1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
|
# This file is a part of Julia. License is MIT: https://julialang.org/license
module TestSpecial
using Test, LinearAlgebra, SparseArrays, Random
using LinearAlgebra: rmul!
n= 10 #Size of matrix to test
Random.seed!(1)
@testset "Interconversion between special matrix types" begin
a = [1.0:n;]
A = Diagonal(a)
@testset for newtype in [Diagonal, Bidiagonal, SymTridiagonal, Tridiagonal, Matrix]
@test Matrix(convert(newtype, A)) == Matrix(A)
@test Matrix(convert(newtype, Diagonal(GenericArray(a)))) == Matrix(A)
end
@testset for isupper in (true, false)
A = Bidiagonal(a, [1.0:n-1;], ifelse(isupper, :U, :L))
for newtype in [Bidiagonal, Tridiagonal, Matrix]
@test Matrix(convert(newtype, A)) == Matrix(A)
@test Matrix(newtype(A)) == Matrix(A)
end
@test_throws ArgumentError convert(SymTridiagonal, A)
tritype = isupper ? UpperTriangular : LowerTriangular
@test Matrix(tritype(A)) == Matrix(A)
A = Bidiagonal(a, zeros(n-1), ifelse(isupper, :U, :L)) #morally Diagonal
for newtype in [Diagonal, Bidiagonal, SymTridiagonal, Tridiagonal, Matrix]
@test Matrix(convert(newtype, A)) == Matrix(A)
@test Matrix(newtype(A)) == Matrix(A)
end
@test Matrix(tritype(A)) == Matrix(A)
end
A = SymTridiagonal(a, [1.0:n-1;])
for newtype in [Tridiagonal, Matrix]
@test Matrix(convert(newtype, A)) == Matrix(A)
end
for newtype in [Diagonal, Bidiagonal]
@test_throws ArgumentError convert(newtype,A)
end
A = SymTridiagonal(a, zeros(n-1))
@test Matrix(convert(Bidiagonal,A)) == Matrix(A)
A = Tridiagonal(zeros(n-1), [1.0:n;], zeros(n-1)) #morally Diagonal
for newtype in [Diagonal, Bidiagonal, SymTridiagonal, Matrix]
@test Matrix(convert(newtype, A)) == Matrix(A)
end
A = Tridiagonal(fill(1., n-1), [1.0:n;], fill(1., n-1)) #not morally Diagonal
for newtype in [SymTridiagonal, Matrix]
@test Matrix(convert(newtype, A)) == Matrix(A)
end
for newtype in [Diagonal, Bidiagonal]
@test_throws ArgumentError convert(newtype,A)
end
A = Tridiagonal(zeros(n-1), [1.0:n;], fill(1., n-1)) #not morally Diagonal
@test Matrix(convert(Bidiagonal, A)) == Matrix(A)
A = UpperTriangular(Tridiagonal(zeros(n-1), [1.0:n;], fill(1., n-1)))
@test Matrix(convert(Bidiagonal, A)) == Matrix(A)
A = Tridiagonal(fill(1., n-1), [1.0:n;], zeros(n-1)) #not morally Diagonal
@test Matrix(convert(Bidiagonal, A)) == Matrix(A)
A = LowerTriangular(Tridiagonal(fill(1., n-1), [1.0:n;], zeros(n-1)))
@test Matrix(convert(Bidiagonal, A)) == Matrix(A)
@test_throws ArgumentError convert(SymTridiagonal,A)
A = LowerTriangular(Matrix(Diagonal(a))) #morally Diagonal
for newtype in [Diagonal, Bidiagonal, SymTridiagonal, LowerTriangular, Matrix]
@test Matrix(convert(newtype, A)) == Matrix(A)
end
A = UpperTriangular(Matrix(Diagonal(a))) #morally Diagonal
for newtype in [Diagonal, Bidiagonal, SymTridiagonal, UpperTriangular, Matrix]
@test Matrix(convert(newtype, A)) == Matrix(A)
end
A = UpperTriangular(triu(rand(n,n)))
for newtype in [Diagonal, Bidiagonal, Tridiagonal, SymTridiagonal]
@test_throws ArgumentError convert(newtype,A)
end
end
@testset "Binary ops among special types" begin
a=[1.0:n;]
A=Diagonal(a)
Spectypes = [Diagonal, Bidiagonal, Tridiagonal, Matrix]
for (idx, type1) in enumerate(Spectypes)
for type2 in Spectypes
B = convert(type1,A)
C = convert(type2,A)
@test Matrix(B + C) ≈ Matrix(A + A)
@test Matrix(B - C) ≈ Matrix(A - A)
end
end
B = SymTridiagonal(a, fill(1., n-1))
for Spectype in [Diagonal, Bidiagonal, Tridiagonal, Matrix]
@test Matrix(B + convert(Spectype,A)) ≈ Matrix(B + A)
