File: sparse.jl

package info (click to toggle)
julia 1.0.3%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 49,452 kB
  • sloc: lisp: 236,453; ansic: 55,579; cpp: 25,603; makefile: 1,685; pascal: 1,130; sh: 956; asm: 86; xml: 76
file content (2310 lines) | stat: -rw-r--r-- 89,052 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
# This file is a part of Julia. License is MIT: https://julialang.org/license

module SparseTests

using Test
using SparseArrays
using LinearAlgebra
using Base.Printf: @printf
using Random
using Test: guardseed
using InteractiveUtils: @which

@testset "issparse" begin
    @test issparse(sparse(fill(1,5,5)))
    @test !issparse(fill(1,5,5))
end

@testset "iszero specialization for SparseMatrixCSC" begin
    @test !iszero(sparse(I, 3, 3))                  # test failure
    @test iszero(spzeros(3, 3))                     # test success with no stored entries
    S = sparse(I, 3, 3)
    S[:] .= 0
    @test iszero(S)  # test success with stored zeros via broadcasting
    S = sparse(I, 3, 3)
    fill!(S, 0)
    @test iszero(S)  # test success with stored zeros via fill!
    @test iszero(SparseMatrixCSC(2, 2, [1,2,3], [1,2], [0,0,1])) # test success with nonzeros beyond data range
end
@testset "isone specialization for SparseMatrixCSC" begin
    @test isone(sparse(I, 3, 3))    # test success
    @test !isone(sparse(I, 3, 4))   # test failure for non-square matrix
    @test !isone(spzeros(3, 3))     # test failure for too few stored entries
    @test !isone(sparse(2I, 3, 3))  # test failure for non-one diagonal entries
    @test !isone(sparse(Bidiagonal(fill(1, 3), fill(1, 2), :U))) # test failure for non-zero off-diag entries
end

@testset "indtype" begin
    @test SparseArrays.indtype(sparse(Int8[1,1],Int8[1,1],[1,1])) == Int8
end

@testset "sparse matrix construction" begin
    @test (A = fill(1.0+im,5,5); isequal(Array(sparse(A)), A))
    @test_throws ArgumentError sparse([1,2,3], [1,2], [1,2,3], 3, 3)
    @test_throws ArgumentError sparse([1,2,3], [1,2,3], [1,2], 3, 3)
    @test_throws ArgumentError sparse([1,2,3], [1,2,3], [1,2,3], 0, 1)
    @test_throws ArgumentError sparse([1,2,3], [1,2,3], [1,2,3], 1, 0)
    @test_throws ArgumentError sparse([1,2,4], [1,2,3], [1,2,3], 3, 3)
    @test_throws ArgumentError sparse([1,2,3], [1,2,4], [1,2,3], 3, 3)
    @test isequal(sparse(Int[], Int[], Int[], 0, 0), SparseMatrixCSC(0, 0, Int[1], Int[], Int[]))
    @test sparse(Any[1,2,3], Any[1,2,3], Any[1,1,1]) == sparse([1,2,3], [1,2,3], [1,1,1])
    @test sparse(Any[1,2,3], Any[1,2,3], Any[1,1,1], 5, 4) == sparse([1,2,3], [1,2,3], [1,1,1], 5, 4)
end

@testset "SparseMatrixCSC construction from UniformScaling" begin
    @test_throws ArgumentError SparseMatrixCSC(I, -1, 3)
    @test_throws ArgumentError SparseMatrixCSC(I, 3, -1)
    @test SparseMatrixCSC(2I, 3, 3)::SparseMatrixCSC{Int,Int} == Matrix(2I, 3, 3)
    @test SparseMatrixCSC(2I, 3, 4)::SparseMatrixCSC{Int,Int} == Matrix(2I, 3, 4)
    @test SparseMatrixCSC(2I, 4, 3)::SparseMatrixCSC{Int,Int} == Matrix(2I, 4, 3)
    @test SparseMatrixCSC(2.0I, 3, 3)::SparseMatrixCSC{Float64,Int} == Matrix(2I, 3, 3)
    @test SparseMatrixCSC{Real}(2I, 3, 3)::SparseMatrixCSC{Real,Int} == Matrix(2I, 3, 3)
    @test SparseMatrixCSC{Float64}(2I, 3, 3)::SparseMatrixCSC{Float64,Int} == Matrix(2I, 3, 3)
    @test SparseMatrixCSC{Float64,Int32}(2I, 3, 3)::SparseMatrixCSC{Float64,Int32} == Matrix(2I, 3, 3)
    @test SparseMatrixCSC{Float64,Int32}(0I, 3, 3)::SparseMatrixCSC{Float64,Int32} == Matrix(0I, 3, 3)
end
@testset "sparse(S::UniformScaling, shape...) convenience constructors" begin
    # we exercise these methods only lightly as these methods call the SparseMatrixCSC
    # constructor methods well-exercised by the immediately preceding testset
    @test sparse(2I, 3, 4)::SparseMatrixCSC{Int,Int} == Matrix(2I, 3, 4)
    @test sparse(2I, (3, 4))::SparseMatrixCSC{Int,Int} == Matrix(2I, 3, 4)
end

se33 = SparseMatrixCSC{Float64}(I, 3, 3)
do33 = fill(1.,3)

@testset "sparse binary operations" begin
    @test isequal(se33 * se33, se33)

    @test Array(se33 + convert(SparseMatrixCSC{Float32,Int32}, se33)) == Matrix(2I, 3, 3)
    @test Array(se33 * convert(SparseMatrixCSC{Float32,Int32}, se33)) == Matrix(I, 3, 3)

    @testset "shape checks for sparse elementwise binary operations equivalent to map" begin
        sqrfloatmat, colfloatmat = sprand(4, 4, 0.5), sprand(4, 1, 0.5)
        @test_throws DimensionMismatch (+)(sqrfloatmat, colfloatmat)
        @test_throws DimensionMismatch (-)(sqrfloatmat, colfloatmat)
        @test_throws DimensionMismatch map(min, sqrfloatmat, colfloatmat)
        @test_throws DimensionMismatch map(max, sqrfloatmat, colfloatmat)
        sqrboolmat, colboolmat = sprand(Bool, 4, 4, 0.5), sprand(Bool, 4, 1, 0.5)
        @test_throws DimensionMismatch map(&, sqrboolmat, colboolmat)
        @test_throws DimensionMismatch map(|, sqrboolmat, colboolmat)
        @test_throws DimensionMismatch map(xor, sqrboolmat, colboolmat)
    end
end

@testset "concatenation tests" begin
    sp33 = sparse(1.0I, 3, 3)

    @testset "horizontal concatenation" begin
        @test [se33 se33] == [Array(se33) Array(se33)]
        @test length(([sp33 0I]).nzval) == 3
    end

    @testset "vertical concatenation" begin
        @test [se33; se33] == [Array(se33); Array(se33)]
        se33_32bit = convert(SparseMatrixCSC{Float32,Int32}, se33)
        @test [se33; se33_32bit] == [Array(se33); Array(se33_32bit)]
        @test length(([sp33; 0I]).nzval) == 3
    end

    se44 = sparse(1.0I, 4, 4)
    sz42 = spzeros(4, 2)
    sz41 = spzeros(4, 1)
    sz34 = spzeros(3, 4)
    se77 = sparse(1.0I, 7, 7)
    @testset "h+v concatenation" begin
        @test all([se44 sz42 sz41; sz34 se33] == se77)
        @test length(([sp33 0I; 1I 0I]).nzval) == 6
    end

    @testset "blockdiag concatenation" begin
        @test blockdiag(se33, se33) == sparse(1:6,1:6,fill(1.,6))
        @test blockdiag() == spzeros(0, 0)
        @test nnz(blockdiag()) == 0
    end

    @testset "concatenation promotion" begin
        sz41_f32 = spzeros(Float32, 4, 1)
        se33_i32 = sparse(Int32(1)I, 3, 3)
        @test all([se44 sz42 sz41_f32; sz34 se33_i32] == se77)
    end

    @testset "mixed sparse-dense concatenation" begin
        sz33 = spzeros(3, 3)
        de33 = Matrix(1.0I, 3, 3)
        @test  all([se33 de33; sz33 se33] == Array([se33 se33; sz33 se33 ]))
    end

    # check splicing + concatenation on random instances, with nested vcat and also side-checks sparse ref
    @testset "splicing + concatenation on random instances" begin
        for i = 1 : 10
            a = sprand(5, 4, 0.5)
            @test all([a[1:2,1:2] a[1:2,3:4]; a[3:5,1] [a[3:4,2:4]; a[5:5,2:4]]] == a)
        end
    end
end

let
    a116 = copy(reshape(1:16, 4, 4))
    s116 = sparse(a116)

    @testset "sparse ref" begin
        p = [4, 1, 2, 3, 2]
        @test Array(s116[p,:]) == a116[p,:]
        @test Array(s116[:,p]) == a116[:,p]
        @test Array(s116[p,p]) == a116[p,p]
    end

    @testset "sparse assignment" begin
        p = [4, 1, 3]
        a116[p, p] .= -1
        s116[p, p] .= -1
        @test a116 == s116

        p = [2, 1, 4]
        a116[p, p] = reshape(1:9, 3, 3)
        s116[p, p] = reshape(1:9, 3, 3)
        @test a116 == s116
    end
end

@testset "dropdims" begin
    for i = 1:5
        am = sprand(20, 1, 0.2)
        av = dropdims(am, dims=2)
        @test ndims(av) == 1
        @test all(av.==am)
        am = sprand(1, 20, 0.2)
        av = dropdims(am, dims=1)
        @test ndims(av) == 1
        @test all(av' .== am)
    end
end

@testset "matrix-vector multiplication (non-square)" begin
    for i = 1:5
        a = sprand(10, 5, 0.5)
        b = rand(5)
        @test maximum(abs.(a*b - Array(a)*b)) < 100*eps()
    end
end

@testset "sparse matrix * BitArray" begin
    A = sprand(5,5,0.2)
    B = trues(5)
    @test A*B ≈ Array(A)*B
    B = trues(5,5)
    @test A*B ≈ Array(A)*B
    @test B*A ≈ B*Array(A)
end

@testset "complex matrix-vector multiplication and left-division" begin
    if Base.USE_GPL_LIBS
    for i = 1:5
        a = I + 0.1*sprandn(5, 5, 0.2)
        b = randn(5,3) + im*randn(5,3)
        c = randn(5) + im*randn(5)
        d = randn(5) + im*randn(5)
        α = rand(ComplexF64)
        β = rand(ComplexF64)
        @test (maximum(abs.(a*b - Array(a)*b)) < 100*eps())
        @test (maximum(abs.(mul!(similar(b), a, b) - Array(a)*b)) < 100*eps()) # for compatibility with present matmul API. Should go away eventually.
        @test (maximum(abs.(mul!(similar(c), a, c) - Array(a)*c)) < 100*eps()) # for compatibility with present matmul API. Should go away eventually.
        @test (maximum(abs.(mul!(similar(b), transpose(a), b) - transpose(Array(a))*b)) < 100*eps()) # for compatibility with present matmul API. Should go away eventually.
        @test (maximum(abs.(mul!(similar(c), transpose(a), c) - transpose(Array(a))*c)) < 100*eps()) # for compatibility with present matmul API. Should go away eventually.
        @test (maximum(abs.(a'b - Array(a)'b)) < 100*eps())
        @test (maximum(abs.(transpose(a)*b - transpose(Array(a))*b)) < 100*eps())
        @test (maximum(abs.(a\b - Array(a)\b)) < 1000*eps())
        @test (maximum(abs.(a'\b - Array(a')\b)) < 1000*eps())
        @test (maximum(abs.(transpose(a)\b - Array(transpose(a))\b)) < 1000*eps())
        @test (maximum(abs.((a'*c + d) - (Array(a)'*c + d))) < 1000*eps())
        @test (maximum(abs.((α*transpose(a)*c + β*d) - (α*transpose(Array(a))*c + β*d))) < 1000*eps())
        @test (maximum(abs.((transpose(a)*c + d) - (transpose(Array(a))*c + d))) < 1000*eps())
        c = randn(6) + im*randn(6)
        @test_throws DimensionMismatch α*transpose(a)*c + β*c
        @test_throws DimensionMismatch α*transpose(a)*fill(1.,5) + β*c

        a = I + 0.1*sprandn(5, 5, 0.2) + 0.1*im*sprandn(5, 5, 0.2)
        b = randn(5,3)
        @test (maximum(abs.(a*b - Array(a)*b)) < 100*eps())
        @test (maximum(abs.(a'b - Array(a)'b)) < 100*eps())
        @test (maximum(abs.(transpose(a)*b - transpose(Array(a))*b)) < 100*eps())
        @test (maximum(abs.(a\b - Array(a)\b)) < 1000*eps())
        @test (maximum(abs.(a'\b - Array(a')\b)) < 1000*eps())
        @test (maximum(abs.(transpose(a)\b - Array(transpose(a))\b)) < 1000*eps())

        a = I + tril(0.1*sprandn(5, 5, 0.2))
        b = randn(5,3) + im*randn(5,3)
        @test (maximum(abs.(a*b - Array(a)*b)) < 100*eps())
        @test (maximum(abs.(a'b - Array(a)'b)) < 100*eps())
        @test (maximum(abs.(transpose(a)*b - transpose(Array(a))*b)) < 100*eps())
        @test (maximum(abs.(a\b - Array(a)\b)) < 1000*eps())
        @test (maximum(abs.(a'\b - Array(a')\b)) < 1000*eps())
        @test (maximum(abs.(transpose(a)\b - Array(transpose(a))\b)) < 1000*eps())

        a = I + tril(0.1*sprandn(5, 5, 0.2) + 0.1*im*sprandn(5, 5, 0.2))
        b = randn(5,3)
        @test (maximum(abs.(a*b - Array(a)*b)) < 100*eps())
        @test (maximum(abs.(a'b - Array(a)'b)) < 100*eps())
        @test (maximum(abs.(transpose(a)*b - transpose(Array(a))*b)) < 100*eps())
        @test (maximum(abs.(a\b - Array(a)\b)) < 1000*eps())
        @test (maximum(abs.(a'\b - Array(a')\b)) < 1000*eps())
        @test (maximum(abs.(transpose(a)\b - Array(transpose(a))\b)) < 1000*eps())

        a = I + triu(0.1*sprandn(5, 5, 0.2))
        b = randn(5,3) + im*randn(5,3)
        @test (maximum(abs.(a*b - Array(a)*b)) < 100*eps())
        @test (maximum(abs.(a'b - Array(a)'b)) < 100*eps())
        @test (maximum(abs.(transpose(a)*b - transpose(Array(a))*b)) < 100*eps())
        @test (maximum(abs.(a\b - Array(a)\b)) < 1000*eps())
        @test (maximum(abs.(a'\b - Array(a')\b)) < 1000*eps())
        @test (maximum(abs.(transpose(a)\b - Array(transpose(a))\b)) < 1000*eps())

        a = I + triu(0.1*sprandn(5, 5, 0.2) + 0.1*im*sprandn(5, 5, 0.2))
        b = randn(5,3)
        @test (maximum(abs.(a*b - Array(a)*b)) < 100*eps())
        @test (maximum(abs.(a'b - Array(a)'b)) < 100*eps())
        @test (maximum(abs.(transpose(a)*b - transpose(Array(a))*b)) < 100*eps())
        @test (maximum(abs.(a\b - Array(a)\b)) < 1000*eps())
        @test (maximum(abs.(a'\b - Array(a')\b)) < 1000*eps())
        @test (maximum(abs.(transpose(a)\b - Array(transpose(a))\b)) < 1000*eps())

        a = I + triu(0.1*sprandn(5, 5, 0.2))
        b = randn(5,3) + im*randn(5,3)
        @test (maximum(abs.(a*b - Array(a)*b)) < 100*eps())
        @test (maximum(abs.(a'b - Array(a)'b)) < 100*eps())
        @test (maximum(abs.(transpose(a)*b - transpose(Array(a))*b)) < 100*eps())
        @test (maximum(abs.(a\b - Array(a)\b)) < 1000*eps())
        @test (maximum(abs.(a'\b - Array(a')\b)) < 1000*eps())
        @test (maximum(abs.(transpose(a)\b - Array(transpose(a))\b)) < 1000*eps())

