File: sparsevector.jl

package info (click to toggle)
julia 1.0.3%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 49,452 kB
  • sloc: lisp: 236,453; ansic: 55,579; cpp: 25,603; makefile: 1,685; pascal: 1,130; sh: 956; asm: 86; xml: 76
file content (1263 lines) | stat: -rw-r--r-- 46,891 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
# This file is a part of Julia. License is MIT: https://julialang.org/license

module SparseVectorTests

using Test
using SparseArrays
using LinearAlgebra
using Random

### Data

spv_x1 = SparseVector(8, [2, 5, 6], [1.25, -0.75, 3.5])

@test isa(spv_x1, SparseVector{Float64,Int})

x1_full = zeros(length(spv_x1))
x1_full[SparseArrays.nonzeroinds(spv_x1)] = nonzeros(spv_x1)

@testset "basic properties" begin
    x = spv_x1
    @test eltype(x) == Float64
    @test ndims(x) == 1
    @test length(x) == 8
    @test size(x) == (8,)
    @test size(x,1) == 8
    @test size(x,2) == 1
    @test !isempty(x)

    @test count(!iszero, x) == 3
    @test nnz(x) == 3
    @test SparseArrays.nonzeroinds(x) == [2, 5, 6]
    @test nonzeros(x) == [1.25, -0.75, 3.5]
    @test count(SparseVector(8, [2, 5, 6], [true,false,true])) == 2
end

@testset "conversion to dense Array" begin
    for (x, xf) in [(spv_x1, x1_full)]
        @test isa(Array(x), Vector{Float64})
        @test Array(x) == xf
        @test Vector(x) == xf
    end
end
@testset "show" begin
    @test occursin("1.25", string(spv_x1))
    @test occursin("-0.75", string(spv_x1))
    @test occursin("3.5", string(spv_x1))
end

### Comparison helper to ensure exact equality with internal structure
function exact_equal(x::AbstractSparseVector, y::AbstractSparseVector)
    eltype(x) == eltype(y) &&
    eltype(SparseArrays.nonzeroinds(x)) == eltype(SparseArrays.nonzeroinds(y)) &&
    length(x) == length(y) &&
    SparseArrays.nonzeroinds(x) == SparseArrays.nonzeroinds(y) &&
    nonzeros(x) == nonzeros(y)
end

@testset "other constructors" begin
    # construct empty sparse vector

    @test exact_equal(spzeros(Float64, 8), SparseVector(8, Int[], Float64[]))

    @testset "from list of indices and values" begin
        @test exact_equal(
            sparsevec(Int[], Float64[], 8),
            SparseVector(8, Int[], Float64[]))

        @test exact_equal(
            sparsevec(Int[], Float64[]),
            SparseVector(0, Int[], Float64[]))

        @test exact_equal(
            sparsevec([3, 3], [5.0, -5.0], 8),
            SparseVector(8, [3], [0.0]))

        @test exact_equal(
            sparsevec([2, 3, 6], [12.0, 18.0, 25.0]),
            SparseVector(6, [2, 3, 6], [12.0, 18.0, 25.0]))

        let x0 = SparseVector(8, [2, 3, 6], [12.0, 18.0, 25.0])
            @test exact_equal(
                sparsevec([2, 3, 6], [12.0, 18.0, 25.0], 8), x0)

            @test exact_equal(
                sparsevec([3, 6, 2], [18.0, 25.0, 12.0], 8), x0)

            @test exact_equal(
                sparsevec([2, 3, 4, 4, 6], [12.0, 18.0, 5.0, -5.0, 25.0], 8),
                SparseVector(8, [2, 3, 4, 6], [12.0, 18.0, 0.0, 25.0]))

            @test exact_equal(
                sparsevec([1, 1, 1, 2, 3, 3, 6], [2.0, 3.0, -5.0, 12.0, 10.0, 8.0, 25.0], 8),
                SparseVector(8, [1, 2, 3, 6], [0.0, 12.0, 18.0, 25.0]))

            @test exact_equal(
                sparsevec([2, 3, 6, 7, 7], [12.0, 18.0, 25.0, 5.0, -5.0], 8),
                SparseVector(8, [2, 3, 6, 7], [12.0, 18.0, 25.0, 0.0]))
        end

