1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490
|
# This file is a part of Julia. License is MIT: https://julialang.org/license
module TestMatmul
using Test, LinearAlgebra, Random
using LinearAlgebra: mul!
## Test Julia fallbacks to BLAS routines
@testset "matrices with zero dimensions" begin
for (dimsA, dimsB, dimsC) in (
((0,5), (5,3), (0,3)),
((3,5), (5,0), (3,0)),
((3,0), (0,4), (3,4)),
((0,5), (5,0), (0,0)),
((0,0), (0,4), (0,4)),
((3,0), (0,0), (3,0)),
((0,0), (0,0), (0,0)) )
@test Matrix{Float64}(undef, dimsA) * Matrix{Float64}(undef, dimsB) == zeros(dimsC)
end
@test Matrix{Float64}(undef, 5, 0) |> t -> t't == zeros(0,0)
@test Matrix{Float64}(undef, 5, 0) |> t -> t*t' == zeros(5,5)
@test Matrix{ComplexF64}(undef, 5, 0) |> t -> t't == zeros(0,0)
@test Matrix{ComplexF64}(undef, 5, 0) |> t -> t*t' == zeros(5,5)
end
@testset "2x2 matmul" begin
AA = [1 2; 3 4]
BB = [5 6; 7 8]
AAi = AA+(0.5*im).*BB
BBi = BB+(2.5*im).*AA[[2,1],[2,1]]
for A in (copy(AA), view(AA, 1:2, 1:2)), B in (copy(BB), view(BB, 1:2, 1:2))
@test A*B == [19 22; 43 50]
@test *(transpose(A), B) == [26 30; 38 44]
@test *(A, transpose(B)) == [17 23; 39 53]
@test *(transpose(A), transpose(B)) == [23 31; 34 46]
end
for Ai in (copy(AAi), view(AAi, 1:2, 1:2)), Bi in (copy(BBi), view(BBi, 1:2, 1:2))
@test Ai*Bi == [-21+53.5im -4.25+51.5im; -12+95.5im 13.75+85.5im]
@test *(adjoint(Ai), Bi) == [68.5-12im 57.5-28im; 88-3im 76.5-25im]
@test *(Ai, adjoint(Bi)) == [64.5+5.5im 43+31.5im; 104-18.5im 80.5+31.5im]
@test *(adjoint(Ai), adjoint(Bi)) == [-28.25-66im 9.75-58im; -26-89im 21-73im]
@test_throws DimensionMismatch [1 2; 0 0; 0 0] * [1 2]
end
@test_throws DimensionMismatch mul!(Matrix{Float64}(undef,3,3), AA, BB)
end
@testset "3x3 matmul" begin
AA = [1 2 3; 4 5 6; 7 8 9].-5
BB = [1 0 5; 6 -10 3; 2 -4 -1]
AAi = AA+(0.5*im).*BB
BBi = BB+(2.5*im).*AA[[2,1,3],[2,3,1]]
for A in (copy(AA), view(AA, 1:3, 1:3)), B in (copy(BB), view(BB, 1:3, 1:3))
@test A*B == [-26 38 -27; 1 -4 -6; 28 -46 15]
@test *(adjoint(A), B) == [-6 2 -25; 3 -12 -18; 12 -26 -11]
@test *(A, adjoint(B)) == [-14 0 6; 4 -3 -3; 22 -6 -12]
@test *(adjoint(A), adjoint(B)) == [6 -8 -6; 12 -9 -9; 18 -10 -12]
end
for Ai in (copy(AAi), view(AAi, 1:3, 1:3)), Bi in (copy(BBi), view(BBi, 1:3, 1:3))
@test Ai*Bi == [-44.75+13im 11.75-25im -38.25+30im; -47.75-16.5im -51.5+51.5im -56+6im; 16.75-4.5im -53.5+52im -15.5im]
@test *(adjoint(Ai), Bi) == [-21+2im -1.75+49im -51.25+19.5im; 25.5+56.5im -7-35.5im 22+35.5im; -3+12im -32.25+43im -34.75-2.5im]
@test *(Ai, adjoint(Bi)) == [-20.25+15.5im -28.75-54.5im 22.25+68.5im; -12.25+13im -15.5+75im -23+27im; 18.25+im 1.5+94.5im -27-54.5im]
@test *(adjoint(Ai), adjoint(Bi)) == [1+2im 20.75+9im -44.75+42im; 19.5+17.5im -54-36.5im 51-14.5im; 13+7.5im 11.25+31.5im -43.25-14.5im]
@test_throws DimensionMismatch [1 2 3; 0 0 0; 0 0 0] * [1 2 3]
end
@test_throws DimensionMismatch mul!(Matrix{Float64}(undef,4,4), AA, BB)
end
# Generic AbstractArrays
module MyArray15367
using Test, Random
struct MyArray{T,N} <: AbstractArray{T,N}
data::Array{T,N}
end
Base.size(A::MyArray) = size(A.data)
Base.getindex(A::MyArray, indices...) = A.data[indices...]