        # UpperTriangular/LowerTriangular solve
        a = UpperTriangular(I + triu(0.1*sprandn(5, 5, 0.2)))
        b = sprandn(5, 5, 0.2)
        @test (maximum(abs.(a\b - Array(a)\Array(b))) < 1000*eps())
        # test error throwing for bwdTrisolve
        @test_throws DimensionMismatch a\Matrix{Float64}(I, 6, 6)
        a = LowerTriangular(I + tril(0.1*sprandn(5, 5, 0.2)))
        b = sprandn(5, 5, 0.2)
        @test (maximum(abs.(a\b - Array(a)\Array(b))) < 1000*eps())
        # test error throwing for fwdTrisolve
        @test_throws DimensionMismatch a\Matrix{Float64}(I, 6, 6)



        a = sparse(Diagonal(randn(5) + im*randn(5)))
        b = randn(5,3)
        @test (maximum(abs.(a*b - Array(a)*b)) < 100*eps())
        @test (maximum(abs.(a'b - Array(a)'b)) < 100*eps())
        @test (maximum(abs.(transpose(a)*b - transpose(Array(a))*b)) < 100*eps())
        @test (maximum(abs.(a\b - Array(a)\b)) < 1000*eps())
        @test (maximum(abs.(a'\b - Array(a')\b)) < 1000*eps())
        @test (maximum(abs.(transpose(a)\b - Array(transpose(a))\b)) < 1000*eps())

        b = randn(5,3) + im*randn(5,3)
        @test (maximum(abs.(a*b - Array(a)*b)) < 100*eps())
        @test (maximum(abs.(a'b - Array(a)'b)) < 100*eps())
        @test (maximum(abs.(transpose(a)*b - transpose(Array(a))*b)) < 100*eps())
        @test (maximum(abs.(a\b - Array(a)\b)) < 1000*eps())
        @test (maximum(abs.(a'\b - Array(a')\b)) < 1000*eps())
        @test (maximum(abs.(transpose(a)\b - Array(transpose(a))\b)) < 1000*eps())
    end
    end
end

@testset "matrix multiplication" begin
    for i = 1:5
        a = sprand(10, 5, 0.7)
        b = sprand(5, 15, 0.3)
        @test maximum(abs.(a*b - Array(a)*Array(b))) < 100*eps()
        @test maximum(abs.(SparseArrays.spmatmul(a,b,sortindices=:sortcols) - Array(a)*Array(b))) < 100*eps()
        @test maximum(abs.(SparseArrays.spmatmul(a,b,sortindices=:doubletranspose) - Array(a)*Array(b))) < 100*eps()
        f = Diagonal(rand(5))
        @test Array(a*f) == Array(a)*f
        @test Array(f*b) == f*Array(b)
    end
end

@testset "kronecker product" begin
    for (m,n) in ((5,10), (13,8), (14,10))
        a = sprand(m, 5, 0.4); a_d = Matrix(a)
        b = sprand(n, 6, 0.3); b_d = Matrix(b)
        x = sprand(m, 0.4); x_d = Vector(x)
        y = sprand(n, 0.3); y_d = Vector(y)
        # mat ⊗ mat
        @test Array(kron(a, b)) == kron(a_d, b_d)
        @test Array(kron(a_d, b)) == kron(a_d, b_d)
        @test Array(kron(a, b_d)) == kron(a_d, b_d)
        # vec ⊗ vec
        @test Vector(kron(x, y)) == kron(x_d, y_d)
        @test Vector(kron(x_d, y)) == kron(x_d, y_d)
        @test Vector(kron(x, y_d)) == kron(x_d, y_d)
        # mat ⊗ vec
        @test Array(kron(a, y)) == kron(a_d, y_d)
        @test Array(kron(a_d, y)) == kron(a_d, y_d)
        @test Array(kron(a, y_d)) == kron(a_d, y_d)
        # vec ⊗ mat
        @test Array(kron(x, b)) == kron(x_d, b_d)
        @test Array(kron(x_d, b)) == kron(x_d, b_d)
        @test Array(kron(x, b_d)) == kron(x_d, b_d)
        # test different types
        z = convert(SparseVector{Float16, Int8}, y); z_d = Vector(z)
        @test Vector(kron(x, z)) == kron(x_d, z_d)
        @test Array(kron(a, z)) == kron(a_d, z_d)
        @test Array(kron(z, b)) == kron(z_d, b_d)
    end
end

@testset "sparse Frobenius dot/inner product" begin
    for i = 1:5
        A = sprand(ComplexF64,10,15,0.4)
        B = sprand(ComplexF64,10,15,0.5)
        @test dot(A,B) ≈ dot(Matrix(A),Matrix(B))
    end
    @test_throws DimensionMismatch dot(sprand(5,5,0.2),sprand(5,6,0.2))
end

sA = sprandn(3, 7, 0.5)
sC = similar(sA)
dA = Array(sA)

@testset "scaling with * and mul!, rmul!, and lmul!" begin
    b = randn(7)
    @test dA * Diagonal(b) == sA * Diagonal(b)
    @test dA * Diagonal(b) == mul!(sC, sA, Diagonal(b))
    @test dA * Diagonal(b) == rmul!(copy(sA), Diagonal(b))
    b = randn(3)
    @test Diagonal(b) * dA == Diagonal(b) * sA
    @test Diagonal(b) * dA == mul!(sC, Diagonal(b), sA)
    @test Diagonal(b) * dA == lmul!(Diagonal(b), copy(sA))

    @test dA * 0.5            == sA * 0.5
    @test dA * 0.5            == mul!(sC, sA, 0.5)
    @test dA * 0.5            == rmul!(copy(sA), 0.5)
    @test 0.5 * dA            == 0.5 * sA
    @test 0.5 * dA            == mul!(sC, sA, 0.5)
    @test 0.5 * dA            == lmul!(0.5, copy(sA))
    @test mul!(sC, 0.5, sA)   == mul!(sC, sA, 0.5)

    @testset "inverse scaling with mul!" begin
        bi = inv.(b)
        dAt = copy(transpose(dA))
        sAt = copy(transpose(sA))
        @test rmul!(copy(dAt), Diagonal(bi)) ≈ rdiv!(copy(sAt), Diagonal(b))
        @test rmul!(copy(dAt), Diagonal(bi)) ≈ rdiv!(copy(sAt), transpose(Diagonal(b)))
        @test rmul!(copy(dAt), Diagonal(conj(bi))) ≈ rdiv!(copy(sAt), adjoint(Diagonal(b)))
        @test_throws DimensionMismatch rdiv!(copy(sAt), Diagonal(fill(1., length(b)+1)))
        @test_throws LinearAlgebra.SingularException rdiv!(copy(sAt), Diagonal(zeros(length(b))))
    end
end

@testset "copyto!" begin
    A = sprand(5, 5, 0.2)
    B = sprand(5, 5, 0.2)
    copyto!(A, B)
    @test A == B
    @test pointer(A.nzval) != pointer(B.nzval)
    @test pointer(A.rowval) != pointer(B.rowval)
    @test pointer(A.colptr) != pointer(B.colptr)
    # Test size(A) != size(B), but length(A) == length(B)
    B = sprand(25, 1, 0.2)
    copyto!(A, B)
    @test A[:] == B[:]
    # Test various size(A) / size(B) combinations
    for mA in [5, 10, 20], nA in [5, 10, 20], mB in [5, 10, 20], nB in [5, 10, 20]
        A = sprand(mA,nA,0.4)
        Aorig = copy(A)
        B = sprand(mB,nB,0.4)
        if mA*nA >= mB*nB
            copyto!(A,B)
            @assert(A[1:length(B)] == B[:])
            @assert(A[length(B)+1:end] == Aorig[length(B)+1:end])
        else
            @test_throws BoundsError copyto!(A,B)
        end
    end
    # Test eltype(A) != eltype(B), size(A) != size(B)
    A = sprand(5, 5, 0.2)
    Aorig = copy(A)
    B = sparse(rand(Float32, 3, 3))
    copyto!(A, B)
    @test A[1:9] == B[:]
    @test A[10:end] == Aorig[10:end]
    # Test eltype(A) != eltype(B), size(A) == size(B)
    A = sparse(rand(Float64, 3, 3))
    B = sparse(rand(Float32, 3, 3))
    copyto!(A, B)
    @test A == B
end

@testset "conj" begin
    cA = sprandn(5,5,0.2) + im*sprandn(5,5,0.2)
    @test Array(conj.(cA)) == conj(Array(cA))
    @test Array(conj!(copy(cA))) == conj(Array(cA))
end

@testset "SparseMatrixCSC [c]transpose[!] and permute[!]" begin
    smalldim = 5
    largedim = 10
    nzprob = 0.4
    (m, n) = (smalldim, smalldim)
    A = sprand(m, n, nzprob)
    X = similar(A)
    C = copy(transpose(A))
    p = randperm(m)
    q = randperm(n)
    @testset "common error checking of [c]transpose! methods (ftranspose!)" begin
        @test_throws DimensionMismatch transpose!(A[:, 1:(smalldim - 1)], A)
        @test_throws DimensionMismatch transpose!(A[1:(smalldim - 1), 1], A)
        @test_throws ArgumentError transpose!((B = similar(A); resize!(B.rowval, nnz(A) - 1); B), A)
        @test_throws ArgumentError transpose!((B = similar(A); resize!(B.nzval, nnz(A) - 1); B), A)
    end
    @testset "common error checking of permute[!] methods / source-perm compat" begin
        @test_throws DimensionMismatch permute(A, p[1:(end - 1)], q)
        @test_throws DimensionMismatch permute(A, p, q[1:(end - 1)])
    end
    @testset "common error checking of permute[!] methods / source-dest compat" begin
        @test_throws DimensionMismatch permute!(A[1:(m - 1), :], A, p, q)
        @test_throws DimensionMismatch permute!(A[:, 1:(m - 1)], A, p, q)
        @test_throws ArgumentError permute!((Y = copy(X); resize!(Y.rowval, nnz(A) - 1); Y), A, p, q)
        @test_throws ArgumentError permute!((Y = copy(X); resize!(Y.nzval, nnz(A) - 1); Y), A, p, q)
    end
    @testset "common error checking of permute[!] methods / source-workmat compat" begin
        @test_throws DimensionMismatch permute!(X, A, p, q, C[1:(m - 1), :])
        @test_throws DimensionMismatch permute!(X, A, p, q, C[:, 1:(m - 1)])
        @test_throws ArgumentError permute!(X, A, p, q, (D = copy(C); resize!(D.rowval, nnz(A) - 1); D))
        @test_throws ArgumentError permute!(X, A, p, q, (D = copy(C); resize!(D.nzval, nnz(A) - 1); D))
    end
    @testset "common error checking of permute[!] methods / source-workcolptr compat" begin
        @test_throws DimensionMismatch permute!(A, p, q, C, Vector{eltype(A.rowval)}(undef, length(A.colptr) - 1))
    end
    @testset "common error checking of permute[!] methods / permutation validity" begin
        @test_throws ArgumentError permute!(A, (r = copy(p); r[2] = r[1]; r), q)
        @test_throws ArgumentError permute!(A, (r = copy(p); r[2] = m + 1; r), q)
        @test_throws ArgumentError permute!(A, p, (r = copy(q); r[2] = r[1]; r))
        @test_throws ArgumentError permute!(A, p, (r = copy(q); r[2] = n + 1; r))
    end
    @testset "overall functionality of [c]transpose[!] and permute[!]" begin
        for (m, n) in ((smalldim, smalldim), (smalldim, largedim), (largedim, smalldim))
            A = sprand(m, n, nzprob)
            At = copy(transpose(A))
            # transpose[!]
            fullAt = Array(transpose(A))
            @test copy(transpose(A)) == fullAt
            @test transpose!(similar(At), A) == fullAt
            # adjoint[!]
            C = A + im*A/2
            fullCh = Array(C')
            @test copy(C') == fullCh
            @test adjoint!(similar(sparse(fullCh)), C) == fullCh
            # permute[!]
            p = randperm(m)
            q = randperm(n)
            fullPAQ = Array(A)[p,q]
            @test permute(A, p, q) == sparse(Array(A[p,q]))
            @test permute!(similar(A), A, p, q) == fullPAQ
            @test permute!(similar(A), A, p, q, similar(At)) == fullPAQ
            @test permute!(copy(A), p, q) == fullPAQ
            @test permute!(copy(A), p, q, similar(At)) == fullPAQ
            @test permute!(copy(A), p, q, similar(At), similar(A.colptr)) == fullPAQ
        end
    end
end