        @test exact_equal(
            sparsevec(Any[1, 3], [1, 1]),
            sparsevec([1, 3], [1, 1]))

        @test exact_equal(
            sparsevec(Any[1, 3], [1, 1], 5),
            sparsevec([1, 3], [1, 1], 5))
    end
    @testset "from dictionary" begin
        function my_intmap(x)
            a = Dict{Int,eltype(x)}()
            for i in SparseArrays.nonzeroinds(x)
                a[i] = x[i]
            end
            return a
        end

        let x = spv_x1
            a = my_intmap(x)
            xc = sparsevec(a, 8)
            @test exact_equal(x, xc)

            xc = sparsevec(a)
            @test exact_equal(xc, SparseVector(6, [2, 5, 6], [1.25, -0.75, 3.5]))

            d = Dict{Int, Float64}((1 => 0.0, 2 => 1.0, 3 => 2.0))
            @test exact_equal(sparsevec(d), SparseVector(3, [1, 2, 3], [0.0, 1.0, 2.0]))
        end
    end
    @testset "fillstored!" begin
        x = SparseVector(8, [2, 3, 6], [12.0, 18.0, 25.0])
        y = LinearAlgebra.fillstored!(copy(x), 1)
        @test (x .!= 0) == (y .!= 0)
        @test y == SparseVector(8, [2, 3, 6], [1.0, 1.0, 1.0])
    end

    @testset "sprand & sprandn" begin
        let xr = sprand(1000, 0.9)
            @test isa(xr, SparseVector{Float64,Int})
            @test length(xr) == 1000
            @test all(nonzeros(xr) .>= 0.0)
        end

        let xr = sprand(Float32, 1000, 0.9)
            @test isa(xr, SparseVector{Float32,Int})
            @test length(xr) == 1000
            @test all(nonzeros(xr) .>= 0.0)
        end

        let xr = sprandn(1000, 0.9)
            @test isa(xr, SparseVector{Float64,Int})
            @test length(xr) == 1000
            if !isempty(nonzeros(xr))
                @test any(nonzeros(xr) .> 0.0) && any(nonzeros(xr) .< 0.0)
            end
        end

        let xr = sprand(Bool, 1000, 0.9)
            @test isa(xr, SparseVector{Bool,Int})
            @test length(xr) == 1000
            @test all(nonzeros(xr))
        end

        let r1 = MersenneTwister(0), r2 = MersenneTwister(0)
            @test sprand(r1, 100, .9) == sprand(r2, 100, .9)
            @test sprandn(r1, 100, .9) == sprandn(r2, 100, .9)
            @test sprand(r1, Bool, 100, .9) == sprand(r2,  Bool, 100, .9)
        end
    end
end
### Element access

@testset "getindex" begin
    @testset "single integer index" begin
        for (x, xf) in [(spv_x1, x1_full)]
            for i = 1:length(x)
                @test x[i] == xf[i]
            end
        end
    end
    @testset "generic array index" begin
        let x = sprand(100, 0.5)
            I = rand(1:length(x), 20)
            r = x[I]
            @test isa(r, SparseVector{Float64,Int})
            @test all(!iszero, nonzeros(r))
            @test Array(r) == Array(x)[I]
        end

        # issue 24534
        let x = convert(SparseVector{Float64,UInt32},sprandn(100,0.5))
            I = rand(1:length(x), 20)
            r = x[I]
            @test isa(r, SparseVector{Float64,UInt32})
            @test all(!iszero, nonzeros(r))
            @test Array(r) == Array(x)[I]
        end

        # issue 24534
        let x = convert(SparseVector{Float64,UInt32},sprandn(100,0.5))
            I = rand(1:length(x), 20,1)
            r = x[I]
            @test isa(r, SparseMatrixCSC{Float64,UInt32})
            @test all(!iszero, nonzeros(r))
            @test Array(r) == Array(x)[I]
        end
    end
    @testset "boolean array index" begin
        let x = sprand(10, 10, 0.5)
            I = rand(1:size(x, 2), 10)
            bI = falses(size(x, 2))
            bI[I] .= true
            r = x[1,bI]
            @test isa(r, SparseVector{Float64,Int})
            @test all(!iszero, nonzeros(r))
            @test Array(r) == Array(x)[1,bI]
        end