@test Matrix(convert(Spectype,A) + B) ≈ Matrix(B + A)
@test Matrix(B - convert(Spectype,A)) ≈ Matrix(B - A)
@test Matrix(convert(Spectype,A) - B) ≈ Matrix(A - B)
end
C = rand(n,n)
for TriType in [LinearAlgebra.UnitLowerTriangular, LinearAlgebra.UnitUpperTriangular, UpperTriangular, LowerTriangular]
D = TriType(C)
for Spectype in [Diagonal, Bidiagonal, Tridiagonal, Matrix]
@test Matrix(D + convert(Spectype,A)) ≈ Matrix(D + A)
@test Matrix(convert(Spectype,A) + D) ≈ Matrix(A + D)
@test Matrix(D - convert(Spectype,A)) ≈ Matrix(D - A)
@test Matrix(convert(Spectype,A) - D) ≈ Matrix(A - D)
end
end
end
@testset "Triangular Types and QR" begin
for typ in [UpperTriangular,LowerTriangular,LinearAlgebra.UnitUpperTriangular,LinearAlgebra.UnitLowerTriangular]
a = rand(n,n)
atri = typ(a)
b = rand(n,n)
qrb = qr(b,Val(true))
@test *(atri, adjoint(qrb.Q)) ≈ Matrix(atri) * qrb.Q'
@test rmul!(copy(atri), adjoint(qrb.Q)) ≈ Matrix(atri) * qrb.Q'
qrb = qr(b,Val(false))
@test *(atri, adjoint(qrb.Q)) ≈ Matrix(atri) * qrb.Q'
@test rmul!(copy(atri), adjoint(qrb.Q)) ≈ Matrix(atri) * qrb.Q'
end
end
# should all yield sparse arrays
@testset "concatenations of combinations of special and other matrix types" begin
N = 4
# Test concatenating pairwise combinations of special matrices
diagmat = Diagonal(1:N)
bidiagmat = Bidiagonal(1:N, 1:(N-1), :U)
tridiagmat = Tridiagonal(1:(N-1), 1:N, 1:(N-1))
symtridiagmat = SymTridiagonal(1:N, 1:(N-1))
specialmats = (diagmat, bidiagmat, tridiagmat, symtridiagmat)
for specialmata in specialmats, specialmatb in specialmats
@test issparse(hcat(specialmata, specialmatb))
@test issparse(vcat(specialmata, specialmatb))
@test issparse(hvcat((1,1), specialmata, specialmatb))
@test issparse(cat(specialmata, specialmatb; dims=(1,2)))
end
# Test concatenating pairwise combinations of special matrices with sparse matrices,
# dense matrices, or dense vectors
densevec = fill(1., N)
densemat = diagm(0 => densevec)
spmat = spdiagm(0 => densevec)
for specialmat in specialmats
# --> Tests applicable only to pairs of matrices
for othermat in (spmat, densemat)
@test issparse(vcat(specialmat, othermat))
@test issparse(vcat(othermat, specialmat))
end
# --> Tests applicable also to pairs including vectors
for specialmat in specialmats, othermatorvec in (spmat, densemat, densevec)
@test issparse(hcat(specialmat, othermatorvec))
@test issparse(hcat(othermatorvec, specialmat))
@test issparse(hvcat((2,), specialmat, othermatorvec))
@test issparse(hvcat((2,), othermatorvec, specialmat))
@test issparse(cat(specialmat, othermatorvec; dims=(1,2)))
@test issparse(cat(othermatorvec, specialmat; dims=(1,2)))
end
end
end
# Test that concatenations of annotated sparse/special matrix types with other matrix
# types yield sparse arrays, and that the code which effects that does not make concatenations
# strictly involving un/annotated dense matrices yield sparse arrays
#
# TODO: As with the associated code, these tests should be moved to a more appropriate
# location, particularly some future equivalent of base/linalg/special.jl dedicated to
# intereactions between a broader set of matrix types
@testset "concatenations of annotated types" begin
N = 4
# The tested annotation types
testfull = Bool(parse(Int,(get(ENV, "JULIA_TESTFULL", "0"))))
utriannotations = (UpperTriangular, LinearAlgebra.UnitUpperTriangular)
ltriannotations = (LowerTriangular, LinearAlgebra.UnitLowerTriangular)
triannotations = (utriannotations..., ltriannotations...)