A = MyArray(rand(4,5))
b = rand(5)
@test A*b ≈ A.data*b
end
@testset "Generic integer matrix multiplication" begin
AA = [1 2 3; 4 5 6] .- 3
BB = [2 -2; 3 -5; -4 7]
for A in (copy(AA), view(AA, 1:2, 1:3)), B in (copy(BB), view(BB, 1:3, 1:2))
@test A*B == [-7 9; -4 9]
@test *(transpose(A), transpose(B)) == [-6 -11 15; -6 -13 18; -6 -15 21]
end
AA = fill(1, 2, 100)
BB = fill(1, 100, 3)
for A in (copy(AA), view(AA, 1:2, 1:100)), B in (copy(BB), view(BB, 1:100, 1:3))
@test A*B == [100 100 100; 100 100 100]
end
AA = rand(1:20, 5, 5) .- 10
BB = rand(1:20, 5, 5) .- 10
CC = Matrix{Int}(undef, size(AA, 1), size(BB, 2))
for A in (copy(AA), view(AA, 1:5, 1:5)), B in (copy(BB), view(BB, 1:5, 1:5)), C in (copy(CC), view(CC, 1:5, 1:5))
@test *(transpose(A), B) == A'*B
@test *(A, transpose(B)) == A*B'
# Preallocated
@test mul!(C, A, B) == A*B
@test mul!(C, transpose(A), B) == A'*B
@test mul!(C, A, transpose(B)) == A*B'
@test mul!(C, transpose(A), transpose(B)) == A'*B'
@test LinearAlgebra.mul!(C, adjoint(A), transpose(B)) == A'*transpose(B)
#test DimensionMismatch for generic_matmatmul
@test_throws DimensionMismatch LinearAlgebra.mul!(C, adjoint(A), transpose(fill(1,4,4)))
@test_throws DimensionMismatch LinearAlgebra.mul!(C, adjoint(fill(1,4,4)), transpose(B))
end
vv = [1,2]
CC = Matrix{Int}(undef, 2, 2)
for v in (copy(vv), view(vv, 1:2)), C in (copy(CC), view(CC, 1:2, 1:2))
@test @inferred(mul!(C, v, adjoint(v))) == [1 2; 2 4]
end
end
@testset "generic_matvecmul" begin
AA = rand(5,5)
BB = rand(5)
for A in (copy(AA), view(AA, 1:5, 1:5)), B in (copy(BB), view(BB, 1:5))
@test_throws DimensionMismatch LinearAlgebra.generic_matvecmul!(zeros(6),'N',A,B)
@test_throws DimensionMismatch LinearAlgebra.generic_matvecmul!(B,'N',A,zeros(6))
end
vv = [1,2,3]
CC = Matrix{Int}(undef, 3, 3)
for v in (copy(vv), view(vv, 1:3)), C in (copy(CC), view(CC, 1:3, 1:3))
@test mul!(C, v, transpose(v)) == v*v'
end
vvf = map(Float64,vv)
CC = Matrix{Float64}(undef, 3, 3)
for vf in (copy(vvf), view(vvf, 1:3)), C in (copy(CC), view(CC, 1:3, 1:3))
@test mul!(C, vf, transpose(vf)) == vf*vf'
end
end
@testset "fallbacks & such for BlasFloats" begin
AA = rand(Float64,6,6)
BB = rand(Float64,6,6)
CC = zeros(Float64,6,6)
for A in (copy(AA), view(AA, 1:6, 1:6)), B in (copy(BB), view(BB, 1:6, 1:6)), C in (copy(CC), view(CC, 1:6, 1:6))
@test LinearAlgebra.mul!(C, transpose(A), transpose(B)) == transpose(A)*transpose(B)
@test LinearAlgebra.mul!(C, A, adjoint(B)) == A*transpose(B)
@test LinearAlgebra.mul!(C, adjoint(A), B) == transpose(A)*B
end
end
@testset "matrix algebra with subarrays of floats (stride != 1)" begin
