1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
|
# This file is a part of Julia. License is MIT: https://julialang.org/license
module TestEigen
using Test, LinearAlgebra, Random
using LinearAlgebra: BlasComplex, BlasFloat, BlasReal, QRPivoted
n = 10
# Split n into 2 parts for tests needing two matrices
n1 = div(n, 2)
n2 = 2*n1
Random.seed!(1234321)
areal = randn(n,n)/2
aimg = randn(n,n)/2
@testset for eltya in (Float32, Float64, ComplexF32, ComplexF64, Int)
aa = eltya == Int ? rand(1:7, n, n) : convert(Matrix{eltya}, eltya <: Complex ? complex.(areal, aimg) : areal)
asym = aa' + aa # symmetric indefinite
apd = aa' * aa # symmetric positive-definite
for (a, asym, apd) in ((aa, asym, apd),
(view(aa, 1:n, 1:n),
view(asym, 1:n, 1:n),
view(apd, 1:n, 1:n)))
ε = εa = eps(abs(float(one(eltya))))
α = rand(eltya)
β = rand(eltya)
eab = eigen(α,β)
@test eab.values == eigvals(fill(α,1,1),fill(β,1,1))
@test eab.vectors == eigvecs(fill(α,1,1),fill(β,1,1))
@testset "non-symmetric eigen decomposition" begin
d, v = eigen(a)
for i in 1:size(a,2)
@test a*v[:,i] ≈ d[i]*v[:,i]
end
f = eigen(a)
@test det(a) ≈ det(f)
@test inv(a) ≈ inv(f)
@test isposdef(a) == isposdef(f)
@test eigvals(f) === f.values
@test eigvecs(f) === f.vectors
@test Array(f) ≈ a
num_fact = eigen(one(eltya))
@test num_fact.values[1] == one(eltya)
h = asym
@test minimum(eigvals(h)) ≈ eigmin(h)
@test maximum(eigvals(h)) ≈ eigmax(h)
@test_throws DomainError eigmin(a - a')
@test_throws DomainError eigmax(a - a')
end
@testset "symmetric generalized eigenproblem" begin
if isa(a, Array)
asym_sg = asym[1:n1, 1:n1]
a_sg = a[:,n1+1:n2]
else
asym_sg = view(asym, 1:n1, 1:n1)
a_sg = view(a, 1:n, n1+1:n2)
end
f = eigen(asym_sg, a_sg'a_sg)
@test asym_sg*f.vectors ≈ (a_sg'a_sg*f.vectors) * Diagonal(f.values)
@test f.values ≈ eigvals(asym_sg, a_sg'a_sg)
@test prod(f.values) ≈ prod(eigvals(asym_sg/(a_sg'a_sg))) atol=200ε
@test eigvecs(asym_sg, a_sg'a_sg) == f.vectors
@test eigvals(f) === f.values
@test eigvecs(f) === f.vectors
@test_throws ErrorException f.Z
d,v = eigen(asym_sg, a_sg'a_sg)
@test d == f.values
@test v == f.vectors
end
@testset "Non-symmetric generalized eigenproblem" begin
if isa(a, Array)
a1_nsg = a[1:n1, 1:n1]
a2_nsg = a[n1+1:n2, n1+1:n2]
else
a1_nsg = view(a, 1:n1, 1:n1)
a2_nsg = view(a, n1+1:n2, n1+1:n2)
end
f = eigen(a1_nsg, a2_nsg)
@test a1_nsg*f.vectors ≈ (a2_nsg*f.vectors) * Diagonal(f.values)
@test f.values ≈ eigvals(a1_nsg, a2_nsg)
@test prod(f.values) ≈ prod(eigvals(a1_nsg/a2_nsg)) atol=50000ε
@test eigvecs(a1_nsg, a2_nsg) == f.vectors
@test_throws ErrorException f.Z
d,v = eigen(a1_nsg, a2_nsg)
@test d == f.values
@test v == f.vectors
end
end
end
@testset "eigenvalue computations with NaNs" begin
for eltya in (NaN16, NaN32, NaN)
@test_throws(ArgumentError, eigen(fill(eltya, 1, 1)))
@test_throws(ArgumentError, eigen(fill(eltya, 2, 2)))
test_matrix = rand(typeof(eltya),3,3)
test_matrix[2,2] = eltya
@test_throws(ArgumentError, eigen(test_matrix))
end
end
# test a matrix larger than 140-by-140 for #14174
let aa = rand(200, 200)
for a in (aa, view(aa, 1:n, 1:n))
f = eigen(a)
@test a ≈ f.vectors * Diagonal(f.values) / f.vectors
end
end
@testset "rational promotion: issue #24935" begin
A = [1//2 0//1; 0//1 2//3]
for λ in (eigvals(A), @inferred(eigvals(Symmetric(A))))
@test λ isa Vector{Float64}
@test λ ≈ [0.5, 2/3]
end
end
@testset "text/plain (REPL) printing of Eigen and GeneralizedEigen" begin
A, B = randn(5,5), randn(5,5)
e = eigen(A)
ge = eigen(A, B)
valsstring = sprint((t, s) -> show(t, "text/plain", s), e.values)
vecsstring = sprint((t, s) -> show(t, "text/plain", s), e.vectors)
factstring = sprint((t, s) -> show(t, "text/plain", s), e)
@test factstring == "$(summary(e))\neigenvalues:\n$valsstring\neigenvectors:\n$vecsstring"
end
end # module TestEigen
|