        let x = sprand(10, 0.5)
            I = rand(1:length(x), 5)
            bI = falses(length(x))
            bI[I] .= true
            r = x[bI]
            @test isa(r, SparseVector{Float64,Int})
            @test all(!iszero, nonzeros(r))
            @test Array(r) == Array(x)[bI]
        end
    end
end
@testset "setindex" begin
    let xc = spzeros(Float64, 8)
        xc[3] = 2.0
        @test exact_equal(xc, SparseVector(8, [3], [2.0]))
    end

    let xc = copy(spv_x1)
        xc[5] = 2.0
        @test exact_equal(xc, SparseVector(8, [2, 5, 6], [1.25, 2.0, 3.5]))
    end

    let xc = copy(spv_x1)
        xc[3] = 4.0
        @test exact_equal(xc, SparseVector(8, [2, 3, 5, 6], [1.25, 4.0, -0.75, 3.5]))

        xc[1] = 6.0
        @test exact_equal(xc, SparseVector(8, [1, 2, 3, 5, 6], [6.0, 1.25, 4.0, -0.75, 3.5]))

        xc[8] = -1.5
        @test exact_equal(xc, SparseVector(8, [1, 2, 3, 5, 6, 8], [6.0, 1.25, 4.0, -0.75, 3.5, -1.5]))
    end

    let xc = copy(spv_x1)
        xc[5] = 0.0
        @test exact_equal(xc, SparseVector(8, [2, 5, 6], [1.25, 0.0, 3.5]))

        xc[6] = 0.0
        @test exact_equal(xc, SparseVector(8, [2, 5, 6], [1.25, 0.0, 0.0]))

        xc[2] = 0.0
        @test exact_equal(xc, SparseVector(8, [2, 5, 6], [0.0, 0.0, 0.0]))

        xc[1] = 0.0
        @test exact_equal(xc, SparseVector(8, [2, 5, 6], [0.0, 0.0, 0.0]))
    end
end
@testset "dropstored!" begin
    x = SparseVector(10, [2, 7, 9], [2.0, 7.0, 9.0])
    # Test argument bounds checking for dropstored!(x, i)
    @test_throws BoundsError SparseArrays.dropstored!(x, 0)
    @test_throws BoundsError SparseArrays.dropstored!(x, 11)
    # Test behavior of dropstored!(x, i)
    # --> Test dropping a single stored entry
    @test SparseArrays.dropstored!(x, 2) == SparseVector(10, [7, 9], [7.0, 9.0])
    # --> Test dropping a single nonstored entry
    @test SparseArrays.dropstored!(x, 5) == SparseVector(10, [7, 9], [7.0, 9.0])
end

@testset "findall and findnz" begin
    @test findall(!iszero, spv_x1) == findall(!iszero, x1_full)
    @test findall(spv_x1 .> 1) == findall(x1_full .> 1)
    @test findall(x->x>1, spv_x1) == findall(x->x>1, x1_full)
    @test findnz(spv_x1) == (findall(!iszero, x1_full), filter(x->x!=0, x1_full))
    let xc = SparseVector(8, [2, 3, 5], [1.25, 0, -0.75]), fc = Array(xc)
        @test findall(!iszero, xc) == findall(!iszero, fc)
        @test findnz(xc) == ([2, 3, 5], [1.25, 0, -0.75])
    end
end
### Array manipulation

@testset "copy[!]" begin

    let x = spv_x1
        xc = copy(x)
        @test isa(xc, SparseVector{Float64,Int})
        @test x.nzind !== xc.nzval
        @test x.nzval !== xc.nzval
        @test exact_equal(x, xc)
    end