@testset "transpose of SubArrays" begin
    A = view(sprandn(10, 10, 0.3), 1:4, 1:4)
    @test copy(transpose(Array(A))) == Array(transpose(A))
    @test copy(adjoint(Array(A))) == Array(adjoint(A))
end

@testset "exp" begin
    A = sprandn(5,5,0.2)
    @test ℯ.^A ≈ ℯ.^Array(A)
end

@testset "reductions" begin
    pA = sparse(rand(3, 7))
    p28227 = sparse(Real[0 0.5])

    for arr in (se33, sA, pA, p28227)
        for f in (sum, prod, minimum, maximum)
            farr = Array(arr)
            @test f(arr) ≈ f(farr)
            @test f(arr, dims=1) ≈ f(farr, dims=1)
            @test f(arr, dims=2) ≈ f(farr, dims=2)
            @test f(arr, dims=(1, 2)) ≈ [f(farr)]
            @test isequal(f(arr, dims=3), f(farr, dims=3))
        end
    end

    for f in (sum, prod, minimum, maximum)
        # Test with a map function that maps to non-zero
        for arr in (se33, sA, pA)
            @test f(x->x+1, arr) ≈ f(arr .+ 1)
        end

        # case where f(0) would throw
        @test f(x->sqrt(x-1), pA .+ 1) ≈ f(sqrt.(pA))
        # these actually throw due to #10533
        # @test f(x->sqrt(x-1), pA .+ 1, dims=1) ≈ f(sqrt(pA), dims=1)
        # @test f(x->sqrt(x-1), pA .+ 1, dims=2) ≈ f(sqrt(pA), dims=2)
        # @test f(x->sqrt(x-1), pA .+ 1, dims=3) ≈ f(pA)
    end

    @testset "empty cases" begin
        @test sum(sparse(Int[])) === 0
        @test prod(sparse(Int[])) === 1
        @test_throws ArgumentError minimum(sparse(Int[]))
        @test_throws ArgumentError maximum(sparse(Int[]))

        for f in (sum, prod)
            @test isequal(f(spzeros(0, 1), dims=1), f(Matrix{Int}(I, 0, 1), dims=1))
            @test isequal(f(spzeros(0, 1), dims=2), f(Matrix{Int}(I, 0, 1), dims=2))
            @test isequal(f(spzeros(0, 1), dims=(1, 2)), f(Matrix{Int}(I, 0, 1), dims=(1, 2)))
            @test isequal(f(spzeros(0, 1), dims=3), f(Matrix{Int}(I, 0, 1), dims=3))
        end
        for f in (minimum, maximum, findmin, findmax)
            @test_throws ArgumentError f(spzeros(0, 1), dims=1)
            @test isequal(f(spzeros(0, 1), dims=2), f(Matrix{Int}(I, 0, 1), dims=2))
            @test_throws ArgumentError f(spzeros(0, 1), dims=(1, 2))
            @test isequal(f(spzeros(0, 1), dims=3), f(Matrix{Int}(I, 0, 1), dims=3))
        end
    end
end

@testset "issue #5190" begin
    @test_throws ArgumentError sparsevec([3,5,7],[0.1,0.0,3.2],4)
end

@testset "what used to be issue #5386" begin
    K,J,V = findnz(SparseMatrixCSC(2,1,[1,3],[1,2],[1.0,0.0]))
    @test length(K) == length(J) == length(V) == 2
end

@testset "findall" begin
    # issue described in https://groups.google.com/d/msg/julia-users/Yq4dh8NOWBQ/GU57L90FZ3EJ
    A = sparse(I, 5, 5)
    @test findall(A) == findall(x -> x == true, A) == findall(Array(A))
    # Non-stored entries are true
    @test findall(x -> x == false, A) == findall(x -> x == false, Array(A))

    # Not all stored entries are true
    @test findall(sparse([true false])) == [CartesianIndex(1, 1)]
    @test findall(x -> x > 1, sparse([1 2])) == [CartesianIndex(1, 2)]
end

@testset "issue #5824" begin
    @test sprand(4,5,0.5).^0 == sparse(fill(1,4,5))
end

@testset "issue #5985" begin
    @test sprand(Bool, 4, 5, 0.0) == sparse(zeros(Bool, 4, 5))
    @test sprand(Bool, 4, 5, 1.00) == sparse(fill(true, 4, 5))
    sprb45nnzs = zeros(5)
    for i=1:5
        sprb45 = sprand(Bool, 4, 5, 0.5)
        @test length(sprb45) == 20
        sprb45nnzs[i] = sum(sprb45)[1]
    end
    @test 4 <= sum(sprb45nnzs)/length(sprb45nnzs) <= 16
end

@testset "issue #5853, sparse diff" begin
    for i=1:2, a=Any[[1 2 3], reshape([1, 2, 3],(3,1)), Matrix(1.0I, 3, 3)]
        @test all(diff(sparse(a),dims=i) == diff(a,dims=i))
    end
end

@testset "access to undefined error types that initially allocate elements as #undef" begin
    @test all(sparse(1:2, 1:2, Number[1,2])^2 == sparse(1:2, 1:2, [1,4]))
    sd1 = diff(sparse([1,1,1], [1,2,3], Number[1,2,3]), dims=1)
end

@testset "issue #6036" begin
    P = spzeros(Float64, 3, 3)
    for i = 1:3
        P[i,i] = i
    end

    @test minimum(P) === 0.0
    @test maximum(P) === 3.0
    @test minimum(-P) === -3.0
    @test maximum(-P) === 0.0

    @test maximum(P, dims=(1,)) == [1.0 2.0 3.0]
    @test maximum(P, dims=(2,)) == reshape([1.0,2.0,3.0],3,1)
    @test maximum(P, dims=(1,2)) == reshape([3.0],1,1)

    @test maximum(sparse(fill(-1,3,3))) == -1
    @test minimum(sparse(fill(1,3,3))) == 1
end

@testset "unary functions" begin
    A = sprand(5, 15, 0.5)
    C = A + im*A
    Afull = Array(A)
    Cfull = Array(C)
    # Test representatives of [unary functions that map zeros to zeros and may map nonzeros to zeros]
    @test sin.(Afull) == Array(sin.(A))
    @test tan.(Afull) == Array(tan.(A)) # should be redundant with sin test
    @test ceil.(Afull) == Array(ceil.(A))
    @test floor.(Afull) == Array(floor.(A)) # should be redundant with ceil test
    @test real.(Afull) == Array(real.(A)) == Array(real(A))
    @test imag.(Afull) == Array(imag.(A)) == Array(imag(A))
    @test conj.(Afull) == Array(conj.(A)) == Array(conj(A))
    @test real.(Cfull) == Array(real.(C)) == Array(real(C))
    @test imag.(Cfull) == Array(imag.(C)) == Array(imag(C))
    @test conj.(Cfull) == Array(conj.(C)) == Array(conj(C))
    # Test representatives of [unary functions that map zeros to zeros and nonzeros to nonzeros]
    @test expm1.(Afull) == Array(expm1.(A))
    @test abs.(Afull) == Array(abs.(A))
    @test abs2.(Afull) == Array(abs2.(A))
    @test abs.(Cfull) == Array(abs.(C))
    @test abs2.(Cfull) == Array(abs2.(C))
    # Test representatives of [unary functions that map both zeros and nonzeros to nonzeros]
    @test cos.(Afull) == Array(cos.(A))
    # Test representatives of remaining vectorized-nonbroadcast unary functions
    @test ceil.(Int, Afull) == Array(ceil.(Int, A))
    @test floor.(Int, Afull) == Array(floor.(Int, A))
    # Tests of real, imag, abs, and abs2 for SparseMatrixCSC{Int,X}s previously elsewhere
    for T in (Int, Float16, Float32, Float64, BigInt, BigFloat)
        R = rand(T[1:100;], 2, 2)
        I = rand(T[1:100;], 2, 2)
        D = R + I*im
        S = sparse(D)
        spR = sparse(R)

        @test R == real.(S) == real(S)
        @test I == imag.(S) == imag(S)
        @test conj(Array(S)) == conj.(S) == conj(S)
        @test real.(spR) == R
        @test nnz(imag.(spR)) == nnz(imag(spR)) == 0
        @test abs.(S) == abs.(D)
        @test abs2.(S) == abs2.(D)

        # test aliasing of real and conj of real valued matrix
        @test real(spR) === spR
        @test conj(spR) === spR
    end
end

@testset "getindex" begin
    ni = 23
    nj = 32
    a116 = reshape(1:(ni*nj), ni, nj)
    s116 = sparse(a116)

    ad116 = diagm(0 => diag(a116))
    sd116 = sparse(ad116)

    for (aa116, ss116) in [(a116, s116), (ad116, sd116)]
        ij=11; i=3; j=2
        @test ss116[ij] == aa116[ij]
        @test ss116[(i,j)] == aa116[i,j]
        @test ss116[i,j] == aa116[i,j]
        @test ss116[i-1,j] == aa116[i-1,j]
        ss116[i,j] = 0
        @test ss116[i,j] == 0
        ss116 = sparse(aa116)

        @test ss116[:,:] == copy(ss116)

        # range indexing
        @test Array(ss116[i,:]) == aa116[i,:]
        @test Array(ss116[:,j]) == aa116[:,j]
        @test Array(ss116[i,1:2:end]) == aa116[i,1:2:end]
        @test Array(ss116[1:2:end,j]) == aa116[1:2:end,j]
        @test Array(ss116[i,end:-2:1]) == aa116[i,end:-2:1]
        @test Array(ss116[end:-2:1,j]) == aa116[end:-2:1,j]
        # float-range indexing is not supported

        # sorted vector indexing
        @test Array(ss116[i,[3:2:end-3;]]) == aa116[i,[3:2:end-3;]]
        @test Array(ss116[[3:2:end-3;],j]) == aa116[[3:2:end-3;],j]
        @test Array(ss116[i,[end-3:-2:1;]]) == aa116[i,[end-3:-2:1;]]
        @test Array(ss116[[end-3:-2:1;],j]) == aa116[[end-3:-2:1;],j]

        # unsorted vector indexing with repetition
        p = [4, 1, 2, 3, 2, 6]
        @test Array(ss116[p,:]) == aa116[p,:]
        @test Array(ss116[:,p]) == aa116[:,p]
        @test Array(ss116[p,p]) == aa116[p,p]

        # bool indexing
        li = bitrand(size(aa116,1))
        lj = bitrand(size(aa116,2))
        @test Array(ss116[li,j]) == aa116[li,j]
        @test Array(ss116[li,:]) == aa116[li,:]
        @test Array(ss116[i,lj]) == aa116[i,lj]
        @test Array(ss116[:,lj]) == aa116[:,lj]
        @test Array(ss116[li,lj]) == aa116[li,lj]

        # empty indices
        for empty in (1:0, Int[])
            @test Array(ss116[empty,:]) == aa116[empty,:]
            @test Array(ss116[:,empty]) == aa116[:,empty]
            @test Array(ss116[empty,lj]) == aa116[empty,lj]
            @test Array(ss116[li,empty]) == aa116[li,empty]
            @test Array(ss116[empty,empty]) == aa116[empty,empty]
        end

        # out of bounds indexing
        @test_throws BoundsError ss116[0, 1]
        @test_throws BoundsError ss116[end+1, 1]
        @test_throws BoundsError ss116[1, 0]
        @test_throws BoundsError ss116[1, end+1]
        for j in (1, 1:size(s116,2), 1:1, Int[1], trues(size(s116, 2)), 1:0, Int[])
            @test_throws BoundsError ss116[0:1, j]
            @test_throws BoundsError ss116[[0, 1], j]
            @test_throws BoundsError ss116[end:end+1, j]
            @test_throws BoundsError ss116[[end, end+1], j]
        end
        for i in (1, 1:size(s116,1), 1:1, Int[1], trues(size(s116, 1)), 1:0, Int[])
            @test_throws BoundsError ss116[i, 0:1]
            @test_throws BoundsError ss116[i, [0, 1]]
            @test_throws BoundsError ss116[i, end:end+1]
            @test_throws BoundsError ss116[i, [end, end+1]]
        end
    end

    # workaround issue #7197: comment out let-block
    #let S = SparseMatrixCSC(3, 3, UInt8[1,1,1,1], UInt8[], Int64[])
    S1290 = SparseMatrixCSC(3, 3, UInt8[1,1,1,1], UInt8[], Int64[])
        S1290[1,1] = 1
        S1290[5] = 2
        S1290[end] = 3
        @test S1290[end] == (S1290[1] + S1290[2,2])
        @test 6 == sum(diag(S1290))
        @test Array(S1290)[[3,1],1] == Array(S1290[[3,1],1])

        # check that indexing with an abstract array returns matrix
        # with same colptr and rowval eltypes as input. Tests PR 24548
        r1 = S1290[[5,9]]
        r2 = S1290[[1 2;5 9]]
        @test isa(r1, SparseVector{Int64,UInt8})
        @test isa(r2, SparseMatrixCSC{Int64,UInt8})
    # end
end

@testset "setindex" begin
    a = spzeros(Int, 10, 10)
    @test count(!iszero, a) == 0
    a[1,:] .= 1
    @test count(!iszero, a) == 10
    @test a[1,:] == sparse(fill(1,10))
    a[:,2] .= 2
    @test count(!iszero, a) == 19
    @test a[:,2] == sparse(fill(2,10))
    b = copy(a)

    # Zero-assignment behavior of setindex!(A, v, i, j)
    a[1,3] = 0
    @test nnz(a) == 19
    @test count(!iszero, a) == 18
    a[2,1] = 0
    @test nnz(a) == 19
    @test count(!iszero, a) == 18

    # Zero-assignment behavior of setindex!(A, v, I, J)
    a[1,:] .= 0
    @test nnz(a) == 19
    @test count(!iszero, a) == 9
    a[2,:] .= 0
    @test nnz(a) == 19
    @test count(!iszero, a) == 8
    a[:,1] .= 0
    @test nnz(a) == 19
    @test count(!iszero, a) == 8
    a[:,2] .= 0
    @test nnz(a) == 19
    @test count(!iszero, a) == 0
    a = copy(b)
    a[:,:] .= 0
    @test nnz(a) == 19
    @test count(!iszero, a) == 0