A = reshape(map(Float64,1:20),5,4)
Aref = A[1:2:end,1:2:end]
Asub = view(A, 1:2:5, 1:2:4)
b = [1.2,-2.5]
@test (Aref*b) == (Asub*b)
@test *(transpose(Asub), Asub) == *(transpose(Aref), Aref)
@test *(Asub, transpose(Asub)) == *(Aref, transpose(Aref))
Ai = A .+ im
Aref = Ai[1:2:end,1:2:end]
Asub = view(Ai, 1:2:5, 1:2:4)
@test *(adjoint(Asub), Asub) == *(adjoint(Aref), Aref)
@test *(Asub, adjoint(Asub)) == *(Aref, adjoint(Aref))
end
@testset "Complex matrix x real MatOrVec etc (issue #29224)" for T1 in (Float32,Float64)
for T2 in (Float32,Float64)
for arg1_real in (true,false)
@testset "Combination $T1 $T2 $arg1_real $arg2_real" for arg2_real in (true,false)
A0 = reshape(Vector{T1}(1:25),5,5) .+
(arg1_real ? 0 : 1im*reshape(Vector{T1}(-3:21),5,5))
A = view(A0,1:2,1:2)
B = Matrix{T2}([1.0 3.0; -1.0 2.0]).+
(arg2_real ? 0 : 1im*Matrix{T2}([3.0 4; -1 10]))
AB_correct = copy(A)*B
AB = A*B; # view times matrix
@test AB ≈ AB_correct
A1 = view(A0,:,1:2) # rectangular view times matrix
@test A1*B ≈ copy(A1)*B
B1 = view(B,1:2,1:2);
AB1 = A*B1; # view times view
@test AB1 ≈ AB_correct
x = Vector{T2}([1.0;10.0]) .+ (arg2_real ? 0 : 1im*Vector{T2}([3;-1]))
Ax_exact = copy(A)*x
Ax = A*x # view times vector
@test Ax ≈ Ax_exact
x1 = view(x,1:2)
Ax1 = A*x1 # view times viewed vector
@test Ax1 ≈ Ax_exact
@test copy(A)*x1 ≈ Ax_exact # matrix times viewed vector
# View times transposed matrix
Bt = transpose(B);
@test A*Bt ≈ A*copy(Bt)
end
end
end
end
@testset "issue #15286" begin
A = reshape(map(Float64, 1:20), 5, 4)
C = zeros(8, 8)
sC = view(C, 1:2:8, 1:2:8)
B = reshape(map(Float64,-9:10),5,4)
@test mul!(sC, transpose(A), A) == A'*A
@test mul!(sC, transpose(A), B) == A'*B
Aim = A .- im
C = zeros(ComplexF64,8,8)
sC = view(C, 1:2:8, 1:2:8)
B = reshape(map(Float64,-9:10),5,4) .+ im
@test mul!(sC, adjoint(Aim), Aim) == Aim'*Aim
@test mul!(sC, adjoint(Aim), B) == Aim'*B
end
@testset "syrk & herk" begin
AA = reshape(1:1503, 501, 3).-750.0
res = Float64[135228751 9979252 -115270247; 9979252 10481254 10983256; -115270247 10983256 137236759]
for A in (copy(AA), view(AA, 1:501, 1:3))
@test *(transpose(A), A) == res
@test *(adjoint(A), transpose(copy(A'))) == res
end
cutoff = 501
A = reshape(1:6*cutoff,2*cutoff,3).-(6*cutoff)/2
Asub = view(A, 1:2:2*cutoff, 1:3)
Aref = A[1:2:2*cutoff, 1:3]
@test *(transpose(Asub), Asub) == *(transpose(Aref), Aref)
Ai = A .- im
Asub = view(Ai, 1:2:2*cutoff, 1:3)
Aref = Ai[1:2:2*cutoff, 1:3]
@test *(adjoint(Asub), Asub) == *(adjoint(Aref), Aref)
A5x5, A6x5 = Matrix{Float64}.(undef, ((5, 5), (6, 5)))
