * (lpapd\b) - b)/norm(b) <= ε*κ*n # Ad hoc, revisit
@test norm(apd * (lpapd\b[1:n]) - b[1:n])/norm(b[1:n]) <= ε*κ*n
end
end
end
if eltya <: BlasFloat
@testset "generic cholesky!" begin
if eltya <: Complex
A = complex.(randn(5,5), randn(5,5))
else
A = randn(5,5)
end
A = convert(Matrix{eltya}, A'A)
@test Matrix(cholesky(A).L) ≈ Matrix(invoke(LinearAlgebra._chol!, Tuple{AbstractMatrix, Type{LowerTriangular}}, copy(A), LowerTriangular)[1])
@test Matrix(cholesky(A).U) ≈ Matrix(invoke(LinearAlgebra._chol!, Tuple{AbstractMatrix, Type{UpperTriangular}}, copy(A), UpperTriangular)[1])
end
end
end
end
@testset "behavior for non-positive definite matrices" for T in (Float64, ComplexF64)
A = T[1 2; 2 1]
B = T[1 2; 0 1]
# check = (true|false)
for M in (A, Hermitian(A), B)
@test_throws PosDefException cholesky(M)
@test_throws PosDefException cholesky!(copy(M))
@test_throws PosDefException cholesky(M; check = true)
@test_throws PosDefException cholesky!(copy(M); check = true)
@test !LinearAlgebra.issuccess(cholesky(M; check = false))
@test !LinearAlgebra.issuccess(cholesky!(copy(M); check = false))
end
for M in (A, Hermitian(A), B)
@test_throws RankDeficientException cholesky(M, Val(true))
@test_throws RankDeficientException cholesky!(copy(M), Val(true))
@test_throws RankDeficientException cholesky(M, Val(true); check = true)
@test_throws RankDeficientException cholesky!(copy(M), Val(true); check = true)
C = cholesky(M, Val(true); check = false)
@test_throws RankDeficientException chkfullrank(C)
C = cholesky!(copy(M), Val(true); check = false)
@test_throws RankDeficientException chkfullrank(C)
end
@test !isposdef(A)
str = sprint((io, x) -> show(io, "text/plain", x), cholesky(A; check = false))
end
@testset "Cholesky factor of Matrix with non-commutative elements, here 2x2-matrices" begin
X = Matrix{Float64}[0.1*rand(2,2) for i in 1:3, j = 1:3]
L = Matrix(LinearAlgebra._chol!(X*X', LowerTriangular)[1])
U = Matrix(LinearAlgebra._chol!(X*X', UpperTriangular)[1])
XX = Matrix(X*X')
@test sum(sum(norm, L*L' - XX)) < eps()
@test sum(sum(norm, U'*U - XX)) < eps()
end
@testset "cholesky up- and downdates" begin
A = complex.(randn(10,5), randn(10, 5))
v = complex.(randn(5), randn(5))
for uplo in (:U, :L)
AcA = A'*A
BcB = AcA + v*v'
BcB = (BcB + BcB')/2
F = cholesky(Hermitian(AcA, uplo))
G = cholesky(Hermitian(BcB, uplo))
@test Base.getproperty(LinearAlgebra.lowrankupdate(F, v), uplo) ≈ Base.getproperty(G, uplo)
@test_throws DimensionMismatch LinearAlgebra.lowrankupdate(F, Vector{eltype(v)}(undef,length(v)+1))
@test Base.getproperty(LinearAlgebra.lowrankdowndate(G, v), uplo) ≈ Base.getproperty(F, uplo)
@test_throws DimensionMismatch LinearAlgebra.lowrankdowndate(G, Vector{eltype(v)}(undef,length(v)+1))
end
end
@testset "issue #13243, unexpected nans in complex cholesky" begin