    # Zero-assignment behavior of setindex!(A, B::SparseMatrixCSC, I, J)
    a = copy(b)
    a[1:2,:] = spzeros(2, 10)
    @test nnz(a) == 19
    @test count(!iszero, a) == 8
    a[1:2,1:3] = sparse([1 0 1; 0 0 1])
    @test nnz(a) == 20
    @test count(!iszero, a) == 11
    a = copy(b)
    a[1:2,:] = let c = sparse(fill(1,2,10)); fill!(c.nzval, 0); c; end
    @test nnz(a) == 19
    @test count(!iszero, a) == 8
    a[1:2,1:3] = let c = sparse(fill(1,2,3)); c[1,2] = c[2,1] = c[2,2] = 0; c; end
    @test nnz(a) == 20
    @test count(!iszero, a) == 11

    a[1,:] = 1:10
    @test a[1,:] == sparse([1:10;])
    a[:,2] = 1:10
    @test a[:,2] == sparse([1:10;])

    a[1,1:0] = []
    @test a[1,:] == sparse([1; 1; 3:10])
    a[1:0,2] = []
    @test a[:,2] == sparse([1:10;])
    a[1,1:0] .= 0
    @test a[1,:] == sparse([1; 1; 3:10])
    a[1:0,2] .= 0
    @test a[:,2] == sparse([1:10;])
    a[1,1:0] .= 1
    @test a[1,:] == sparse([1; 1; 3:10])
    a[1:0,2] .= 1
    @test a[:,2] == sparse([1:10;])

    @test_throws BoundsError a[:,11] = spzeros(10,1)
    @test_throws BoundsError a[11,:] = spzeros(1,10)
    @test_throws BoundsError a[:,-1] = spzeros(10,1)
    @test_throws BoundsError a[-1,:] = spzeros(1,10)
    @test_throws BoundsError a[0:9] = spzeros(1,10)
    @test_throws BoundsError (a[:,11] .= 0; a)
    @test_throws BoundsError (a[11,:] .= 0; a)
    @test_throws BoundsError (a[:,-1] .= 0; a)
    @test_throws BoundsError (a[-1,:] .= 0; a)
    @test_throws BoundsError (a[0:9] .= 0; a)
    @test_throws BoundsError (a[:,11] .= 1; a)
    @test_throws BoundsError (a[11,:] .= 1; a)
    @test_throws BoundsError (a[:,-1] .= 1; a)
    @test_throws BoundsError (a[-1,:] .= 1; a)
    @test_throws BoundsError (a[0:9] .= 1; a)

    @test_throws DimensionMismatch a[1:2,1:2] = 1:3
    @test_throws DimensionMismatch a[1:2,1] = 1:3
    @test_throws DimensionMismatch a[1,1:2] = 1:3
    @test_throws DimensionMismatch a[1:2] = 1:3

    A = spzeros(Int, 10, 20)
    A[1:5,1:10] .= 10
    A[1:5,1:10] .= 10
    @test count(!iszero, A) == 50
    @test A[1:5,1:10] == fill(10, 5, 10)
    A[6:10,11:20] .= 0
    @test count(!iszero, A) == 50
    A[6:10,11:20] .= 20
    @test count(!iszero, A) == 100
    @test A[6:10,11:20] == fill(20, 5, 10)
    A[4:8,8:16] .= 15
    @test count(!iszero, A) == 121
    @test A[4:8,8:16] == fill(15, 5, 9)

    ASZ = 1000
    TSZ = 800
    A = sprand(ASZ, 2*ASZ, 0.0001)
    B = copy(A)
    nA = count(!iszero, A)
    x = A[1:TSZ, 1:(2*TSZ)]
    nx = count(!iszero, x)
    A[1:TSZ, 1:(2*TSZ)] .= 0
    nB = count(!iszero, A)
    @test nB == (nA - nx)
    A[1:TSZ, 1:(2*TSZ)] = x
    @test count(!iszero, A) == nA
    @test A == B
    A[1:TSZ, 1:(2*TSZ)] .= 10
    @test count(!iszero, A) == nB + 2*TSZ*TSZ
    A[1:TSZ, 1:(2*TSZ)] = x
    @test count(!iszero, A) == nA
    @test A == B

    A = sparse(1I, 5, 5)
    lininds = 1:10
    X=reshape([trues(10); falses(15)],5,5)
    @test A[lininds] == A[X] == [1,0,0,0,0,0,1,0,0,0]
    A[lininds] = [1:10;]
    @test A[lininds] == A[X] == 1:10
    A[lininds] = zeros(Int, 10)
    @test nnz(A) == 13
    @test count(!iszero, A) == 3
    @test A[lininds] == A[X] == zeros(Int, 10)
    c = Vector(11:20); c[1] = c[3] = 0
    A[lininds] = c
    @test nnz(A) == 13
    @test count(!iszero, A) == 11
    @test A[lininds] == A[X] == c
    A = sparse(1I, 5, 5)
    A[lininds] = c
    @test nnz(A) == 12
    @test count(!iszero, A) == 11
    @test A[lininds] == A[X] == c

    let # prevent assignment to I from overwriting UniformSampling in enclosing scope
        S = sprand(50, 30, 0.5, x -> round.(Int, rand(x) * 100))
        I = sprand(Bool, 50, 30, 0.2)
        FS = Array(S)
        FI = Array(I)
        @test sparse(FS[FI]) == S[I] == S[FI]
        @test sum(S[FI]) + sum(S[.!FI]) == sum(S)
        @test count(!iszero, I) == count(I)

        sumS1 = sum(S)
        sumFI = sum(S[FI])
        nnzS1 = nnz(S)
        S[FI] .= 0
        sumS2 = sum(S)
        cnzS2 = count(!iszero, S)
        @test sum(S[FI]) == 0
        @test nnz(S) == nnzS1
        @test (sum(S) + sumFI) == sumS1

        S[FI] .= 10
        nnzS3 = nnz(S)
        @test sum(S) == sumS2 + 10*sum(FI)
        S[FI] .= 0
        @test sum(S) == sumS2
        @test nnz(S) == nnzS3
        @test count(!iszero, S) == cnzS2

        S[FI] .= [1:sum(FI);]
        @test sum(S) == sumS2 + sum(1:sum(FI))

        S = sprand(50, 30, 0.5, x -> round.(Int, rand(x) * 100))
        N = length(S) >> 2
        I = randperm(N) .* 4
        J = randperm(N)
        sumS1 = sum(S)
        sumS2 = sum(S[I])
        S[I] .= 0
        @test sum(S) == (sumS1 - sumS2)
        S[I] .= J
        @test sum(S) == (sumS1 - sumS2 + sum(J))
    end
end

@testset "dropstored!" begin
    A = spzeros(Int, 10, 10)
    # Introduce nonzeros in row and column two
    A[1,:] .= 1
    A[:,2] .= 2
    @test nnz(A) == 19

    # Test argument bounds checking for dropstored!(A, i, j)
    @test_throws BoundsError SparseArrays.dropstored!(A, 0, 1)
    @test_throws BoundsError SparseArrays.dropstored!(A, 1, 0)
    @test_throws BoundsError SparseArrays.dropstored!(A, 1, 11)
    @test_throws BoundsError SparseArrays.dropstored!(A, 11, 1)

    # Test argument bounds checking for dropstored!(A, I, J)
    @test_throws BoundsError SparseArrays.dropstored!(A, 0:1, 1:1)
    @test_throws BoundsError SparseArrays.dropstored!(A, 1:1, 0:1)
    @test_throws BoundsError SparseArrays.dropstored!(A, 10:11, 1:1)
    @test_throws BoundsError SparseArrays.dropstored!(A, 1:1, 10:11)

    # Test behavior of dropstored!(A, i, j)
    # --> Test dropping a single stored entry
    SparseArrays.dropstored!(A, 1, 2)
    @test nnz(A) == 18
    # --> Test dropping a single nonstored entry
    SparseArrays.dropstored!(A, 2, 1)
    @test nnz(A) == 18

    # Test behavior of dropstored!(A, I, J) and derivs.
    # --> Test dropping a single row including stored and nonstored entries
    SparseArrays.dropstored!(A, 1, :)
    @test nnz(A) == 9
    # --> Test dropping a single column including stored and nonstored entries
    SparseArrays.dropstored!(A, :, 2)
    @test nnz(A) == 0
    # --> Introduce nonzeros in rows one and two and columns two and three
    A[1:2,:] .= 1
    A[:,2:3] .= 2
    @test nnz(A) == 36
    # --> Test dropping multiple rows containing stored and nonstored entries
    SparseArrays.dropstored!(A, 1:3, :)
    @test nnz(A) == 14
    # --> Test dropping multiple columns containing stored and nonstored entries
    SparseArrays.dropstored!(A, :, 2:4)
    @test nnz(A) == 0
    # --> Introduce nonzeros in every other row
    A[1:2:9, :] .= 1
    @test nnz(A) == 50
    # --> Test dropping a block of the matrix towards the upper left
    SparseArrays.dropstored!(A, 2:5, 2:5)
    @test nnz(A) == 42
end

@testset "issue #7507" begin
    @test (i7507=sparsevec(Dict{Int64, Float64}(), 10))==spzeros(10)
end

@testset "issue #7650" begin
    S = spzeros(3, 3)
    @test size(reshape(S, 9, 1)) == (9,1)
end

@testset "sparsevec from matrices" begin
    X = Matrix(1.0I, 5, 5)
    M = rand(5,4)
    C = spzeros(3,3)
    SX = sparse(X); SM = sparse(M)
    VX = vec(X); VSX = vec(SX)
    VM = vec(M); VSM1 = vec(SM); VSM2 = sparsevec(M)
    VC = vec(C)
    @test VX == VSX
    @test VM == VSM1
    @test VM == VSM2
    @test size(VC) == (9,)
    @test nnz(VC) == 0
    @test nnz(VSX) == 5
end

@testset "issue #7677" begin
    A = sprand(5,5,0.5,(n)->rand(Float64,n))
    ACPY = copy(A)
    B = reshape(A,25,1)
    @test A == ACPY
end

@testset "issue #8225" begin
    @test_throws ArgumentError sparse([0],[-1],[1.0],2,2)
end

@testset "issue #8363" begin
    @test_throws ArgumentError sparsevec(Dict(-1=>1,1=>2))
end

@testset "issue #8976" begin
    @test conj.(sparse([1im])) == sparse(conj([1im]))
    @test conj!(sparse([1im])) == sparse(conj!([1im]))
end

@testset "issue #9525" begin
    @test_throws ArgumentError sparse([3], [5], 1.0, 3, 3)
end

@testset "argmax, argmin, findmax, findmin" begin
    S = sprand(100,80, 0.5)
    A = Array(S)
    @test argmax(S) == argmax(A)
    @test argmin(S) == argmin(A)
    @test findmin(S) == findmin(A)
    @test findmax(S) == findmax(A)
    for region in [(1,), (2,), (1,2)], m in [findmax, findmin]
        @test m(S, dims=region) == m(A, dims=region)
    end

    S = spzeros(10,8)
    A = Array(S)
    @test argmax(S) == argmax(A) == CartesianIndex(1,1)
    @test argmin(S) == argmin(A) == CartesianIndex(1,1)

    A = Matrix{Int}(I, 0, 0)
    S = sparse(A)
    iA = try argmax(A); catch; end
    iS = try argmax(S); catch; end
    @test iA === iS === nothing
    iA = try argmin(A); catch; end
    iS = try argmin(S); catch; end
    @test iA === iS === nothing
end

@testset "findmin/findmax/minimum/maximum" begin
    A = sparse([1.0 5.0 6.0;
                5.0 2.0 4.0])
    for (tup, rval, rind) in [((1,), [1.0 2.0 4.0], [CartesianIndex(1,1) CartesianIndex(2,2) CartesianIndex(2,3)]),
                              ((2,), reshape([1.0,2.0], 2, 1), reshape([CartesianIndex(1,1),CartesianIndex(2,2)], 2, 1)),
                              ((1,2), fill(1.0,1,1),fill(CartesianIndex(1,1),1,1))]
        @test findmin(A, tup) == (rval, rind)
    end

    for (tup, rval, rind) in [((1,), [5.0 5.0 6.0], [CartesianIndex(2,1) CartesianIndex(1,2) CartesianIndex(1,3)]),
                              ((2,), reshape([6.0,5.0], 2, 1), reshape([CartesianIndex(1,3),CartesianIndex(2,1)], 2, 1)),
                              ((1,2), fill(6.0,1,1),fill(CartesianIndex(1,3),1,1))]
        @test findmax(A, tup) == (rval, rind)
    end

    #issue 23209

    A = sparse([1.0 5.0 6.0;
                NaN 2.0 4.0])
    for (tup, rval, rind) in [((1,), [NaN 2.0 4.0], [CartesianIndex(2,1) CartesianIndex(2,2) CartesianIndex(2,3)]),
                              ((2,), reshape([1.0, NaN], 2, 1), reshape([CartesianIndex(1,1),CartesianIndex(2,1)], 2, 1)),
                              ((1,2), fill(NaN,1,1),fill(CartesianIndex(2,1),1,1))]
        @test isequal(findmin(A, tup), (rval, rind))
    end

    for (tup, rval, rind) in [((1,), [NaN 5.0 6.0], [CartesianIndex(2,1) CartesianIndex(1,2) CartesianIndex(1,3)]),
                              ((2,), reshape([6.0, NaN], 2, 1), reshape([CartesianIndex(1,3),CartesianIndex(2,1)], 2, 1)),
                              ((1,2), fill(NaN,1,1),fill(CartesianIndex(2,1),1,1))]
        @test isequal(findmax(A, tup), (rval, rind))
    end

    A = sparse([1.0 NaN 6.0;
                NaN 2.0 4.0])
    for (tup, rval, rind) in [((1,), [NaN NaN 4.0], [CartesianIndex(2,1) CartesianIndex(1,2) CartesianIndex(2,3)]),
                              ((2,), reshape([NaN, NaN], 2, 1), reshape([CartesianIndex(1,2),CartesianIndex(2,1)], 2, 1)),
                              ((1,2), fill(NaN,1,1),fill(CartesianIndex(2,1),1,1))]
        @test isequal(findmin(A, tup), (rval, rind))
    end

    for (tup, rval, rind) in [((1,), [NaN NaN 6.0], [CartesianIndex(2,1) CartesianIndex(1,2) CartesianIndex(1,3)]),
                              ((2,), reshape([NaN, NaN], 2, 1), reshape([CartesianIndex(1,2),CartesianIndex(2,1)], 2, 1)),
                              ((1,2), fill(NaN,1,1),fill(CartesianIndex(2,1),1,1))]
        @test isequal(findmax(A, tup), (rval, rind))
    end