@test_throws DimensionMismatch LinearAlgebra.syrk_wrapper!(A5x5,'N',A6x5)
@test_throws DimensionMismatch LinearAlgebra.herk_wrapper!(A5x5,'N',A6x5)
end
@testset "matmul for types w/o sizeof (issue #1282)" begin
AA = fill(complex(1,1), 10, 10)
for A in (copy(AA), view(AA, 1:10, 1:10))
A2 = A^2
@test A2[1,1] == 20im
end
end
@testset "mul! (scaling)" begin
A5x5, b5, C5x6 = Array{Float64}.(undef,((5,5), 5, (5,6)))
for A in (A5x5, view(A5x5, :, :)), b in (b5, view(b5, :)), C in (C5x6, view(C5x6, :, :))
@test_throws DimensionMismatch mul!(A, Diagonal(b), C)
end
end
# issue #6450
@test dot(Any[1.0,2.0], Any[3.5,4.5]) === 12.5
@testset "dot" for elty in (Float32, Float64, ComplexF32, ComplexF64)
x = convert(Vector{elty},[1.0, 2.0, 3.0])
y = convert(Vector{elty},[3.5, 4.5, 5.5])
@test_throws DimensionMismatch dot(x, 1:2, y, 1:3)
@test_throws BoundsError dot(x, 1:4, y, 1:4)
@test_throws BoundsError dot(x, 1:3, y, 2:4)
@test dot(x, 1:2, y, 1:2) == convert(elty, 12.5)
@test transpose(x)*y == convert(elty, 29.0)
X = convert(Matrix{elty},[1.0 2.0; 3.0 4.0])
Y = convert(Matrix{elty},[1.5 2.5; 3.5 4.5])
@test dot(X, Y) == convert(elty, 35.0)
Z = convert(Vector{Matrix{elty}},[reshape(1:4, 2, 2), fill(1, 2, 2)])
@test dot(Z, Z) == convert(elty, 34.0)
end
dot1(x,y) = invoke(dot, Tuple{Any,Any}, x,y)
dot2(x,y) = invoke(dot, Tuple{AbstractArray,AbstractArray}, x,y)
@testset "generic dot" begin
AA = [1+2im 3+4im; 5+6im 7+8im]
BB = [2+7im 4+1im; 3+8im 6+5im]
for A in (copy(AA), view(AA, 1:2, 1:2)), B in (copy(BB), view(BB, 1:2, 1:2))
@test dot(A,B) == dot(vec(A),vec(B)) == dot1(A,B) == dot2(A,B) == dot(float.(A),float.(B))
@test dot(Int[], Int[]) == 0 == dot1(Int[], Int[]) == dot2(Int[], Int[])
@test_throws MethodError dot(Any[], Any[])
@test_throws MethodError dot1(Any[], Any[])
@test_throws MethodError dot2(Any[], Any[])
for n1 = 0:2, n2 = 0:2, d in (dot, dot1, dot2)
if n1 != n2
@test_throws DimensionMismatch d(1:n1, 1:n2)
else
@test d(1:n1, 1:n2) ≈ norm(1:n1)^2
end
end
end
end
@testset "Issue 11978" begin
A = Matrix{Matrix{Float64}}(undef, 2, 2)
A[1,1] = Matrix(1.0I, 3, 3)
A[2,2] = Matrix(1.0I, 2, 2)
A[1,2] = Matrix(1.0I, 3, 2)
A[2,1] = Matrix(1.0I, 2, 3)
b = Vector{Vector{Float64}}(undef, 2)
b[1] = fill(1., 3)
b[2] = fill(1., 2)
@test A*b == Vector{Float64}[[2,2,1], [2,2]]
end
@test_throws ArgumentError LinearAlgebra.copytri!(Matrix{Float64}(undef,10,10),'Z')
@testset "gemv! and gemm_wrapper for $elty" for elty in [Float32,Float64,ComplexF64,ComplexF32]
A10x10, x10, x11 = Array{elty}.(undef, ((10,10), 10, 11))