    let x1 = SparseVector(8, [2, 5, 6], [12.2, 1.4, 5.0])
        x2 = SparseVector(8, [3, 4], [1.2, 3.4])
        copyto!(x2, x1)
        @test x2 == x1
        x2 = SparseVector(8, [2, 4, 8], [10.3, 7.4, 3.1])
        copyto!(x2, x1)
        @test x2 == x1
        x2 = SparseVector(8, [1, 3, 4, 7], [0.3, 1.2, 3.4, 0.1])
        copyto!(x2, x1)
        @test x2 == x1
        x2 = SparseVector(10, [3, 4], [1.2, 3.4])
        copyto!(x2, x1)
        @test x2[1:8] == x1
        @test x2[9:10] == spzeros(2)
        x2 = SparseVector(10, [3, 4, 9], [1.2, 3.4, 17.8])
        copyto!(x2, x1)
        @test x2[1:8] == x1
        @test x2[9] == 17.8
        @test x2[10] == 0
        x2 = SparseVector(10, [3, 4, 5, 6, 9], [8.3, 7.2, 1.2, 3.4, 17.8])
        copyto!(x2, x1)
        @test x2[1:8] == x1
        @test x2[9] == 17.8
        @test x2[10] == 0
        x2 = SparseVector(6, [3, 4], [1.2, 3.4])
        @test_throws BoundsError copyto!(x2, x1)
    end

    let x1 = sparse([2, 1, 2], [1, 3, 3], [12.2, 1.4, 5.0], 2, 4)
        x2 = SparseVector(8, [3, 4], [1.2, 3.4])
        copyto!(x2, x1)
        @test x2[:] == x1[:]
        x2 = SparseVector(8, [2, 4, 8], [10.3, 7.4, 3.1])
        copyto!(x2, x1)
        @test x2[:] == x1[:]
        x2 = SparseVector(8, [1, 3, 4, 7], [0.3, 1.2, 3.4, 0.1])
        copyto!(x2, x1)
        @test x2[:] == x1[:]
        x2 = SparseVector(10, [3, 4], [1.2, 3.4])
        copyto!(x2, x1)
        @test x2[1:8] == x1[:]
        @test x2[9:10] == spzeros(2)
        x2 = SparseVector(10, [3, 4, 9], [1.2, 3.4, 17.8])
        copyto!(x2, x1)
        @test x2[1:8] == x1[:]
        @test x2[9] == 17.8
        @test x2[10] == 0
        x2 = SparseVector(10, [3, 4, 5, 6, 9], [8.3, 7.2, 1.2, 3.4, 17.8])
        copyto!(x2, x1)
        @test x2[1:8] == x1[:]
        @test x2[9] == 17.8
        @test x2[10] == 0
        x2 = SparseVector(6, [3, 4], [1.2, 3.4])
        @test_throws BoundsError copyto!(x2, x1)
    end

    let x1 = SparseVector(8, [2, 5, 6], [12.2, 1.4, 5.0])
        x2 = sparse([1, 2], [2, 2], [1.2, 3.4], 2, 4)
        copyto!(x2, x1)
        @test x2[:] == x1[:]
        x2 = sparse([2, 2, 2], [1, 3, 4], [10.3, 7.4, 3.1], 2, 4)
        copyto!(x2, x1)
        @test x2[:] == x1[:]
        x2 = sparse([1, 1, 2, 1], [1, 2, 2, 4], [0.3, 1.2, 3.4, 0.1], 2, 4)
        copyto!(x2, x1)
        @test x2[:] == x1[:]
        x2 = sparse([1, 2], [2, 2], [1.2, 3.4], 2, 5)
        copyto!(x2, x1)
        @test x2[1:8] == x1
        @test x2[9:10] == spzeros(2)
        x2 = sparse([1, 2, 1], [2, 2, 5], [1.2, 3.4, 17.8], 2, 5)
        copyto!(x2, x1)
        @test x2[1:8] == x1
        @test x2[9] == 17.8
        @test x2[10] == 0
        x2 = sparse([1, 2, 1, 2, 1], [2, 2, 3, 3, 5], [8.3, 7.2, 1.2, 3.4, 17.8], 2, 5)
        copyto!(x2, x1)
        @test x2[1:8] == x1
        @test x2[9] == 17.8
        @test x2[10] == 0
        x2 = sparse([1, 2], [2, 2], [1.2, 3.4], 2, 3)
        @test_throws BoundsError copyto!(x2, x1)
    end
end
@testset "vec/reinterpret/float/complex" begin
    a = SparseVector(8, [2, 5, 6], Int32[12, 35, 72])
    # vec
    @test vec(a) == a