    A = sparse([Inf -Inf Inf  -Inf;
                Inf  Inf -Inf -Inf])
    for (tup, rval, rind) in [((1,), [Inf -Inf -Inf -Inf], [CartesianIndex(1,1) CartesianIndex(1,2) CartesianIndex(2,3) CartesianIndex(1,4)]),
                              ((2,), reshape([-Inf -Inf], 2, 1), reshape([CartesianIndex(1,2),CartesianIndex(2,3)], 2, 1)),
                              ((1,2), fill(-Inf,1,1),fill(CartesianIndex(1,2),1,1))]
        @test isequal(findmin(A, tup), (rval, rind))
    end

    for (tup, rval, rind) in [((1,), [Inf Inf Inf -Inf], [CartesianIndex(1,1) CartesianIndex(2,2) CartesianIndex(1,3) CartesianIndex(1,4)]),
                              ((2,), reshape([Inf Inf], 2, 1), reshape([CartesianIndex(1,1),CartesianIndex(2,1)], 2, 1)),
                              ((1,2), fill(Inf,1,1),fill(CartesianIndex(1,1),1,1))]
        @test isequal(findmax(A, tup), (rval, rind))
    end

    A = sparse([BigInt(10)])
    for (tup, rval, rind) in [((2,), [BigInt(10)], [1])]
        @test isequal(findmin(A, dims=tup), (rval, rind))
    end

    for (tup, rval, rind) in [((2,), [BigInt(10)], [1])]
        @test isequal(findmax(A, dims=tup), (rval, rind))
    end

    A = sparse([BigInt(-10)])
    for (tup, rval, rind) in [((2,), [BigInt(-10)], [1])]
        @test isequal(findmin(A, dims=tup), (rval, rind))
    end

    for (tup, rval, rind) in [((2,), [BigInt(-10)], [1])]
        @test isequal(findmax(A, dims=tup), (rval, rind))
    end

    A = sparse([BigInt(10) BigInt(-10)])
    for (tup, rval, rind) in [((2,), reshape([BigInt(-10)], 1, 1), reshape([CartesianIndex(1,2)], 1, 1))]
        @test isequal(findmin(A, dims=tup), (rval, rind))
    end

    for (tup, rval, rind) in [((2,), reshape([BigInt(10)], 1, 1), reshape([CartesianIndex(1,1)], 1, 1))]
        @test isequal(findmax(A, dims=tup), (rval, rind))
    end

    A = sparse(["a", "b"])
    @test_throws MethodError findmin(A, dims=1)
end

# Support the case when user defined `zero` and `isless` for non-numerical type
struct CustomType
    x::String
end
Base.zero(::Type{CustomType}) = CustomType("")
Base.isless(x::CustomType, y::CustomType) = isless(x.x, y.x)
@testset "findmin/findmax for non-numerical type" begin
    A = sparse([CustomType("a"), CustomType("b")])

    for (tup, rval, rind) in [((1,), [CustomType("a")], [1])]
        @test isequal(findmin(A, dims=tup), (rval, rind))
    end

    for (tup, rval, rind) in [((1,), [CustomType("b")], [2])]
        @test isequal(findmax(A, dims=tup), (rval, rind))
    end
end

@testset "rotations" begin
    a = sparse( [1,1,2,3], [1,3,4,1], [1,2,3,4] )

    @test rot180(a,2) == a
    @test rot180(a,1) == sparse( [3,3,2,1], [4,2,1,4], [1,2,3,4] )
    @test rotr90(a,1) == sparse( [1,3,4,1], [3,3,2,1], [1,2,3,4] )
    @test rotl90(a,1) == sparse( [4,2,1,4], [1,1,2,3], [1,2,3,4] )
    @test rotl90(a,2) == rot180(a)
    @test rotr90(a,2) == rot180(a)
    @test rotl90(a,3) == rotr90(a)
    @test rotr90(a,3) == rotl90(a)

    #ensure we have preserved the correct dimensions!

    a = sparse(1.0I, 3, 5)
    @test size(rot180(a)) == (3,5)
    @test size(rotr90(a)) == (5,3)
    @test size(rotl90(a)) == (5,3)
end

function test_getindex_algs(A::SparseMatrixCSC{Tv,Ti}, I::AbstractVector, J::AbstractVector, alg::Int) where {Tv,Ti}
    # Sorted vectors for indexing rows.
    # Similar to getindex_general but without the transpose trick.
    (m, n) = size(A)
    !isempty(I) && ((I[1] < 1) || (I[end] > m)) && BoundsError()
    if !isempty(J)
        minj, maxj = extrema(J)
        ((minj < 1) || (maxj > n)) && BoundsError()
    end

    (alg == 0) ? SparseArrays.getindex_I_sorted_bsearch_A(A, I, J) :
    (alg == 1) ? SparseArrays.getindex_I_sorted_bsearch_I(A, I, J) :
    SparseArrays.getindex_I_sorted_linear(A, I, J)
end

@testset "test_getindex_algs" begin
    M=2^14
    N=2^4
    Irand = randperm(M)
    Jrand = randperm(N)
    SA = [sprand(M, N, d) for d in [1., 0.1, 0.01, 0.001, 0.0001, 0.]]
    IA = [sort(Irand[1:round(Int,n)]) for n in [M, M*0.1, M*0.01, M*0.001, M*0.0001, 0.]]
    debug = false

    if debug
        println("row sizes: $([round(Int,nnz(S)/S.n) for S in SA])")
        println("I sizes: $([length(I) for I in IA])")
        @printf("    S    |    I    | binary S | binary I |  linear  | best\n")
    end

    J = Jrand
    for I in IA
        for S in SA
            res = Any[1,2,3]
            times = Float64[0,0,0]
            best = [typemax(Float64), 0]
            for searchtype in [0, 1, 2]
                GC.gc()
                tres = @timed test_getindex_algs(S, I, J, searchtype)
                res[searchtype+1] = tres[1]
                times[searchtype+1] = tres[2]
                if best[1] > tres[2]
                    best[1] = tres[2]
                    best[2] = searchtype
                end
            end

            if debug
                @printf(" %7d | %7d | %4.2e | %4.2e | %4.2e | %s\n", round(Int,nnz(S)/S.n), length(I), times[1], times[2], times[3],
                            (0 == best[2]) ? "binary S" : (1 == best[2]) ? "binary I" : "linear")
            end
            if res[1] != res[2]
                println("1 and 2")
            elseif res[2] != res[3]
                println("2, 3")
            end
            @test res[1] == res[2] == res[3]
        end
    end

    M = 2^8
    N=2^3
    Irand = randperm(M)
    Jrand = randperm(N)
    II = sort([Irand; Irand; Irand])
    J = [Jrand; Jrand]

    SA = [sprand(M, N, d) for d in [1., 0.1, 0.01, 0.001, 0.0001, 0.]]
    for S in SA
        res = Any[1,2,3]
        for searchtype in [0, 1, 2]
            res[searchtype+1] = test_getindex_algs(S, II, J, searchtype)
        end

        @test res[1] == res[2] == res[3]
    end

    M = 2^14
    N=2^4
    II = randperm(M)
    J = randperm(N)
    Jsorted = sort(J)

    SA = [sprand(M, N, d) for d in [1., 0.1, 0.01, 0.001, 0.0001, 0.]]
    IA = [II[1:round(Int,n)] for n in [M, M*0.1, M*0.01, M*0.001, M*0.0001, 0.]]
    debug = false
    if debug
        @printf("         |         |         |        times        |        memory       |\n")
        @printf("    S    |    I    |    J    |  sorted  | unsorted |  sorted  | unsorted |\n")
    end
    for I in IA
        Isorted = sort(I)
        for S in SA
            GC.gc()
            ru = @timed S[I, J]
            GC.gc()
            rs = @timed S[Isorted, Jsorted]
            if debug
                @printf(" %7d | %7d | %7d | %4.2e | %4.2e | %4.2e | %4.2e |\n", round(Int,nnz(S)/S.n), length(I), length(J), rs[2], ru[2], rs[3], ru[3])
            end
        end
    end
end

@testset "getindex bounds checking" begin
    S = sprand(10, 10, 0.1)
    @test_throws BoundsError S[[0,1,2], [1,2]]
    @test_throws BoundsError S[[1,2], [0,1,2]]
    @test_throws BoundsError S[[0,2,1], [1,2]]
    @test_throws BoundsError S[[2,1], [0,1,2]]
end

@testset "test that sparse / sparsevec constructors work for AbstractMatrix subtypes" begin
    D = Diagonal(fill(1,10))
    sm = sparse(D)
    sv = sparsevec(D)

    @test count(!iszero, sm) == 10
    @test count(!iszero, sv) == 10

    @test count(!iszero, sparse(Diagonal(Int[]))) == 0
    @test count(!iszero, sparsevec(Diagonal(Int[]))) == 0
end

@testset "explicit zeros" begin
    if Base.USE_GPL_LIBS
        a = SparseMatrixCSC(2, 2, [1, 3, 5], [1, 2, 1, 2], [1.0, 0.0, 0.0, 1.0])
        @test lu(a)\[2.0, 3.0] ≈ [2.0, 3.0]
        @test cholesky(a)\[2.0, 3.0] ≈ [2.0, 3.0]
    end
end

@testset "issue #9917" begin
    @test sparse([]') == reshape(sparse([]), 1, 0)
    @test Array(sparse([])) == zeros(0)
    @test_throws BoundsError sparse([])[1]
    @test_throws BoundsError sparse([])[1] = 1
    x = sparse(1.0I, 100, 100)
    @test_throws BoundsError x[-10:10]
end

@testset "issue #10407" begin
    @test maximum(spzeros(5, 5)) == 0.0
    @test minimum(spzeros(5, 5)) == 0.0
end

@testset "issue #10411" begin
    for (m,n) in ((2,-2),(-2,2),(-2,-2))
        @test_throws ArgumentError spzeros(m,n)
        @test_throws ArgumentError sparse(1.0I, m, n)
        @test_throws ArgumentError sprand(m,n,0.2)
    end
end

@testset "issue #10837, sparse constructors from special matrices" begin
    T = Tridiagonal(randn(4),randn(5),randn(4))
    S = sparse(T)
    @test norm(Array(T) - Array(S)) == 0.0
    T = SymTridiagonal(randn(5),rand(4))
    S = sparse(T)
    @test norm(Array(T) - Array(S)) == 0.0
    B = Bidiagonal(randn(5),randn(4),:U)
    S = sparse(B)
    @test norm(Array(B) - Array(S)) == 0.0
    B = Bidiagonal(randn(5),randn(4),:L)
    S = sparse(B)
    @test norm(Array(B) - Array(S)) == 0.0
    D = Diagonal(randn(5))
    S = sparse(D)
    @test norm(Array(D) - Array(S)) == 0.0
end

@testset "error conditions for reshape, and dropdims" begin
    local A = sprand(Bool, 5, 5, 0.2)
    @test_throws DimensionMismatch reshape(A,(20, 2))
    @test_throws ArgumentError dropdims(A,dims=(1, 1))
end

@testset "float" begin
    local A
    A = sprand(Bool, 5, 5, 0.0)
    @test eltype(float(A)) == Float64  # issue #11658
    A = sprand(Bool, 5, 5, 0.2)
    @test float(A) == float(Array(A))
end

@testset "sparsevec" begin
    local A = sparse(fill(1, 5, 5))
    @test sparsevec(A) == fill(1, 25)
    @test sparsevec([1:5;], 1) == fill(1, 5)
    @test_throws ArgumentError sparsevec([1:5;], [1:4;])
end

@testset "sparse" begin
    local A = sparse(fill(1, 5, 5))
    @test sparse(A) == A
    @test sparse([1:5;], [1:5;], 1) == sparse(1.0I, 5, 5)
end

@testset "one(A::SparseMatrixCSC)" begin
    @test_throws DimensionMismatch one(sparse([1 1 1; 1 1 1]))
    @test one(sparse([1 1; 1 1]))::SparseMatrixCSC == [1 0; 0 1]
end

@testset "istriu/istril" begin
    local A = fill(1, 5, 5)
    @test istriu(sparse(triu(A)))
    @test !istriu(sparse(A))
    @test istril(sparse(tril(A)))
    @test !istril(sparse(A))
end

@testset "droptol" begin
    local A = guardseed(1234321) do
        triu(sprand(10, 10, 0.2))
    end
    @test SparseArrays.droptol!(A, 0.01).colptr == [1,1,1,2,2,3,4,6,6,7,9]
    @test isequal(SparseArrays.droptol!(sparse([1], [1], [1]), 1), SparseMatrixCSC(1, 1, Int[1, 1], Int[], Int[]))
end