@test_throws DimensionMismatch LinearAlgebra.gemv!(x10,'N',A10x10,x11)
@test_throws DimensionMismatch LinearAlgebra.gemv!(x11,'N',A10x10,x10)
@test LinearAlgebra.gemv!(elty[], 'N', Matrix{elty}(undef,0,0), elty[]) == elty[]
@test LinearAlgebra.gemv!(x10, 'N', Matrix{elty}(undef,10,0), elty[]) == zeros(elty,10)
I0x0 = Matrix{elty}(I, 0, 0)
I10x10 = Matrix{elty}(I, 10, 10)
I10x11 = Matrix{elty}(I, 10, 11)
@test LinearAlgebra.gemm_wrapper('N','N', I10x10, I10x10) == I10x10
@test_throws DimensionMismatch LinearAlgebra.gemm_wrapper!(I10x10,'N','N', I10x11, I10x10)
@test_throws DimensionMismatch LinearAlgebra.gemm_wrapper!(I10x10,'N','N', I0x0, I0x0)
A = rand(elty,3,3)
@test LinearAlgebra.matmul3x3('T','N',A, Matrix{elty}(I, 3, 3)) == transpose(A)
end
@testset "#13593, #13488" begin
aa = rand(3,3)
bb = rand(3,3)
for a in (copy(aa), view(aa, 1:3, 1:3)), b in (copy(bb), view(bb, 1:3, 1:3))
@test_throws ArgumentError mul!(a, a, b)
@test_throws ArgumentError mul!(a, b, a)
@test_throws ArgumentError mul!(a, a, a)
end
end
# Number types that lack conversion to the destination type
struct RootInt
i::Int
end
import Base: *, adjoint, transpose
import LinearAlgebra: Adjoint, Transpose
(*)(x::RootInt, y::RootInt) = x.i*y.i
adjoint(x::RootInt) = x
transpose(x::RootInt) = x
Adjoint(x::RootInt) = x
Transpose(x::RootInt) = x
# TODO once Adjoint/Transpose constructors call adjoint/transpose recursively
# rather than Adjoint/Transpose, the additional definitions should become unnecessary
@test Base.promote_op(*, RootInt, RootInt) === Int
@testset "#14293" begin
a = [RootInt(3)]
C = [0]
mul!(C, a, transpose(a))
@test C[1] == 9
a = [RootInt(2),RootInt(10)]
@test a*adjoint(a) == [4 20; 20 100]
A = [RootInt(3) RootInt(5)]
@test A*a == [56]
end
function test_mul(C, A, B)
mul!(C, A, B)
@test Array(A) * Array(B) ≈ C
@test A*B ≈ C
end
@testset "mul! vs * for special types" begin
eltypes = [Float32, Float64, Int64]
for k in [3, 4, 10]
T = rand(eltypes)
bi1 = Bidiagonal(rand(T, k), rand(T, k-1), rand([:U, :L]))
bi2 = Bidiagonal(rand(T, k), rand(T, k-1), rand([:U, :L]))
tri1 = Tridiagonal(rand(T,k-1), rand(T, k), rand(T, k-1))
tri2 = Tridiagonal(rand(T,k-1), rand(T, k), rand(T, k-1))
stri1 = SymTridiagonal(rand(T, k), rand(T, k-1))
stri2 = SymTridiagonal(rand(T, k), rand(T, k-1))
C = rand(T, k, k)
specialmatrices = (bi1, bi2, tri1, tri2, stri1, stri2)
for A in specialmatrices
B = specialmatrices[rand(1:length(specialmatrices))]
test_mul(C, A, B)
end
for S in specialmatrices
l = rand(1:6)
B = randn(k, l)
C = randn(k, l)
test_mul(C, S, B)
A = randn(l, k)
C = randn(l, k)
test_mul(C, A, S)