    # float
    af = float(a)
    @test float(af) == af
    @test isa(af, SparseVector{Float64,Int})
    @test exact_equal(af, SparseVector(8, [2, 5, 6], [12., 35., 72.]))
    @test sparsevec(transpose(transpose(af))) == af

    # complex
    acp = complex(af)
    @test complex(acp) == acp
    @test isa(acp, SparseVector{ComplexF64,Int})
    @test exact_equal(acp, SparseVector(8, [2, 5, 6], complex([12., 35., 72.])))
    @test sparsevec((acp')') == acp
end

@testset "Type conversion" begin
    let x = convert(SparseVector, sparse([2, 5, 6], [1, 1, 1], [1.25, -0.75, 3.5], 8, 1))
        @test isa(x, SparseVector{Float64,Int})
        @test exact_equal(x, spv_x1)
    end

    let x = spv_x1, xf = x1_full
        xc = convert(SparseVector, xf)
        @test isa(xc, SparseVector{Float64,Int})
        @test exact_equal(xc, x)

        xc = convert(SparseVector{Float32,Int}, x)
        xf32 = SparseVector(8, [2, 5, 6], [1.25f0, -0.75f0, 3.5f0])
        @test isa(xc, SparseVector{Float32,Int})
        @test exact_equal(xc, xf32)

        xc = convert(SparseVector{Float32}, x)
        @test isa(xc, SparseVector{Float32,Int})
        @test exact_equal(xc, xf32)

        xm = convert(SparseMatrixCSC, x)
        @test isa(xm, SparseMatrixCSC{Float64,Int})
        @test Array(xm) == reshape(xf, 8, 1)

        xm = convert(SparseMatrixCSC{Float32}, x)
        @test isa(xm, SparseMatrixCSC{Float32,Int})
        @test Array(xm) == reshape(convert(Vector{Float32}, xf), 8, 1)
    end
end

@testset "Concatenation" begin
    let m = 80, n = 100
        A = Vector{SparseVector{Float64,Int}}(undef, n)
        tnnz = 0
        for i = 1:length(A)
            A[i] = sprand(m, 0.3)
            tnnz += nnz(A[i])
        end

        H = hcat(A...)
        @test isa(H, SparseMatrixCSC{Float64,Int})
        @test size(H) == (m, n)
        @test nnz(H) == tnnz
        Hr = zeros(m, n)
        for j = 1:n
            Hr[:,j] = Array(A[j])
        end
        @test Array(H) == Hr

        V = vcat(A...)
        @test isa(V, SparseVector{Float64,Int})
        @test length(V) == m * n
        Vr = vec(Hr)
        @test Array(V) == Vr
    end

    @testset "concatenation of sparse vectors with other types" begin
        # Test that concatenations of combinations of sparse vectors with various other
        # matrix/vector types yield sparse arrays
        let N = 4
            spvec = spzeros(N)
            spmat = spzeros(N, 1)
            densevec = fill(1., N)
            densemat = fill(1., N, 1)
            diagmat = Diagonal(densevec)
            # Test that concatenations of pairwise combinations of sparse vectors with dense
            # vectors/matrices, sparse matrices, or special matrices yield sparse arrays
            for othervecormat in (densevec, densemat, spmat)
                @test issparse(vcat(spvec, othervecormat))
                @test issparse(vcat(othervecormat, spvec))
            end
            for othervecormat in (densevec, densemat, spmat, diagmat)
                @test issparse(hcat(spvec, othervecormat))
                @test issparse(hcat(othervecormat, spvec))
                @test issparse(hvcat((2,), spvec, othervecormat))
                @test issparse(hvcat((2,), othervecormat, spvec))
                @test issparse(cat(spvec, othervecormat; dims=(1,2)))
                @test issparse(cat(othervecormat, spvec; dims=(1,2)))
            end
            # The preceding tests should cover multi-way combinations of those types, but for good
            # measure test a few multi-way combinations involving those types
            @test issparse(vcat(spvec, densevec, spmat, densemat))
            @test issparse(vcat(densevec, spvec, densemat, spmat))
            @test issparse(hcat(spvec, densemat, spmat, densevec, diagmat))
            @test issparse(hcat(densemat, spmat, spvec, densevec, diagmat))
            @test issparse(hvcat((5,), diagmat, densevec, spvec, densemat, spmat))
            @test issparse(hvcat((5,), spvec, densemat, diagmat, densevec, spmat))
            @test issparse(cat(densemat, diagmat, spmat, densevec, spvec; dims=(1,2)))
            @test issparse(cat(spvec, diagmat, densevec, spmat, densemat; dims=(1,2)))
        end
        @testset "vertical concatenation of SparseVectors with different el- and ind-type (#22225)" begin
            spv6464 = SparseVector(0, Int64[], Int64[])
            @test isa(vcat(spv6464, SparseVector(0, Int64[], Int32[])), SparseVector{Int64,Int64})
            @test isa(vcat(spv6464, SparseVector(0, Int32[], Int64[])), SparseVector{Int64,Int64})
            @test isa(vcat(spv6464, SparseVector(0, Int32[], Int32[])), SparseVector{Int64,Int64})
        end
    end
end
@testset "sparsemat: combinations with sparse matrix" begin
    let S = sprand(4, 8, 0.5)
        Sf = Array(S)
        @assert isa(Sf, Matrix{Float64})