@testset "dropzeros[!]" begin
    smalldim = 5
    largedim = 10
    nzprob = 0.4
    targetnumposzeros = 5
    targetnumnegzeros = 5
    for (m, n) in ((largedim, largedim), (smalldim, largedim), (largedim, smalldim))
        local A = sprand(m, n, nzprob)
        struczerosA = findall(x -> x == 0, A)
        poszerosinds = unique(rand(struczerosA, targetnumposzeros))
        negzerosinds = unique(rand(struczerosA, targetnumnegzeros))
        Aposzeros = copy(A)
        Aposzeros[poszerosinds] .= 2
        Anegzeros = copy(A)
        Anegzeros[negzerosinds] .= -2
        Abothsigns = copy(Aposzeros)
        Abothsigns[negzerosinds] .= -2
        map!(x -> x == 2 ? 0.0 : x, Aposzeros.nzval, Aposzeros.nzval)
        map!(x -> x == -2 ? -0.0 : x, Anegzeros.nzval, Anegzeros.nzval)
        map!(x -> x == 2 ? 0.0 : x == -2 ? -0.0 : x, Abothsigns.nzval, Abothsigns.nzval)
        for Awithzeros in (Aposzeros, Anegzeros, Abothsigns)
            # Basic functionality / dropzeros!
            @test dropzeros!(copy(Awithzeros)) == A
            @test dropzeros!(copy(Awithzeros), trim = false) == A
            # Basic functionality / dropzeros
            @test dropzeros(Awithzeros) == A
            @test dropzeros(Awithzeros, trim = false) == A
            # Check trimming works as expected
            @test length(dropzeros!(copy(Awithzeros)).nzval) == length(A.nzval)
            @test length(dropzeros!(copy(Awithzeros)).rowval) == length(A.rowval)
            @test length(dropzeros!(copy(Awithzeros), trim = false).nzval) == length(Awithzeros.nzval)
            @test length(dropzeros!(copy(Awithzeros), trim = false).rowval) == length(Awithzeros.rowval)
        end
    end
    # original lone dropzeros test
    local A = sparse([1 2 3; 4 5 6; 7 8 9])
    A.nzval[2] = A.nzval[6] = A.nzval[7] = 0
    @test dropzeros!(A).colptr == [1, 3, 5, 7]
    # test for issue #5169, modified for new behavior following #15242/#14798
    @test nnz(sparse([1, 1], [1, 2], [0.0, -0.0])) == 2
    @test nnz(dropzeros!(sparse([1, 1], [1, 2], [0.0, -0.0]))) == 0
    # test for issue #5437, modified for new behavior following #15242/#14798
    @test nnz(sparse([1, 2, 3], [1, 2, 3], [0.0, 1.0, 2.0])) == 3
    @test nnz(dropzeros!(sparse([1, 2, 3],[1, 2, 3],[0.0, 1.0, 2.0]))) == 2
end

@testset "trace" begin
    @test_throws DimensionMismatch tr(spzeros(5,6))
    @test tr(sparse(1.0I, 5, 5)) == 5
end

@testset "spdiagm" begin
    x = fill(1, 2)
    @test spdiagm(0 => x, -1 => x) == [1 0 0; 1 1 0; 0 1 0]
    @test spdiagm(0 => x,  1 => x) == [1 1 0; 0 1 1; 0 0 0]

    for (x, y) in ((rand(5), rand(4)),(sparse(rand(5)), sparse(rand(4))))
        @test spdiagm(-1 => x)::SparseMatrixCSC         == diagm(-1 => x)
        @test spdiagm( 0 => x)::SparseMatrixCSC         == diagm( 0 => x) == sparse(Diagonal(x))
        @test spdiagm(-1 => x)::SparseMatrixCSC         == diagm(-1 => x)
        @test spdiagm(0 => x, -1 => y)::SparseMatrixCSC == diagm(0 => x, -1 => y)
        @test spdiagm(0 => x,  1 => y)::SparseMatrixCSC == diagm(0 => x,  1 => y)
    end
    # promotion
    @test spdiagm(0 => [1,2], 1 => [3.5], -1 => [4+5im]) == [1 3.5; 4+5im 2]
end

@testset "diag" begin
    for T in (Float64, ComplexF64)
        S1 = sprand(T,  5,  5, 0.5)
        S2 = sprand(T, 10,  5, 0.5)
        S3 = sprand(T,  5, 10, 0.5)
        for S in (S1, S2, S3)
            local A = Matrix(S)
            @test diag(S)::SparseVector{T,Int} == diag(A)
            for k in -size(S,1):size(S,2)
                @test diag(S, k)::SparseVector{T,Int} == diag(A, k)
            end
            @test_throws ArgumentError diag(S, -size(S,1)-1)
            @test_throws ArgumentError diag(S,  size(S,2)+1)
        end
    end
    # test that stored zeros are still stored zeros in the diagonal
    S = sparse([1,3],[1,3],[0.0,0.0]); V = diag(S)
    @test V.nzind == [1,3]
    @test V.nzval == [0.0,0.0]
end

@testset "expandptr" begin
    local A = sparse(1.0I, 5, 5)
    @test SparseArrays.expandptr(A.colptr) == 1:5
    A[1,2] = 1
    @test SparseArrays.expandptr(A.colptr) == [1; 2; 2; 3; 4; 5]
    @test_throws ArgumentError SparseArrays.expandptr([2; 3])
end

@testset "triu/tril" begin
    n = 5
    local A = sprand(n, n, 0.2)
    AF = Array(A)
    @test Array(triu(A,1)) == triu(AF,1)
    @test Array(tril(A,1)) == tril(AF,1)
    @test Array(triu!(copy(A), 2)) == triu(AF,2)
    @test Array(tril!(copy(A), 2)) == tril(AF,2)
    @test tril(A, -n - 2) == zero(A)
    @test tril(A, n) == A
    @test triu(A, -n) == A
    @test triu(A, n + 2) == zero(A)

    # fkeep trim option
    @test isequal(length(tril!(sparse([1,2,3], [1,2,3], [1,2,3], 3, 4), -1).rowval), 0)
end

@testset "norm" begin
    local A
    A = sparse(Int[],Int[],Float64[],0,0)
    @test norm(A) == zero(eltype(A))
    A = sparse([1.0])
    @test norm(A) == 1.0
    @test_throws ArgumentError opnorm(sprand(5,5,0.2),3)
    @test_throws ArgumentError opnorm(sprand(5,5,0.2),2)
end

@testset "ishermitian/issymmetric" begin
    local A
    # real matrices
    A = sparse(1.0I, 5, 5)
    @test ishermitian(A) == true
    @test issymmetric(A) == true
    A[1,3] = 1.0
    @test ishermitian(A) == false
    @test issymmetric(A) == false
    A[3,1] = 1.0
    @test ishermitian(A) == true
    @test issymmetric(A) == true

    # complex matrices
    A = sparse((1.0 + 1.0im)I, 5, 5)
    @test ishermitian(A) == false
    @test issymmetric(A) == true
    A[1,4] = 1.0 + im
    @test ishermitian(A) == false
    @test issymmetric(A) == false

    A = sparse(ComplexF64(1)I, 5, 5)
    A[3,2] = 1.0 + im
    @test ishermitian(A) == false
    @test issymmetric(A) == false
    A[2,3] = 1.0 - im
    @test ishermitian(A) == true
    @test issymmetric(A) == false

    A = sparse(zeros(5,5))
    @test ishermitian(A) == true
    @test issymmetric(A) == true

    # explicit zeros
    A = sparse(ComplexF64(1)I, 5, 5)
    A[3,1] = 2
    A.nzval[2] = 0.0
    @test ishermitian(A) == true
    @test issymmetric(A) == true

    # 15504
    m = n = 5
    colptr = [1, 5, 9, 13, 13, 17]
    rowval = [1, 2, 3, 5, 1, 2, 3, 5, 1, 2, 3, 5, 1, 2, 3, 5]
    nzval = [0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 0.0, 1.0, 1.0, 1.0, 0.0, 1.0, 1.0, 1.0]
    A = SparseMatrixCSC(m, n, colptr, rowval, nzval)
    @test issymmetric(A) == true
    A.nzval[end - 3]  = 2.0
    @test issymmetric(A) == false

    # 16521
    @test issymmetric(sparse([0 0; 1 0])) == false
    @test issymmetric(sparse([0 1; 0 0])) == false
    @test issymmetric(sparse([0 0; 1 1])) == false
    @test issymmetric(sparse([1 0; 1 0])) == false
    @test issymmetric(sparse([0 1; 1 0])) == true
    @test issymmetric(sparse([1 1; 1 0])) == true
end

@testset "equality ==" begin
    A1 = sparse(1.0I, 10, 10)
    A2 = sparse(1.0I, 10, 10)
    nonzeros(A1)[end]=0
    @test A1!=A2
    nonzeros(A1)[end]=1
    @test A1==A2
    A1[1:4,end] .= 1
    @test A1!=A2
    nonzeros(A1)[end-4:end-1].=0
    @test A1==A2
    A2[1:4,end-1] .= 1
    @test A1!=A2
    nonzeros(A2)[end-5:end-2].=0
    @test A1==A2
    A2[2:3,1] .= 1
    @test A1!=A2
    nonzeros(A2)[2:3].=0
    @test A1==A2
    A1[2:5,1] .= 1
    @test A1!=A2
    nonzeros(A1)[2:5].=0
    @test A1==A2
    @test sparse([1,1,0])!=sparse([0,1,1])
end

@testset "UniformScaling" begin
    local A = sprandn(10, 10, 0.5)
    @test A + I == Array(A) + I
    @test I + A == I + Array(A)
    @test A - I == Array(A) - I
    @test I - A == I - Array(A)
end

@testset "issue #12177, error path if triplet vectors are not all the same length" begin
    @test_throws ArgumentError sparse([1,2,3], [1,2], [1,2,3], 3, 3)
    @test_throws ArgumentError sparse([1,2,3], [1,2,3], [1,2], 3, 3)
end

@testset "issue #12118: sparse matrices are closed under +, -, min, max" begin
    A12118 = sparse([1,2,3,4,5], [1,2,3,4,5], [1,2,3,4,5])
    B12118 = sparse([1,2,4,5],   [1,2,3,5],   [2,1,-1,-2])

    @test A12118 + B12118 == sparse([1,2,3,4,4,5], [1,2,3,3,4,5], [3,3,3,-1,4,3])
    @test typeof(A12118 + B12118) == SparseMatrixCSC{Int,Int}

    @test A12118 - B12118 == sparse([1,2,3,4,4,5], [1,2,3,3,4,5], [-1,1,3,1,4,7])
    @test typeof(A12118 - B12118) == SparseMatrixCSC{Int,Int}

    @test max.(A12118, B12118) == sparse([1,2,3,4,5], [1,2,3,4,5], [2,2,3,4,5])
    @test typeof(max.(A12118, B12118)) == SparseMatrixCSC{Int,Int}

    @test min.(A12118, B12118) == sparse([1,2,4,5], [1,2,3,5], [1,1,-1,-2])
    @test typeof(min.(A12118, B12118)) == SparseMatrixCSC{Int,Int}
end

@testset "sparse matrix norms" begin
    Ac = sprandn(10,10,.1) + im* sprandn(10,10,.1)
    Ar = sprandn(10,10,.1)
    Ai = ceil.(Int,Ar*100)
    @test opnorm(Ac,1) ≈ opnorm(Array(Ac),1)
    @test opnorm(Ac,Inf) ≈ opnorm(Array(Ac),Inf)
    @test norm(Ac) ≈ norm(Array(Ac))
    @test opnorm(Ar,1) ≈ opnorm(Array(Ar),1)
    @test opnorm(Ar,Inf) ≈ opnorm(Array(Ar),Inf)
    @test norm(Ar) ≈ norm(Array(Ar))
    @test opnorm(Ai,1) ≈ opnorm(Array(Ai),1)
    @test opnorm(Ai,Inf) ≈ opnorm(Array(Ai),Inf)
    @test norm(Ai) ≈ norm(Array(Ai))
    Ai = trunc.(Int, Ar*100)
    @test opnorm(Ai,1) ≈ opnorm(Array(Ai),1)
    @test opnorm(Ai,Inf) ≈ opnorm(Array(Ai),Inf)
    @test norm(Ai) ≈ norm(Array(Ai))
    Ai = round.(Int, Ar*100)
    @test opnorm(Ai,1) ≈ opnorm(Array(Ai),1)
    @test opnorm(Ai,Inf) ≈ opnorm(Array(Ai),Inf)
    @test norm(Ai) ≈ norm(Array(Ai))
    # make certain entries in nzval beyond
    # the range specified in colptr do not
    # impact norm of a sparse matrix
    foo = sparse(1.0I, 4, 4)
    resize!(foo.nzval, 5)
    setindex!(foo.nzval, NaN, 5)
    @test norm(foo) == 2.0
end

@testset "sparse matrix cond" begin
    local A = sparse(reshape([1.0], 1, 1))
    Ac = sprandn(20, 20,.5) + im*sprandn(20, 20,.5)
    Ar = sprandn(20, 20,.5) + eps()*I
    @test cond(A, 1) == 1.0
    # For a discussion of the tolerance, see #14778
    if Base.USE_GPL_LIBS
        @test 0.99 <= cond(Ar, 1) \ opnorm(Ar, 1) * opnorm(inv(Array(Ar)), 1) < 3
        @test 0.99 <= cond(Ac, 1) \ opnorm(Ac, 1) * opnorm(inv(Array(Ac)), 1) < 3
        @test 0.99 <= cond(Ar, Inf) \ opnorm(Ar, Inf) * opnorm(inv(Array(Ar)), Inf) < 3
        @test 0.99 <= cond(Ac, Inf) \ opnorm(Ac, Inf) * opnorm(inv(Array(Ac)), Inf) < 3
    end
    @test_throws ArgumentError cond(A,2)
    @test_throws ArgumentError cond(A,3)
    Arect = spzeros(10, 6)
    @test_throws DimensionMismatch cond(Arect, 1)
    @test_throws ArgumentError cond(Arect,2)
    @test_throws DimensionMismatch cond(Arect, Inf)
end

@testset "sparse matrix opnormestinv" begin
    Random.seed!(1234)
    Ac = sprandn(20,20,.5) + im* sprandn(20,20,.5)
    Aci = ceil.(Int64, 100*sprand(20,20,.5)) + im*ceil.(Int64, sprand(20,20,.5))
    Ar = sprandn(20,20,.5)
    Ari = ceil.(Int64, 100*Ar)
    if Base.USE_GPL_LIBS
        # NOTE: opnormestinv is probabilistic, so requires a fixed seed (set above in Random.seed!(1234))
        @test SparseArrays.opnormestinv(Ac,3) ≈ opnorm(inv(Array(Ac)),1) atol=1e-4
        @test SparseArrays.opnormestinv(Aci,3) ≈ opnorm(inv(Array(Aci)),1) atol=1e-4
        @test SparseArrays.opnormestinv(Ar) ≈ opnorm(inv(Array(Ar)),1) atol=1e-4
        @test_throws ArgumentError SparseArrays.opnormestinv(Ac,0)
        @test_throws ArgumentError SparseArrays.opnormestinv(Ac,21)
    end
    @test_throws DimensionMismatch SparseArrays.opnormestinv(sprand(3,5,.9))
end

@testset "issue #13008" begin
    @test_throws ArgumentError sparse(Vector(1:100), Vector(1:100), fill(5,100), 5, 5)
    @test_throws ArgumentError sparse(Int[], Vector(1:5), Vector(1:5))
end