apd = [5.8525753f0 + 0.0f0im -0.79540455f0 + 0.7066077f0im 0.98274714f0 + 1.3824869f0im 2.619998f0 + 1.8532984f0im -1.8306153f0 - 1.2336911f0im 0.32275113f0 + 0.015575029f0im 2.1968813f0 + 1.0640624f0im 0.27894387f0 + 0.97911835f0im 3.0476584f0 + 0.18548489f0im 0.3842994f0 + 0.7050991f0im
-0.79540455f0 - 0.7066077f0im 8.313246f0 + 0.0f0im -1.8076122f0 - 0.8882447f0im 0.47806996f0 + 0.48494184f0im 0.5096429f0 - 0.5395974f0im -0.7285097f0 - 0.10360408f0im -1.1760061f0 - 2.7146957f0im -0.4271084f0 + 0.042899966f0im -1.7228563f0 + 2.8335886f0im 1.8942566f0 + 0.6389735f0im
0.98274714f0 - 1.3824869f0im -1.8076122f0 + 0.8882447f0im 9.367975f0 + 0.0f0im -0.1838578f0 + 0.6468568f0im -1.8338387f0 + 0.7064959f0im 0.041852742f0 - 0.6556877f0im 2.5673025f0 + 1.9732997f0im -1.1148382f0 - 0.15693812f0im 2.4704504f0 - 1.0389464f0im 1.0858271f0 - 1.298006f0im
2.619998f0 - 1.8532984f0im 0.47806996f0 - 0.48494184f0im -0.1838578f0 - 0.6468568f0im 3.1117508f0 + 0.0f0im -1.956626f0 + 0.22825956f0im 0.07081801f0 - 0.31801307f0im 0.3698375f0 - 0.5400855f0im 0.80686307f0 + 1.5315914f0im 1.5649154f0 - 1.6229297f0im -0.112077385f0 + 1.2014246f0im
-1.8306153f0 + 1.2336911f0im 0.5096429f0 + 0.5395974f0im -1.8338387f0 - 0.7064959f0im -1.956626f0 - 0.22825956f0im 3.6439795f0 + 0.0f0im -0.2594722f0 + 0.48786148f0im -0.47636223f0 - 0.27821827f0im -0.61608654f0 - 2.01858f0im -2.7767487f0 + 1.7693765f0im 0.048102796f0 - 0.9741874f0im
0.32275113f0 - 0.015575029f0im -0.7285097f0 + 0.10360408f0im 0.041852742f0 + 0.6556877f0im 0.07081801f0 + 0.31801307f0im -0.2594722f0 - 0.48786148f0im 3.624376f0 + 0.0f0im -1.6697118f0 + 0.4017511f0im -1.4397877f0 - 0.7550918f0im -0.31456697f0 - 1.0403451f0im -0.31978557f0 + 0.13701046f0im
2.1968813f0 - 1.0640624f0im -1.1760061f0 + 2.7146957f0im 2.5673025f0 - 1.9732997f0im 0.3698375f0 + 0.5400855f0im -0.47636223f0 + 0.27821827f0im -1.6697118f0 - 0.4017511f0im 6.8273163f0 + 0.0f0im -0.10051322f0 + 0.24303961f0im 1.4415971f0 + 0.29750675f0im 1.221786f0 - 0.85654986f0im
0.27894387f0 - 0.97911835f0im -0.4271084f0 - 0.042899966f0im -1.1148382f0 + 0.15693812f0im 0.80686307f0 - 1.5315914f0im -0.61608654f0 + 2.01858f0im -1.4397877f0 + 0.7550918f0im -0.10051322f0 - 0.24303961f0im 3.4057708f0 + 0.0f0im -0.5856801f0 - 1.0203559f0im 0.7103452f0 + 0.8422135f0im
3.0476584f0 - 0.18548489f0im -1.7228563f0 - 2.8335886f0im 2.4704504f0 + 1.0389464f0im 1.5649154f0 + 1.6229297f0im -2.7767487f0 - 1.7693765f0im -0.31456697f0 + 1.0403451f0im 1.4415971f0 - 0.29750675f0im -0.5856801f0 + 1.0203559f0im 7.005772f0 + 0.0f0im -0.9617417f0 - 1.2486815f0im
0.3842994f0 - 0.7050991f0im 1.8942566f0 - 0.6389735f0im 1.0858271f0 + 1.298006f0im -0.112077385f0 - 1.2014246f0im 0.048102796f0 + 0.9741874f0im -0.31978557f0 - 0.13701046f0im 1.221786f0 + 0.85654986f0im 0.7103452f0 - 0.8422135f0im -0.9617417f0 + 1.2486815f0im 3.4629636f0 + 0.0f0im]
b = [-0.905011814118756 + 0.2847570854574069im -0.7122162951294634 - 0.630289556702497im
