1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520
|
# This file is a part of Julia. License is MIT: https://julialang.org/license
module TestSymmetric
using Test, LinearAlgebra, SparseArrays, Random
Random.seed!(101)
@testset "Pauli σ-matrices: $σ" for σ in map(Hermitian,
Any[ [1 0; 0 1], [0 1; 1 0], [0 -im; im 0], [1 0; 0 -1] ])
@test ishermitian(σ)
end
@testset "Hermitian matrix exponential/log" begin
A1 = randn(4,4) + im*randn(4,4)
A2 = A1 + A1'
@test exp(A2) ≈ exp(Hermitian(A2))
@test log(A2) ≈ log(Hermitian(A2))
A3 = A1 * A1' # posdef
@test exp(A3) ≈ exp(Hermitian(A3))
@test log(A3) ≈ log(Hermitian(A3))
A1 = randn(4,4)
A3 = A1 * A1'
A4 = A1 + transpose(A1)
@test exp(A4) ≈ exp(Symmetric(A4))
@test log(A3) ≈ log(Symmetric(A3))
@test log(A3) ≈ log(Hermitian(A3))
end
@testset "Core functionality" begin
n = 10
areal = randn(n,n)/2
aimg = randn(n,n)/2
@testset for eltya in (Float32, Float64, ComplexF32, ComplexF64, BigFloat, Int)
a = eltya == Int ? rand(1:7, n, n) : convert(Matrix{eltya}, eltya <: Complex ? complex.(areal, aimg) : areal)
asym = transpose(a) + a # symmetric indefinite
aherm = a' + a # Hermitian indefinite
apos = a' * a # Hermitian positive definite
aposs = apos + transpose(apos) # Symmetric positive definite
ε = εa = eps(abs(float(one(eltya))))
x = randn(n)
y = randn(n)
b = randn(n,n)/2
x = eltya == Int ? rand(1:7, n) : convert(Vector{eltya}, eltya <: Complex ? complex.(x, zeros(n)) : x)
y = eltya == Int ? rand(1:7, n) : convert(Vector{eltya}, eltya <: Complex ? complex.(y, zeros(n)) : y)
b = eltya == Int ? rand(1:7, n, n) : convert(Matrix{eltya}, eltya <: Complex ? complex.(b, zeros(n,n)) : b)
@testset "basic ops" begin
@testset "constructor" begin
@test Symmetric(Symmetric(asym, :U)) === Symmetric(asym, :U)
@test Hermitian(Hermitian(aherm, :U)) === Hermitian(aherm, :U)
@test Symmetric(Symmetric(asym, :U), :U) === Symmetric(asym, :U)
@test Hermitian(Hermitian(aherm, :U), :U) === Hermitian(aherm, :U)
@test_throws ArgumentError Symmetric(Symmetric(asym, :U), :L)
@test_throws ArgumentError Hermitian(Hermitian(aherm, :U), :L)
# mixed cases with Hermitian/Symmetric
if eltya <: Real
@test Symmetric(Hermitian(aherm, :U)) === Symmetric(aherm, :U)
@test Hermitian(Symmetric(asym, :U)) === Hermitian(asym, :U)
@test Symmetric(Hermitian(aherm, :U), :U) === Symmetric(aherm, :U)
@test Hermitian(Symmetric(asym, :U), :U) === Hermitian(asym, :U)
@test_throws ArgumentError Symmetric(Hermitian(aherm, :U), :L)
@test_throws ArgumentError Hermitian(Symmetric(aherm, :U), :L)
end
end
@testset "similar" begin
@test isa(similar(Symmetric(asym)), Symmetric{eltya})
@test isa(similar(Hermitian(aherm)), Hermitian{eltya})
@test isa(similar(Symmetric(asym), Int), Symmetric{Int})
@test isa(similar(Hermitian(aherm), Int), Hermitian{Int})
@test isa(similar(Symmetric(asym), (3,2)), Matrix{eltya})
@test isa(similar(Hermitian(aherm), (3,2)), Matrix{eltya})
@test isa(similar(Symmetric(asym), Int, (3,2)), Matrix{Int})