@testset "issue #13024" begin
    A13024 = sparse([1,2,3,4,5], [1,2,3,4,5], fill(true,5))
    B13024 = sparse([1,2,4,5],   [1,2,3,5],   fill(true,4))

    @test broadcast(&, A13024, B13024) == sparse([1,2,5], [1,2,5], fill(true,3))
    @test typeof(broadcast(&, A13024, B13024)) == SparseMatrixCSC{Bool,Int}

    @test broadcast(|, A13024, B13024) == sparse([1,2,3,4,4,5], [1,2,3,3,4,5], fill(true,6))
    @test typeof(broadcast(|, A13024, B13024)) == SparseMatrixCSC{Bool,Int}

    @test broadcast(⊻, A13024, B13024) == sparse([3,4,4], [3,3,4], fill(true,3), 5, 5)
    @test typeof(broadcast(⊻, A13024, B13024)) == SparseMatrixCSC{Bool,Int}

    @test broadcast(max, A13024, B13024) == sparse([1,2,3,4,4,5], [1,2,3,3,4,5], fill(true,6))
    @test typeof(broadcast(max, A13024, B13024)) == SparseMatrixCSC{Bool,Int}

    @test broadcast(min, A13024, B13024) == sparse([1,2,5], [1,2,5], fill(true,3))
    @test typeof(broadcast(min, A13024, B13024)) == SparseMatrixCSC{Bool,Int}

    for op in (+, -)
        @test op(A13024, B13024) == op(Array(A13024), Array(B13024))
    end
    for op in (max, min, &, |, xor)
        @test op.(A13024, B13024) == op.(Array(A13024), Array(B13024))
    end
end

@testset "fillstored!" begin
    @test LinearAlgebra.fillstored!(sparse(2.0I, 5, 5), 1) == Matrix(I, 5, 5)
end

@testset "factorization" begin
    Random.seed!(123)
    local A
    A = sparse(Diagonal(rand(5))) + sprandn(5, 5, 0.2) + im*sprandn(5, 5, 0.2)
    A = A + copy(A')
    @test !Base.USE_GPL_LIBS || abs(det(factorize(Hermitian(A)))) ≈ abs(det(factorize(Array(A))))
    A = sparse(Diagonal(rand(5))) + sprandn(5, 5, 0.2) + im*sprandn(5, 5, 0.2)
    A = A*A'
    @test !Base.USE_GPL_LIBS || abs(det(factorize(Hermitian(A)))) ≈ abs(det(factorize(Array(A))))
    A = sparse(Diagonal(rand(5))) + sprandn(5, 5, 0.2)
    A = A + copy(transpose(A))
    @test !Base.USE_GPL_LIBS || abs(det(factorize(Symmetric(A)))) ≈ abs(det(factorize(Array(A))))
    A = sparse(Diagonal(rand(5))) + sprandn(5, 5, 0.2)
    A = A*transpose(A)
    @test !Base.USE_GPL_LIBS || abs(det(factorize(Symmetric(A)))) ≈ abs(det(factorize(Array(A))))
    @test factorize(triu(A)) == triu(A)
    @test isa(factorize(triu(A)), UpperTriangular{Float64, SparseMatrixCSC{Float64, Int}})
    @test factorize(tril(A)) == tril(A)
    @test isa(factorize(tril(A)), LowerTriangular{Float64, SparseMatrixCSC{Float64, Int}})
    C, b = A[:, 1:4], fill(1., size(A, 1))
    @test !Base.USE_GPL_LIBS || factorize(C)\b ≈ Array(C)\b
    @test_throws ErrorException eigen(A)
    @test_throws ErrorException inv(A)
end

@testset "issue #13792, use sparse triangular solvers for sparse triangular solves" begin
    local A, n, x
    n = 100
    A, b = sprandn(n, n, 0.5) + sqrt(n)*I, fill(1., n)
    @test LowerTriangular(A)\(LowerTriangular(A)*b) ≈ b
    @test UpperTriangular(A)\(UpperTriangular(A)*b) ≈ b
    A[2,2] = 0
    dropzeros!(A)
    @test_throws LinearAlgebra.SingularException LowerTriangular(A)\b
    @test_throws LinearAlgebra.SingularException UpperTriangular(A)\b
end

@testset "issue described in https://groups.google.com/forum/#!topic/julia-dev/QT7qpIpgOaA" begin
    @test sparse([1,1], [1,1], [true, true]) == sparse([1,1], [1,1], [true, true], 1, 1) == fill(true, 1, 1)
    @test sparsevec([1,1], [true, true]) == sparsevec([1,1], [true, true], 1) == fill(true, 1)
end

@testset "issparse for specialized matrix types" begin
    m = sprand(10, 10, 0.1)
    @test issparse(Symmetric(m))
    @test issparse(Hermitian(m))
    @test issparse(LowerTriangular(m))
    @test issparse(LinearAlgebra.UnitLowerTriangular(m))
    @test issparse(UpperTriangular(m))
    @test issparse(LinearAlgebra.UnitUpperTriangular(m))
    @test issparse(Symmetric(Array(m))) == false
    @test issparse(Hermitian(Array(m))) == false
    @test issparse(LowerTriangular(Array(m))) == false
    @test issparse(LinearAlgebra.UnitLowerTriangular(Array(m))) == false
    @test issparse(UpperTriangular(Array(m))) == false
    @test issparse(LinearAlgebra.UnitUpperTriangular(Array(m))) == false
end

@testset "test created type of sprand{T}(::Type{T}, m::Integer, n::Integer, density::AbstractFloat)" begin
    m = sprand(Float32, 10, 10, 0.1)
    @test eltype(m) == Float32
    m = sprand(Float64, 10, 10, 0.1)
    @test eltype(m) == Float64
    m = sprand(Int32, 10, 10, 0.1)
    @test eltype(m) == Int32
end

@testset "issue #16073" begin
    @inferred sprand(1, 1, 1.0)
    @inferred sprand(1, 1, 1.0, rand, Float64)
    @inferred sprand(1, 1, 1.0, x -> round.(Int, rand(x) * 100))
end

# Test that concatenations of combinations of sparse matrices with sparse matrices or dense
# matrices/vectors yield sparse arrays
@testset "sparse and dense concatenations" begin
    N = 4
    densevec = fill(1., N)
    densemat = diagm(0 => densevec)
    spmat = spdiagm(0 => densevec)
    # Test that concatenations of pairs of sparse matrices yield sparse arrays
    @test issparse(vcat(spmat, spmat))
    @test issparse(hcat(spmat, spmat))
    @test issparse(hvcat((2,), spmat, spmat))
    @test issparse(cat(spmat, spmat; dims=(1,2)))
    # Test that concatenations of a sparse matrice with a dense matrix/vector yield sparse arrays
    @test issparse(vcat(spmat, densemat))
    @test issparse(vcat(densemat, spmat))
    for densearg in (densevec, densemat)
        @test issparse(hcat(spmat, densearg))
        @test issparse(hcat(densearg, spmat))
        @test issparse(hvcat((2,), spmat, densearg))
        @test issparse(hvcat((2,), densearg, spmat))
        @test issparse(cat(spmat, densearg; dims=(1,2)))
        @test issparse(cat(densearg, spmat; dims=(1,2)))
    end
end

@testset "issue #14816" begin
    m = 5
    intmat = fill(1, m, m)
    ltintmat = LowerTriangular(rand(1:5, m, m))
    @test \(transpose(ltintmat), sparse(intmat)) ≈ \(transpose(ltintmat), intmat)
end

# Test temporary fix for issue #16548 in PR #16979. Somewhat brittle. Expect to remove with `\` revisions.
@testset "issue #16548" begin
    ms = methods(\, (SparseMatrixCSC, AbstractVecOrMat)).ms
    @test all(m -> m.module == SparseArrays, ms)
end

@testset "row indexing a SparseMatrixCSC with non-Int integer type" begin
    local A = sparse(UInt32[1,2,3], UInt32[1,2,3], [1.0,2.0,3.0])
    @test A[1,1:3] == A[1,:] == [1,0,0]
end

# Check that `broadcast` methods specialized for unary operations over `SparseMatrixCSC`s
# are called. (Issue #18705.) EDIT: #19239 unified broadcast over a single sparse matrix,
# eliminating the former operation classes.
@testset "issue #18705" begin
    S = sparse(Diagonal(1.0:5.0))
    @test isa(sin.(S), SparseMatrixCSC)
end

@testset "issue #19225" begin
    X = sparse([1 -1; -1 1])
    for T in (Symmetric, Hermitian)
        Y = T(copy(X))
        _Y = similar(Y)
        copyto!(_Y, Y)
        @test _Y == Y

        W = T(copy(X), :L)
        copyto!(W, Y)
        @test W.data == Y.data
        @test W.uplo != Y.uplo

        W[1,1] = 4
        @test W == T(sparse([4 -1; -1 1]))
        @test_throws ArgumentError (W[1,2] = 2)

        @test Y + I == T(sparse([2 -1; -1 2]))
        @test Y - I == T(sparse([0 -1; -1 0]))
        @test Y * I == Y

        @test Y .+ 1 == T(sparse([2 0; 0 2]))
        @test Y .- 1 == T(sparse([0 -2; -2 0]))
        @test Y * 2 == T(sparse([2 -2; -2 2]))
        @test Y / 1 == Y
    end
end

@testset "issue #19304" begin
    @inferred hcat(sparse(rand(2,1)), I)
    @inferred hcat(sparse(rand(2,1)), 1.0I)
    @inferred hcat(sparse(rand(2,1)), Matrix(I, 2, 2))
    @inferred hcat(sparse(rand(2,1)), Matrix(1.0I, 2, 2))
end

# Check that `broadcast` methods specialized for unary operations over
# `SparseMatrixCSC`s determine a reasonable return type.
@testset "issue #18974" begin
    S = sparse(Diagonal(Int64(1):Int64(4)))
    @test eltype(sin.(S)) == Float64
end

# Check calling of unary minus method specialized for SparseMatrixCSCs
@testset "issue #19503" begin
    @test which(-, (SparseMatrixCSC,)).module == SparseArrays
end

@testset "issue #14398" begin
    @test collect(view(sparse(I, 10, 10), 1:5, 1:5)') ≈ Matrix(I, 5, 5)
end

@testset "dropstored issue #20513" begin
    x = sparse(rand(3,3))
    SparseArrays.dropstored!(x, 1, 1)
    @test x[1, 1] == 0.0
    @test x.colptr == [1, 3, 6, 9]
    SparseArrays.dropstored!(x, 2, 1)
    @test x.colptr == [1, 2, 5, 8]
    @test x[2, 1] == 0.0
    SparseArrays.dropstored!(x, 2, 2)
    @test x.colptr == [1, 2, 4, 7]
    @test x[2, 2] == 0.0
    SparseArrays.dropstored!(x, 2, 3)
    @test x.colptr == [1, 2, 4, 6]
    @test x[2, 3] == 0.0
end

@testset "setindex issue #20657" begin
    local A = spzeros(3, 3)
    I = [1, 1, 1]; J = [1, 1, 1]
    A[I, 1] .= 1
    @test nnz(A) == 1
    A[1, J] .= 1
    @test nnz(A) == 1
    A[I, J] .= 1
    @test nnz(A) == 1
end

@testset "show" begin
    io = IOBuffer()
    show(io, MIME"text/plain"(), sparse(Int64[1], Int64[1], [1.0]))
    @test String(take!(io)) == "1×1 SparseArrays.SparseMatrixCSC{Float64,Int64} with 1 stored entry:\n  [1, 1]  =  1.0"
    show(io, MIME"text/plain"(), spzeros(Float32, Int64, 2, 2))
    @test String(take!(io)) == "2×2 SparseArrays.SparseMatrixCSC{Float32,Int64} with 0 stored entries"

    ioc = IOContext(io, :displaysize => (5, 80), :limit => true)
    show(ioc, MIME"text/plain"(), sparse(Int64[1], Int64[1], [1.0]))
    @test String(take!(io)) == "1×1 SparseArrays.SparseMatrixCSC{Float64,Int64} with 1 stored entry:\n  [1, 1]  =  1.0"
    show(ioc, MIME"text/plain"(), sparse(Int64[1, 1], Int64[1, 2], [1.0, 2.0]))
    @test String(take!(io)) == "1×2 SparseArrays.SparseMatrixCSC{Float64,Int64} with 2 stored entries:\n  ⋮"

    # even number of rows
    ioc = IOContext(io, :displaysize => (8, 80), :limit => true)
    show(ioc, MIME"text/plain"(), sparse(Int64[1,2,3,4], Int64[1,1,2,2], [1.0,2.0,3.0,4.0]))
    @test String(take!(io)) == string("4×2 SparseArrays.SparseMatrixCSC{Float64,Int64} with 4 stored entries:\n  [1, 1]",
                                      "  =  1.0\n  [2, 1]  =  2.0\n  [3, 2]  =  3.0\n  [4, 2]  =  4.0")

    show(ioc, MIME"text/plain"(), sparse(Int64[1,2,3,4,5], Int64[1,1,2,2,3], [1.0,2.0,3.0,4.0,5.0]))
    @test String(take!(io)) ==  string("5×3 SparseArrays.SparseMatrixCSC{Float64,Int64} with 5 stored entries:\n  [1, 1]",
                                       "  =  1.0\n  ⋮\n  [5, 3]  =  5.0")

    show(ioc, MIME"text/plain"(), sparse(fill(1.,5,3)))
    @test String(take!(io)) ==  string("5×3 SparseArrays.SparseMatrixCSC{Float64,$Int} with 15 stored entries:\n  [1, 1]",
                                       "  =  1.0\n  ⋮\n  [5, 3]  =  1.0")