end
end
for T in eltypes
A = Bidiagonal(rand(T, 2), rand(T, 1), rand([:U, :L]))
B = Bidiagonal(rand(T, 2), rand(T, 1), rand([:U, :L]))
C = randn(2,2)
test_mul(C, A, B)
B = randn(2, 9)
C = randn(2, 9)
test_mul(C, A, B)
end
let
tri44 = Tridiagonal(randn(3), randn(4), randn(3))
tri33 = Tridiagonal(randn(2), randn(3), randn(2))
full43 = randn(4, 3)
full24 = randn(2, 4)
full33 = randn(3, 3)
full44 = randn(4, 4)
@test_throws DimensionMismatch mul!(full43, tri44, tri33)
@test_throws DimensionMismatch mul!(full44, tri44, tri33)
@test_throws DimensionMismatch mul!(full44, tri44, full43)
@test_throws DimensionMismatch mul!(full43, tri33, full43)
@test_throws DimensionMismatch mul!(full43, full43, tri44)
end
end
# #18218
module TestPR18218
using Test
import Base.*, Base.+, Base.zero
struct TypeA
x::Int
end
Base.convert(::Type{TypeA}, x::Int) = TypeA(x)
struct TypeB
x::Int
end
struct TypeC
x::Int
end
Base.convert(::Type{TypeC}, x::Int) = TypeC(x)
zero(c::TypeC) = TypeC(0)
zero(::Type{TypeC}) = TypeC(0)
(*)(x::Int, a::TypeA) = TypeB(x*a.x)
(*)(a::TypeA, x::Int) = TypeB(a.x*x)
(+)(a::Union{TypeB,TypeC}, b::Union{TypeB,TypeC}) = TypeC(a.x+b.x)
A = TypeA[1 2; 3 4]
b = [1, 2]
d = A * b
@test typeof(d) == Vector{TypeC}
@test d == TypeC[5, 11]
end
@testset "VecOrMat of Vectors" begin
X = rand(ComplexF64, 3, 3)
Xv1 = [X[:,j] for i in 1:1, j in 1:3]
Xv2 = [transpose(X[i,:]) for i in 1:3]
Xv3 = [transpose(X[i,:]) for i in 1:3, j in 1:1]
XX = X*X
XtX = transpose(X)*X
XcX = X'*X
XXt = X*transpose(X)
XtXt = transpose(XX)
XcXt = X'*transpose(X)
XXc = X*X'
XtXc = transpose(X)*X'
XcXc = X'*X'
@test (Xv1*Xv2)[1] ≈ XX
@test (Xv1*Xv3)[1] ≈ XX
@test transpose(Xv1)*Xv1 ≈ XtX
@test transpose(Xv2)*Xv2 ≈ XtX
@test (transpose(Xv3)*Xv3)[1] ≈ XtX
@test Xv1'*Xv1 ≈ XcX
@test Xv2'*Xv2 ≈ norm(Xv2)^2
@test (Xv3'*Xv3)[1] ≈ XcX
@test (Xv1*transpose(Xv1))[1] ≈ XXt
@test Xv2*transpose(Xv2) ≈ XXt
@test Xv3*transpose(Xv3) ≈ XXt
@test transpose(Xv1)*transpose(Xv2) ≈ XtXt
@test transpose(Xv1)*transpose(Xv3) ≈ XtXt
@test Xv1'*transpose(Xv2) ≈ XcXt
@test Xv1'*transpose(Xv3) ≈ XcXt
@test (Xv1*Xv1')[1] ≈ XXc
@test Xv2*Xv2' ≈ XXc
@test Xv3*Xv3' ≈ XXc
@test transpose(Xv1)*Xv2' ≈ XtXc
@test transpose(Xv1)*Xv3' ≈ XtXc
@test Xv1'*Xv2' ≈ XcXc
@test Xv1'*Xv3' ≈ XcXc
end
@testset "method ambiguity" begin
# Ambiguity test is run inside a clean process.
# https://github.com/JuliaLang/julia/issues/28804
script = joinpath(@__DIR__, "ambiguous_exec.jl")
cmd = `$(Base.julia_cmd()) --startup-file=no $script`
@test success(pipeline(cmd; stdout=stdout, stderr=stderr))
end
end # module TestMatmul
|