@test isa(similar(Hermitian(aherm), Int, (3,2)), Matrix{Int})
end
@testset "Array/Matrix constructor from Symmetric/Hermitian" begin
@test asym == Matrix(Symmetric(asym)) == Array(Symmetric(asym))
@test aherm == Matrix(Hermitian(aherm)) == Array(Hermitian(aherm))
end
@testset "parent" begin
@test asym === parent(Symmetric(asym))
@test aherm === parent(Hermitian(aherm))
end
# Unary minus for Symmetric/Hermitian matrices
@testset "Unary minus for Symmetric/Hermitian matrices" begin
@test (-Symmetric(asym))::typeof(Symmetric(asym)) == -asym
@test (-Hermitian(aherm))::typeof(Hermitian(aherm)) == -aherm
end
@testset "getindex and unsafe_getindex" begin
@test aherm[1,1] == Hermitian(aherm)[1,1]
@test asym[1,1] == Symmetric(asym)[1,1]
@test Symmetric(asym)[1:2,1:2] == asym[1:2,1:2]
@test Hermitian(aherm)[1:2,1:2] == aherm[1:2,1:2]
end
@testset "conversion" begin
@test Symmetric(asym) == convert(Symmetric,Symmetric(asym))
if eltya <: Real
typs = [Float16,Float32,Float64]
for typ in typs
@test Symmetric(convert(Matrix{typ},asym)) == convert(Symmetric{typ,Matrix{typ}},Symmetric(asym))
end
end
if eltya <: Complex
typs = [ComplexF32,ComplexF64]
for typ in typs
@test Symmetric(convert(Matrix{typ},asym)) == convert(Symmetric{typ,Matrix{typ}},Symmetric(asym))
@test Hermitian(convert(Matrix{typ},aherm)) == convert(Hermitian{typ,Matrix{typ}},Hermitian(aherm))
end
end
end
@testset "issymmetric, ishermitian" begin
@test issymmetric(Symmetric(asym))
@test ishermitian(Hermitian(aherm))
if eltya <: Real
@test ishermitian(Symmetric(asym))
@test issymmetric(Hermitian(asym))
elseif eltya <: Complex
# test that zero imaginary component is
# handled properly
@test ishermitian(Symmetric(b + b'))
end
end
@testset "tril/triu" begin
for (op, validks) in (
(triu, (-n + 1):(n + 1)),
(tril, (-n - 1):(n - 1)) )
for di in validks
@test op(Symmetric(asym), di) == op(asym, di)
@test op(Hermitian(aherm), di) == op(aherm, di)
@test op(Symmetric(asym, :L), di) == op(asym, di)
@test op(Hermitian(aherm, :L), di) == op(aherm, di)
end
end
end
@testset "transpose, adjoint" begin
S = Symmetric(asym)
H = Hermitian(aherm)
@test transpose(S) === S == asym
@test adjoint(H) === H == aherm
if eltya <: Real
@test adjoint(S) === S == asym
@test transpose(H) === H == aherm
else
@test adjoint(S) == Symmetric(conj(asym))
@test transpose(H) == Hermitian(copy(transpose(aherm)))
end
end
end
@testset "linalg unary ops" begin
@testset "tr" begin
@test tr(asym) == tr(Symmetric(asym))
@test tr(aherm) == tr(Hermitian(aherm))
end
@testset "isposdef[!]" begin
@test isposdef(Symmetric(asym)) == isposdef(asym)
@test isposdef(Symmetric(aposs)) == isposdef(aposs) == true
@test isposdef(Hermitian(aherm)) == isposdef(aherm)
@test isposdef(Hermitian(apos)) == isposdef(apos) == true
if eltya != Int #chol! won't work with Int
@test isposdef!(Symmetric(copy(asym))) == isposdef(asym)
@test isposdef!(Symmetric(copy(aposs))) == isposdef(aposs) == true
@test isposdef!(Hermitian(copy(aherm))) == isposdef(aherm)