    # odd number of rows
    ioc = IOContext(io, :displaysize => (9, 80), :limit => true)
    show(ioc, MIME"text/plain"(), sparse(Int64[1,2,3,4,5], Int64[1,1,2,2,3], [1.0,2.0,3.0,4.0,5.0]))
    @test String(take!(io)) == string("5×3 SparseArrays.SparseMatrixCSC{Float64,Int64} with 5 stored entries:\n  [1, 1]",
                                      "  =  1.0\n  [2, 1]  =  2.0\n  [3, 2]  =  3.0\n  [4, 2]  =  4.0\n  [5, 3]  =  5.0")

    show(ioc, MIME"text/plain"(), sparse(Int64[1,2,3,4,5,6], Int64[1,1,2,2,3,3], [1.0,2.0,3.0,4.0,5.0,6.0]))
    @test String(take!(io)) ==  string("6×3 SparseArrays.SparseMatrixCSC{Float64,Int64} with 6 stored entries:\n  [1, 1]",
                                       "  =  1.0\n  [2, 1]  =  2.0\n  ⋮\n  [5, 3]  =  5.0\n  [6, 3]  =  6.0")

    show(ioc, MIME"text/plain"(), sparse(fill(1.,6,3)))
    @test String(take!(io)) ==  string("6×3 SparseArrays.SparseMatrixCSC{Float64,$Int} with 18 stored entries:\n  [1, 1]",
                                       "  =  1.0\n  [2, 1]  =  1.0\n  ⋮\n  [5, 3]  =  1.0\n  [6, 3]  =  1.0")

    ioc = IOContext(io, :displaysize => (9, 80))
    show(ioc, MIME"text/plain"(), sparse(Int64[1,2,3,4,5,6], Int64[1,1,2,2,3,3], [1.0,2.0,3.0,4.0,5.0,6.0]))
    @test String(take!(io)) ==  string("6×3 SparseArrays.SparseMatrixCSC{Float64,Int64} with 6 stored entries:\n  [1, 1]  =  1.0\n",
        "  [2, 1]  =  2.0\n  [3, 2]  =  3.0\n  [4, 2]  =  4.0\n  [5, 3]  =  5.0\n  [6, 3]  =  6.0")
end

@testset "check buffers" for n in 1:3
    local A
    colptr = [1,2,3,4]
    rowval = [1,2,3]
    nzval1  = Int[]
    nzval2  = [1,1,1]
    A = SparseMatrixCSC(n, n, colptr, rowval, nzval1)
    @test nnz(A) == n
    @test_throws BoundsError A[n,n]
    A = SparseMatrixCSC(n, n, colptr, rowval, nzval2)
    @test nnz(A) == n
    @test A      == Matrix(I, n, n)
end

@testset "reverse search direction if step < 0 #21986" begin
    local A, B
    A = guardseed(1234) do
        sprand(5, 5, 1/5)
    end
    A = max.(A, copy(A'))
    LinearAlgebra.fillstored!(A, 1)
    B = A[5:-1:1, 5:-1:1]
    @test issymmetric(B)
end

@testset "similar should not alias the input sparse array" begin
    a = sparse(rand(3,3) .+ 0.1)
    b = similar(a, Float32, Int32)
    c = similar(b, Float32, Int32)
    SparseArrays.dropstored!(b, 1, 1)
    @test length(c.rowval) == 9
    @test length(c.nzval) == 9
end

@testset "similar with type conversion" begin
    local A = sparse(1.0I, 5, 5)
    @test size(similar(A, ComplexF64, Int)) == (5, 5)
    @test typeof(similar(A, ComplexF64, Int)) == SparseMatrixCSC{ComplexF64, Int}
    @test size(similar(A, ComplexF64, Int8)) == (5, 5)
    @test typeof(similar(A, ComplexF64, Int8)) == SparseMatrixCSC{ComplexF64, Int8}
    @test similar(A, ComplexF64,(6, 6)) == spzeros(ComplexF64, 6, 6)
    @test convert(Matrix, A) == Array(A) # lolwut, are you lost, test?
end

@testset "similar for SparseMatrixCSC" begin
    local A = sparse(1.0I, 5, 5)
    # test similar without specifications (preserves stored-entry structure)
    simA = similar(A)
    @test typeof(simA) == typeof(A)
    @test size(simA) == size(A)
    @test simA.colptr == A.colptr
    @test simA.rowval == A.rowval
    @test length(simA.nzval) == length(A.nzval)
    # test similar with entry type specification (preserves stored-entry structure)
    simA = similar(A, Float32)
    @test typeof(simA) == SparseMatrixCSC{Float32,eltype(A.colptr)}
    @test size(simA) == size(A)
    @test simA.colptr == A.colptr
    @test simA.rowval == A.rowval
    @test length(simA.nzval) == length(A.nzval)
    # test similar with entry and index type specification (preserves stored-entry structure)
    simA = similar(A, Float32, Int8)
    @test typeof(simA) == SparseMatrixCSC{Float32,Int8}
    @test size(simA) == size(A)
    @test simA.colptr == A.colptr
    @test simA.rowval == A.rowval
    @test length(simA.nzval) == length(A.nzval)
    # test similar with Dims{2} specification (preserves storage space only, not stored-entry structure)
    simA = similar(A, (6,6))
    @test typeof(simA) == typeof(A)
    @test size(simA) == (6,6)
    @test simA.colptr == fill(1, 6+1)
    @test length(simA.rowval) == length(A.rowval)
    @test length(simA.nzval) == length(A.nzval)
    # test similar with entry type and Dims{2} specification (preserves storage space only)
    simA = similar(A, Float32, (6,6))
    @test typeof(simA) == SparseMatrixCSC{Float32,eltype(A.colptr)}
    @test size(simA) == (6,6)
    @test simA.colptr == fill(1, 6+1)
    @test length(simA.rowval) == length(A.rowval)
    @test length(simA.nzval) == length(A.nzval)
    # test similar with entry type, index type, and Dims{2} specification (preserves storage space only)
    simA = similar(A, Float32, Int8, (6,6))
    @test typeof(simA) == SparseMatrixCSC{Float32, Int8}
    @test size(simA) == (6,6)
    @test simA.colptr == fill(1, 6+1)
    @test length(simA.rowval) == length(A.rowval)
    @test length(simA.nzval) == length(A.nzval)
    # test similar with Dims{1} specification (preserves nothing)
    simA = similar(A, (6,))
    @test typeof(simA) == SparseVector{eltype(A.nzval),eltype(A.colptr)}
    @test size(simA) == (6,)
    @test length(simA.nzind) == 0
    @test length(simA.nzval) == 0
    # test similar with entry type and Dims{1} specification (preserves nothing)
    simA = similar(A, Float32, (6,))
    @test typeof(simA) == SparseVector{Float32,eltype(A.colptr)}
    @test size(simA) == (6,)
    @test length(simA.nzind) == 0
    @test length(simA.nzval) == 0
    # test similar with entry type, index type, and Dims{1} specification (preserves nothing)
    simA = similar(A, Float32, Int8, (6,))
    @test typeof(simA) == SparseVector{Float32,Int8}
    @test size(simA) == (6,)
    @test length(simA.nzind) == 0
    @test length(simA.nzval) == 0
    # test entry points to similar with entry type, index type, and non-Dims shape specification
    @test similar(A, Float32, Int8, 6, 6) == similar(A, Float32, Int8, (6, 6))
    @test similar(A, Float32, Int8, 6) == similar(A, Float32, Int8, (6,))
end

@testset "count specializations" begin
    # count should throw for sparse arrays for which zero(eltype) does not exist
    @test_throws MethodError count(SparseMatrixCSC(2, 2, Int[1, 2, 3], Int[1, 2], Any[true, true]))
    @test_throws MethodError count(SparseVector(2, Int[1], Any[true]))
    # count should run only over S.nzval[1:nnz(S)], not S.nzval in full
    @test count(SparseMatrixCSC(2, 2, Int[1, 2, 3], Int[1, 2], Bool[true, true, true])) == 2
end

@testset "sparse findprev/findnext operations" begin

    x = [0,0,0,0,1,0,1,0,1,1,0]
    x_sp = sparse(x)

    for i=1:length(x)
        @test findnext(!iszero, x,i) == findnext(!iszero, x_sp,i)
        @test findprev(!iszero, x,i) == findprev(!iszero, x_sp,i)
    end

    y = [0 0 0 0 0;
         1 0 1 0 0;
         1 0 0 0 1;
         0 0 1 0 0;
         1 0 1 1 0]
    y_sp = sparse(y)

    for i in keys(y)
        @test findnext(!iszero, y,i) == findnext(!iszero, y_sp,i)
        @test findprev(!iszero, y,i) == findprev(!iszero, y_sp,i)
    end

    z_sp = sparsevec(Dict(1=>1, 5=>1, 8=>0, 10=>1))
    z = collect(z_sp)

    for i in keys(z)
        @test findnext(!iszero, z,i) == findnext(!iszero, z_sp,i)
        @test findprev(!iszero, z,i) == findprev(!iszero, z_sp,i)
    end
end

# #20711
@testset "vec returns a view" begin
    local A = sparse(Matrix(1.0I, 3, 3))
    local v = vec(A)
    v[1] = 2
    @test A[1,1] == 2
end

# #25943
@testset "operations on Integer subtypes" begin
    s = sparse(UInt8[1, 2, 3], UInt8[1, 2, 3], UInt8[1, 2, 3])
    @test sum(s, dims=2) == reshape([1, 2, 3], 3, 1)
end

@testset "mapreduce of sparse matrices with trailing elements in nzval #26534" begin
    B = SparseMatrixCSC{Int,Int}(2, 3,
        [1, 3, 4, 5],
        [1, 2, 1, 2, 999, 999, 999, 999],
        [1, 2, 3, 6, 999, 999, 999, 999]
    )
    @test maximum(B) == 6
end

_length_or_count_or_five(::Colon) = 5
_length_or_count_or_five(x::AbstractVector{Bool}) = count(x)
_length_or_count_or_five(x) = length(x)
@testset "nonscalar setindex!" begin
    for I in (1:4, :, 5:-1:2, [], trues(5), setindex!(falses(5), true, 2), 3),
        J in (2:4, :, 4:-1:1, [], setindex!(trues(5), false, 3), falses(5), 4)
        V = sparse(1 .+ zeros(_length_or_count_or_five(I)*_length_or_count_or_five(J)))
        M = sparse(1 .+ zeros(_length_or_count_or_five(I), _length_or_count_or_five(J)))
        if I isa Integer && J isa Integer
            @test_throws MethodError spzeros(5,5)[I, J] = V
            @test_throws MethodError spzeros(5,5)[I, J] = M
            continue
        end
        @test setindex!(spzeros(5, 5), V, I, J) == setindex!(zeros(5,5), V, I, J)
        @test setindex!(spzeros(5, 5), M, I, J) == setindex!(zeros(5,5), M, I, J)
        @test setindex!(spzeros(5, 5), Array(M), I, J) == setindex!(zeros(5,5), M, I, J)
        @test setindex!(spzeros(5, 5), Array(V), I, J) == setindex!(zeros(5,5), V, I, J)
    end
    @test setindex!(spzeros(5, 5), 1:25, :) == setindex!(zeros(5,5), 1:25, :) == reshape(1:25, 5, 5)
    @test setindex!(spzeros(5, 5), (25:-1:1).+spzeros(25), :) == setindex!(zeros(5,5), (25:-1:1).+spzeros(25), :) == reshape(25:-1:1, 5, 5)
    for X in (1:20, sparse(1:20), reshape(sparse(1:20), 20, 1), (1:20) .+ spzeros(20, 1), collect(1:20), collect(reshape(1:20, 20, 1)))
        @test setindex!(spzeros(5, 5), X, 6:25) == setindex!(zeros(5,5), 1:20, 6:25)
        @test setindex!(spzeros(5, 5), X, 21:-1:2) == setindex!(zeros(5,5), 1:20, 21:-1:2)
        b = trues(25)
        b[[6, 8, 13, 15, 23]] .= false
        @test setindex!(spzeros(5, 5), X, b) == setindex!(zeros(5, 5), X, b)
    end
end

@testset "sparse transpose adjoint" begin
    A = sprand(10, 10, 0.75)
    @test A' == SparseMatrixCSC(A')
    @test SparseMatrixCSC(A') isa SparseMatrixCSC
    @test transpose(A) == SparseMatrixCSC(transpose(A))
    @test SparseMatrixCSC(transpose(A)) isa SparseMatrixCSC
end

# PR 28242
@testset "forward and backward solving of transpose/adjoint triangular matrices" begin
    rng = MersenneTwister(20180730)
    n = 10
    A = sprandn(rng, n, n, 0.8); A += Diagonal((1:n) - diag(A))
    B = ones(n, 2)
    for (Ttri, triul ) in ((UpperTriangular, triu), (LowerTriangular, tril))
        for trop in (adjoint, transpose)
            AT = Ttri(A)           # ...Triangular wrapped
            AC = triul(A)          # copied part of A
            ATa = trop(AT)         # wrapped Adjoint
            ACa = sparse(trop(AC)) # copied and adjoint
            @test AT \ B ≈ AC \ B
            @test ATa \ B ≈ ACa \ B
            @test ATa \ sparse(B) == ATa \ B
            @test Matrix(ATa) \ B ≈ ATa \ B
            @test ATa * ( ATa \ B ) ≈ B
        end
    end
end

@testset "Issue #28369" begin
    M = reshape([[1 2; 3 4], [9 10; 11 12], [5 6; 7 8], [13 14; 15 16]], (2,2))
    MP = reshape([[1 2; 3 4], [5 6; 7 8], [9 10; 11 12], [13 14; 15 16]], (2,2))
    S = sparse(M)
    SP = sparse(MP)
    @test isa(transpose(S), Transpose)
    @test transpose(S) == copy(transpose(S))
    @test Array(transpose(S)) == copy(transpose(M))
    @test permutedims(S) == SP
    @test permutedims(S, (2,1)) == SP
    @test permutedims(S, (1,2)) == S
    @test permutedims(S, (1,2)) !== S
    MC = reshape([[(1+im) 2; 3 4], [9 10; 11 12], [(5 + 2im) 6; 7 8], [13 14; 15 16]], (2,2))
    SC = sparse(MC)
    @test isa(adjoint(SC), Adjoint)
    @test adjoint(SC) == copy(adjoint(SC))
    @test adjoint(MC) == copy(adjoint(SC))
end

@testset "Issue #28634" begin
    a = SparseMatrixCSC{Int8, Int16}([1 2; 3 4])
    na = SparseMatrixCSC(a)
    @test typeof(a) === typeof(na)
end

#PR #29045
@testset "Issue #28934" begin
    A = sprand(5,5,0.5)
    D = Diagonal(rand(5))
    C = copy(A)
    m1 = @which mul!(C,A,D)
    m2 = @which mul!(C,D,A)
    @test m1.module == SparseArrays
    @test m2.module == SparseArrays
end

end # module