symannotations = (Symmetric, Hermitian)
annotations = testfull ? (triannotations..., symannotations...) : (LowerTriangular, Symmetric)
# Concatenations involving these types, un/annotated, should yield sparse arrays
spvec = spzeros(N)
spmat = sparse(1.0I, N, N)
diagmat = Diagonal(1:N)
bidiagmat = Bidiagonal(1:N, 1:(N-1), :U)
tridiagmat = Tridiagonal(1:(N-1), 1:N, 1:(N-1))
symtridiagmat = SymTridiagonal(1:N, 1:(N-1))
sparseconcatmats = testfull ? (spmat, diagmat, bidiagmat, tridiagmat, symtridiagmat) : (spmat, diagmat)
# Concatenations involving strictly these types, un/annotated, should yield dense arrays
densevec = fill(1., N)
densemat = fill(1., N, N)
# Annotated collections
annodmats = [annot(densemat) for annot in annotations]
annospcmats = [annot(spcmat) for annot in annotations, spcmat in sparseconcatmats]
# Test that concatenations of pairwise combinations of annotated sparse/special
# yield sparse matrices
for annospcmata in annospcmats, annospcmatb in annospcmats
@test issparse(vcat(annospcmata, annospcmatb))
@test issparse(hcat(annospcmata, annospcmatb))
@test issparse(hvcat((2,), annospcmata, annospcmatb))
@test issparse(cat(annospcmata, annospcmatb; dims=(1,2)))
end
# Test that concatenations of pairwise combinations of annotated sparse/special
# matrices and other matrix/vector types yield sparse matrices
for annospcmat in annospcmats
# --> Tests applicable to pairs including only matrices
for othermat in (densemat, annodmats..., sparseconcatmats...)
@test issparse(vcat(annospcmat, othermat))
@test issparse(vcat(othermat, annospcmat))
end
# --> Tests applicable to pairs including other vectors or matrices
for other in (spvec, densevec, densemat, annodmats..., sparseconcatmats...)
@test issparse(hcat(annospcmat, other))
@test issparse(hcat(other, annospcmat))
@test issparse(hvcat((2,), annospcmat, other))
@test issparse(hvcat((2,), other, annospcmat))
@test issparse(cat(annospcmat, other; dims=(1,2)))
@test issparse(cat(other, annospcmat; dims=(1,2)))
end
end
# The preceding tests should cover multi-way combinations of those types, but for good
# measure test a few multi-way combinations involving those types
@test issparse(vcat(spmat, densemat, annospcmats[1], annodmats[2]))
@test issparse(vcat(densemat, spmat, annodmats[1], annospcmats[2]))
@test issparse(hcat(spvec, annodmats[1], annospcmats[3], densevec, diagmat))
@test issparse(hcat(annodmats[2], annospcmats[4], spvec, densevec, diagmat))
@test issparse(hvcat((5,), diagmat, densevec, spvec, annodmats[1], annospcmats[1]))
@test issparse(hvcat((5,), spvec, annodmats[2], diagmat, densevec, annospcmats[2]))
@test issparse(cat(annodmats[1], diagmat, annospcmats[3], densevec, spvec; dims=(1,2)))
@test issparse(cat(spvec, diagmat, densevec, annospcmats[4], annodmats[2]; dims=(1,2)))
# Test that concatenations strictly involving un/annotated dense matrices/vectors
# yield dense arrays
for densemata in (densemat, annodmats...)
# --> Tests applicable to pairs including only matrices
for densematb in (densemat, annodmats...)
@test !issparse(vcat(densemata, densematb))
@test !issparse(vcat(densematb, densemata))
end
# --> Tests applicable to pairs including vectors or matrices
for otherdense in (densevec, densemat, annodmats...)
@test !issparse(hcat(densemata, otherdense))
@test !issparse(hcat(otherdense, densemata))
@test !issparse(hvcat((2,), densemata, otherdense))
@test !issparse(hvcat((2,), otherdense, densemata))
@test !issparse(cat(densemata, otherdense; dims=(1,2)))
@test !issparse(cat(otherdense, densemata; dims=(1,2)))
end
end
end
@testset "vcat of Vectors with SparseVectors should yield SparseVector (#22225)" begin
@test isa((@inferred vcat(Float64[], spzeros(1))), SparseVector)
end
end # module TestSpecial
|