@test isposdef!(Hermitian(copy(apos))) == isposdef(apos) == true
end
end
@testset "$f" for f in (det, logdet, logabsdet)
for uplo in (:U, :L)
@test all(f(apos) .≈ f(Hermitian(apos, uplo)))
@test all(f(aposs) .≈ f(Symmetric(aposs, uplo)))
if f != logdet
@test all(f(aherm) .≈ f(Hermitian(aherm, uplo)))
@test all(f(asym) .≈ f(Symmetric(asym, uplo)))
end
end
end
@testset "inversion" begin
for uplo in (:U, :L)
@test inv(Symmetric(asym, uplo))::Symmetric ≈ inv(asym)
@test inv(Hermitian(aherm, uplo))::Hermitian ≈ inv(aherm)
@test inv(Symmetric(a, uplo))::Symmetric ≈ inv(Matrix(Symmetric(a, uplo)))
if eltya <: Real
@test inv(Hermitian(a, uplo))::Hermitian ≈ inv(Matrix(Hermitian(a, uplo)))
end
end
if eltya <: LinearAlgebra.BlasComplex
@testset "inverse edge case with complex Hermitian" begin
# Hermitian matrix, where inv(lu(A)) generates non-real diagonal elements
for T in (ComplexF32, ComplexF64)
A = T[0.650488+0.0im 0.826686+0.667447im; 0.826686-0.667447im 1.81707+0.0im]
H = Hermitian(A)
@test inv(H) ≈ inv(A)
@test ishermitian(Matrix(inv(H)))
end
end
end
end
# Revisit when implemented in julia
if eltya != BigFloat
@testset "cond" begin
if eltya <: Real #svdvals! has no method for Symmetric{Complex}
@test cond(Symmetric(asym)) ≈ cond(asym)
end
@test cond(Hermitian(aherm)) ≈ cond(aherm)
end
@testset "symmetric eigendecomposition" begin
if eltya <: Real # the eigenvalues are only real and ordered for Hermitian matrices
d, v = eigen(asym)
@test asym*v[:,1] ≈ d[1]*v[:,1]
@test v*Diagonal(d)*transpose(v) ≈ asym
@test isequal(eigvals(asym[1]), eigvals(asym[1:1,1:1])[1])
@test abs.(eigen(Symmetric(asym), 1:2).vectors'v[:,1:2]) ≈ Matrix(I, 2, 2)
@test abs.(eigen(Symmetric(asym), d[1] - 1, (d[2] + d[3])/2).vectors'v[:,1:2]) ≈ Matrix(I, 2, 2)
@test eigvals(Symmetric(asym), 1:2) ≈ d[1:2]
@test eigvals(Symmetric(asym), d[1] - 1, (d[2] + d[3])/2) ≈ d[1:2]
# eigen doesn't support Symmetric{Complex}
@test Matrix(eigen(asym)) ≈ asym
@test eigvecs(Symmetric(asym)) ≈ eigvecs(asym)
end
d, v = eigen(aherm)
@test aherm*v[:,1] ≈ d[1]*v[:,1]
@test v*Diagonal(d)*v' ≈ aherm
@test isequal(eigvals(aherm[1]), eigvals(aherm[1:1,1:1])[1])
@test abs.(eigen(Hermitian(aherm), 1:2).vectors'v[:,1:2]) ≈ Matrix(I, 2, 2)
@test abs.(eigen(Hermitian(aherm), d[1] - 1, (d[2] + d[3])/2).vectors'v[:,1:2]) ≈ Matrix(I, 2, 2)
@test eigvals(Hermitian(aherm), 1:2) ≈ d[1:2]
@test eigvals(Hermitian(aherm), d[1] - 1, (d[2] + d[3])/2) ≈ d[1:2]
@test Matrix(eigen(aherm)) ≈ aherm
@test eigvecs(Hermitian(aherm)) ≈ eigvecs(aherm)
# relation to svdvals
if eltya <: Real #svdvals! has no method for Symmetric{Complex}
@test sum(sort(abs.(eigvals(Symmetric(asym))))) == sum(sort(svdvals(Symmetric(asym))))
end
@test sum(sort(abs.(eigvals(Hermitian(aherm))))) == sum(sort(svdvals(Hermitian(aherm))))
end
@testset "rank" begin
let A = a[:,1:5]*a[:,1:5]'
# Make sure A is Hermitian even in the presence of rounding error
# xianyi/OpenBLAS#729
A = (A + A') / 2