-0.7620356655676837 + 0.15533508334193666im 0.39947219167701153 - 0.4576746001199889im
-0.21782716937787788 - 0.9222220085490986im -0.727775859267237 + 0.50638268521728im
-1.0509472322215125 + 0.5022165705328413im -0.7264975746431271 + 0.31670415674097235im
-0.6650468984506477 - 0.5000967284800251im -0.023682508769195098 + 0.18093440285319276im
-0.20604111555491242 + 0.10570814584017311im 0.562377322638969 - 0.2578030745663871im
-0.3451346708401685 + 1.076948486041297im 0.9870834574024372 - 0.2825689605519449im
0.25336108035924787 + 0.975317836492159im 0.0628393808469436 - 0.1253397353973715im
0.11192755545114 - 0.1603741874112385im 0.8439562576196216 + 1.0850814110398734im
-1.0568488936791578 - 0.06025820467086475im 0.12696236014017806 - 0.09853584666755086im]
cholesky(Hermitian(apd, :L), Val(true)) \ b
r = factorize(apd).U
E = abs.(apd - r'*r)
ε = eps(abs(float(one(ComplexF32))))
n = 10
for i=1:n, j=1:n
@test E[i,j] <= (n+1)ε/(1-(n+1)ε)*real(sqrt(apd[i,i]*apd[j,j]))
end
end
@testset "fail for non-BLAS element types" begin
@test_throws ArgumentError cholesky!(Hermitian(rand(Float16, 5,5)), Val(true))
end
@testset "cholesky Diagonal" begin
# real
d = abs.(randn(3)) .+ 0.1
D = Diagonal(d)
CD = cholesky(D)
@test CD isa Cholesky{Float64}
@test CD.U isa UpperTriangular{Float64}
@test CD.U == Diagonal(.√d)
@test CD.info == 0
# real, failing
@test_throws PosDefException cholesky(Diagonal([1.0, -2.0]))
Dnpd = cholesky(Diagonal([1.0, -2.0]); check = false)
@test Dnpd.info == 2
# complex
d = cis.(rand(3) .* 2*π)
d .*= abs.(randn(3) .+ 0.1)
D = Diagonal(d)
CD = cholesky(D)
@test CD isa Cholesky{Complex{Float64}}
@test CD.U isa UpperTriangular{Complex{Float64}}
@test CD.U == Diagonal(.√d)
@test CD.info == 0
# complex, failing
D[2, 2] = 0.0 + 0im
@test_throws PosDefException cholesky(D)
Dnpd = cholesky(D; check = false)
@test Dnpd.info == 2
# InexactError for Int
@test_throws InexactError cholesky!(Diagonal([2, 1]))
end
@testset "constructor with non-BlasInt arguments" begin
x = rand(5,5)
chol = cholesky(x'x)
factors, uplo, info = chol.factors, chol.uplo, chol.info
@test Cholesky(factors, uplo, Int32(info)) == chol
@test Cholesky(factors, uplo, Int64(info)) == chol
cholp = cholesky(x'x, Val(true))
factors, uplo, piv, rank, tol, info =
cholp.factors, cholp.uplo, cholp.piv, cholp.rank, cholp.tol, cholp.info
@test CholeskyPivoted(factors, uplo, Vector{Int32}(piv), rank, tol, info) == cholp
@test CholeskyPivoted(factors, uplo, Vector{Int64}(piv), rank, tol, info) == cholp
@test CholeskyPivoted(factors, uplo, piv, Int32(rank), tol, info) == cholp
@test CholeskyPivoted(factors, uplo, piv, Int64(rank), tol, info) == cholp
@test CholeskyPivoted(factors, uplo, piv, rank, tol, Int32(info)) == cholp
@test CholeskyPivoted(factors, uplo, piv, rank, tol, Int64(info)) == cholp
end
end # module TestCholesky
|