@test rank(A) == rank(Hermitian(A))
end
end
@testset "pow" begin
# Integer power
@test (asym)^2 ≈ (Symmetric(asym)^2)::Symmetric
@test (asym)^-2 ≈ (Symmetric(asym)^-2)::Symmetric
@test (aposs)^2 ≈ (Symmetric(aposs)^2)::Symmetric
@test (aherm)^2 ≈ (Hermitian(aherm)^2)::Hermitian
@test (aherm)^-2 ≈ (Hermitian(aherm)^-2)::Hermitian
@test (apos)^2 ≈ (Hermitian(apos)^2)::Hermitian
# integer floating point power
@test (asym)^2.0 ≈ (Symmetric(asym)^2.0)::Symmetric
@test (asym)^-2.0 ≈ (Symmetric(asym)^-2.0)::Symmetric
@test (aposs)^2.0 ≈ (Symmetric(aposs)^2.0)::Symmetric
@test (aherm)^2.0 ≈ (Hermitian(aherm)^2.0)::Hermitian
@test (aherm)^-2.0 ≈ (Hermitian(aherm)^-2.0)::Hermitian
@test (apos)^2.0 ≈ (Hermitian(apos)^2.0)::Hermitian
# non-integer floating point power
@test (asym)^2.5 ≈ (Symmetric(asym)^2.5)::Symmetric
@test (asym)^-2.5 ≈ (Symmetric(asym)^-2.5)::Symmetric
@test (aposs)^2.5 ≈ (Symmetric(aposs)^2.5)::Symmetric
@test (aherm)^2.5 ≈ (Hermitian(aherm)^2.5)#::Hermitian
@test (aherm)^-2.5 ≈ (Hermitian(aherm)^-2.5)#::Hermitian
@test (apos)^2.5 ≈ (Hermitian(apos)^2.5)::Hermitian
end
end
end
@testset "linalg binary ops" begin
@testset "mat * vec" begin
@test Symmetric(asym)*x+y ≈ asym*x+y
# testing fallbacks for transpose-vector * transpose(SymHerm)
xadj = transpose(x)
@test xadj * transpose(Symmetric(asym)) ≈ xadj * asym
@test x' * Symmetric(asym) ≈ x' * asym
@test Hermitian(aherm)*x+y ≈ aherm*x+y
# testing fallbacks for adjoint-vector * SymHerm'
xadj = x'
@test x' * Hermitian(aherm) ≈ x' * aherm
@test xadj * Hermitian(aherm)' ≈ xadj * aherm
end
@testset "mat * mat" begin
C = zeros(eltya,n,n)
@test Hermitian(aherm) * a ≈ aherm * a
@test a * Hermitian(aherm) ≈ a * aherm
@test Hermitian(aherm) * Hermitian(aherm) ≈ aherm*aherm
@test_throws DimensionMismatch Hermitian(aherm) * Vector{eltya}(undef, n+1)
LinearAlgebra.mul!(C,a,Hermitian(aherm))
@test C ≈ a*aherm
@test Symmetric(asym) * Symmetric(asym) ≈ asym*asym
@test Symmetric(asym) * a ≈ asym * a
@test a * Symmetric(asym) ≈ a * asym
@test_throws DimensionMismatch Symmetric(asym) * Vector{eltya}(undef, n+1)
LinearAlgebra.mul!(C,a,Symmetric(asym))
@test C ≈ a*asym
tri_b = UpperTriangular(triu(b))
@test Array(transpose(Hermitian(aherm)) * tri_b) ≈ transpose(aherm) * Array(tri_b)
@test Array(tri_b * transpose(Hermitian(aherm))) ≈ Array(tri_b) * transpose(aherm)
@test Array(Hermitian(aherm)' * tri_b) ≈ aherm' * Array(tri_b)
@test Array(tri_b * Hermitian(aherm)') ≈ Array(tri_b) * aherm'
@test Array(transpose(Symmetric(asym)) * tri_b) ≈ transpose(asym) * Array(tri_b)
@test Array(tri_b * transpose(Symmetric(asym))) ≈ Array(tri_b) * transpose(asym)
@test Array(Symmetric(asym)' * tri_b) ≈ asym' * Array(tri_b)
@test Array(tri_b * Symmetric(asym)') ≈ Array(tri_b) * asym'
end
@testset "solver" begin
@test Hermitian(aherm)\x ≈ aherm\x
@test Hermitian(aherm)\b ≈ aherm\b
@test Symmetric(asym)\x ≈ asym\x
@test Symmetric(asym)\b ≈ asym\b
end
end
end
end
#Issue #7647: test xsyevr, xheevr, xstevr drivers.
@testset "Eigenvalues in interval for $(typeof(Mi7647))" for Mi7647 in
(Symmetric(diagm(0 => 1.0:3.0)),
Hermitian(diagm(0 => 1.0:3.0)),
Hermitian(diagm(0 => complex(1.0:3.0))),
SymTridiagonal([1.0:3.0;], zeros(2)))
@test eigmin(Mi7647) == eigvals(Mi7647, 0.5, 1.5)[1] == 1.0
@test eigmax(Mi7647) == eigvals(Mi7647, 2.5, 3.5)[1] == 3.0
@test eigvals(Mi7647) == eigvals(Mi7647, 0.5, 3.5) == [1.0:3.0;]
end
@testset "Hermitian wrapper ignores imaginary parts on diagonal" begin
A = [1.0+im 2.0; 2.0 0.0]
@test !ishermitian(A)
@test Hermitian(A)[1,1] == 1
end
@testset "Issue #7933" begin
A7933 = [1 2; 3 4]
B7933 = copy(A7933)
C7933 = Matrix(Symmetric(A7933))
@test A7933 == B7933
end
@testset "Issues #8057 and #8058. f=$f, A=$A" for f in
(eigen, eigvals),
A in (Symmetric([0 1; 1 0]), Hermitian([0 im; -im 0]))
@test_throws ArgumentError f(A, 3, 2)
@test_throws ArgumentError f(A, 1:4)
end
@testset "Ignore imaginary part of Hermitian diagonal" begin
A = [1.0+im 2.0; 2.0 0.0]
@test !ishermitian(A)
@test diag(Hermitian(A)) == real(diag(A))
end
@testset "Issue #17780" begin
a = randn(2,2)
a = a'a
b = complex.(a,a)
c = Symmetric(b)
@test conj(c) == conj(Array(c))
cc = copy(c)
@test conj!(c) == conj(Array(cc))
c = Hermitian(b + b')
@test conj(c) == conj(Array(c))
cc = copy(c)
@test conj!(c) == conj(Array(cc))
end
@testset "Issue # 19225" begin
X = [1 -1; -1 1]
for T in (Symmetric, Hermitian)
Y = T(copy(X))
_Y = similar(Y)
copyto!(_Y, Y)
@test _Y == Y
W = T(copy(X), :L)
copyto!(W, Y)
@test W.data == Y.data
@test W.uplo != Y.uplo
W[1,1] = 4
@test W == T([4 -1; -1 1])
@test_throws ArgumentError (W[1,2] = 2)
@test Y + I == T([2 -1; -1 2])
@test Y - I == T([0 -1; -1 0])
@test Y * I == Y
@test Y .+ 1 == T([2 0; 0 2])
@test Y .- 1 == T([0 -2; -2 0])
@test Y * 2 == T([2 -2; -2 2])
@test Y / 1 == Y
@test T([true false; false true]) .+ true == T([2 1; 1 2])
end
@test_throws ArgumentError Hermitian(X) + 2im*I
@test_throws ArgumentError Hermitian(X) - 2im*I
end
@testset "Issue #21981" begin
B = complex(rand(4,4))
B[4,1] += 1im;
@test ishermitian(Symmetric(B, :U))
@test issymmetric(Hermitian(B, :U))
B[4,1] = real(B[4,1])
B[1,4] += 1im
@test ishermitian(Symmetric(B, :L))
@test issymmetric(Hermitian(B, :L))
end
@testset "$HS solver with $RHS RHS - $T" for HS in (Hermitian, Symmetric),
RHS in (Hermitian, Symmetric, Diagonal, UpperTriangular, LowerTriangular),
T in (Float64, ComplexF64)
D = rand(T, 10, 10); D = D'D
A = HS(D)
B = RHS(D)
@test A\B ≈ Matrix(A)\Matrix(B)
end
@testset "inversion of Hilbert matrix" begin
for T in (Float64, ComplexF64)
H = T[1/(i + j - 1) for i in 1:8, j in 1:8]
@test norm(inv(Symmetric(H))*(H*fill(1., 8)) .- 1) ≈ 0 atol = 1e-5
@test norm(inv(Hermitian(H))*(H*fill(1., 8)) .- 1) ≈ 0 atol = 1e-5
end
end
@testset "similar should preserve underlying storage type and uplo flag" begin
m, n = 4, 3
sparsemat = sprand(m, m, 0.5)
for SymType in (Symmetric, Hermitian)
symsparsemat = SymType(sparsemat)
@test isa(similar(symsparsemat), typeof(symsparsemat))
@test similar(symsparsemat).uplo == symsparsemat.uplo
@test isa(similar(symsparsemat, Float32), SymType{Float32,<:SparseMatrixCSC{Float32}})
@test similar(symsparsemat, Float32).uplo == symsparsemat.uplo
@test isa(similar(symsparsemat, (n, n)), typeof(sparsemat))
@test isa(similar(symsparsemat, Float32, (n, n)), SparseMatrixCSC{Float32})
end
end
@testset "#24572: eltype(A::HermOrSym) === eltype(parent(A))" begin
A = rand(Float32, 3, 3)
@test_throws TypeError Symmetric{Float64,Matrix{Float32}}(A, 'U')
@test_throws TypeError Hermitian{Float64,Matrix{Float32}}(A, 'U')
end
@testset "fill[stored]!" begin
for uplo in (:U, :L)
# Hermitian
A = Hermitian(fill(1.0+0im, 2, 2), uplo)
@test fill!(A, 2) == fill(2, 2, 2)
@test A.data == (uplo == :U ? [2 2; 1.0+0im 2] : [2 1.0+0im; 2 2])
@test_throws ArgumentError fill!(A, 2+im)
# Symmetric
A = Symmetric(fill(1.0+im, 2, 2), uplo)
@test fill!(A, 2) == fill(2, 2, 2)
@test A.data == (uplo == :U ? [2 2; 1.0+im 2] : [2 1.0+im; 2 2])
end
end
@testset "#25625 recursive transposition" begin
A = Matrix{Matrix{Int}}(undef, 2, 2)
A[1,1] = [1 2; 2 3]
A[1,2] = [4 5 6; 7 8 9]
A[2,1] = [4 7; 5 8; 6 9]
A[2,2] = [1 2; 3 4]
for uplo in (:U, :L)
S = Symmetric(A, uplo)
@test S[1,1] == A[1,1]
@test S[1,2] == transpose(S[2,1]) == A[1,2]
@test S[2,2] == Symmetric(A[2,2], uplo)
@test S == transpose(S) == Matrix(S) == Matrix(transpose(S)) == transpose(Matrix(S))
end
B = Matrix{Matrix{Complex{Int}}}(undef, 2, 2)
B[1,1] = [1 2+im; 2-im 3]
B[1,2] = [4 5+1im 6-2im; 7+3im 8-4im 9+5im]
B[2,1] = [4 7-3im; 5-1im 8+4im; 6+2im 9-5im]
B[2,2] = [1+1im 2+2im; 3-3im 4-2im]
for uplo in (:U, :L)
H = Hermitian(B, uplo)
@test H[1,1] == Hermitian(B[1,1], uplo)
@test H[1,2] == adjoint(H[2,1]) == B[1,2]
@test H[2,1] == adjoint(H[1,2]) == B[2,1]
@test H[2,2] == Hermitian(B[2,2], uplo)
@test H == adjoint(H) == Matrix(H) == Matrix(adjoint(H)) == adjoint(Matrix(H))
end
end
@testset "getindex of diagonal element (#25972)" begin
A = rand(ComplexF64, 2, 2)
@test Hermitian(A, :U)[1,1] == Hermitian(A, :L)[1,1] == real(A[1,1])
end
end # module TestSymmetric
|