        # get a single column
        for j = 1:size(S,2)
            col = S[:, j]
            @test isa(col, SparseVector{Float64,Int})
            @test length(col) == size(S,1)
            @test Array(col) == Sf[:,j]
        end

        # Get a reshaped vector
        v = S[:]
        @test isa(v, SparseVector{Float64,Int})
        @test length(v) == length(S)
        @test Array(v) == Sf[:]

        # Get a linear subset
        for i=0:length(S)
            v = S[1:i]
            @test isa(v, SparseVector{Float64,Int})
            @test length(v) == i
            @test Array(v) == Sf[1:i]
        end
        for i=1:length(S)+1
            v = S[i:end]
            @test isa(v, SparseVector{Float64,Int})
            @test length(v) == length(S) - i + 1
            @test Array(v) == Sf[i:end]
        end
        for i=0:div(length(S),2)
            v = S[1+i:end-i]
            @test isa(v, SparseVector{Float64,Int})
            @test length(v) == length(S) - 2i
            @test Array(v) == Sf[1+i:end-i]
        end
    end

    let r = [1,10], S = sparse(r, r, r)
        Sf = Array(S)
        @assert isa(Sf, Matrix{Int})

        inds = [1,1,1,1,1,1]
        v = S[inds]
        @test isa(v, SparseVector{Int,Int})
        @test length(v) == length(inds)
        @test Array(v) == Sf[inds]

        inds = [2,2,2,2,2,2]
        v = S[inds]
        @test isa(v, SparseVector{Int,Int})
        @test length(v) == length(inds)
        @test Array(v) == Sf[inds]

        # get a single column
        for j = 1:size(S,2)
            col = S[:, j]
            @test isa(col, SparseVector{Int,Int})
            @test length(col) == size(S,1)
            @test Array(col) == Sf[:,j]
        end

        # Get a reshaped vector
        v = S[:]
        @test isa(v, SparseVector{Int,Int})
        @test length(v) == length(S)
        @test Array(v) == Sf[:]

        # Get a linear subset
        for i=0:length(S)
            v = S[1:i]
            @test isa(v, SparseVector{Int,Int})
            @test length(v) == i
            @test Array(v) == Sf[1:i]
        end
        for i=1:length(S)+1
            v = S[i:end]
            @test isa(v, SparseVector{Int,Int})
            @test length(v) == length(S) - i + 1
            @test Array(v) == Sf[i:end]
        end
        for i=0:div(length(S),2)
            v = S[1+i:end-i]
            @test isa(v, SparseVector{Int,Int})
            @test length(v) == length(S) - 2i
            @test Array(v) == Sf[1+i:end-i]
        end
    end
end
## math

### Data

rnd_x0 = sprand(50, 0.6)
rnd_x0f = Array(rnd_x0)

rnd_x1 = sprand(50, 0.7) * 4.0
rnd_x1f = Array(rnd_x1)

spv_x1 = SparseVector(8, [2, 5, 6], [1.25, -0.75, 3.5])
spv_x2 = SparseVector(8, [1, 2, 6, 7], [3.25, 4.0, -5.5, -6.0])

@testset "Arithmetic operations" begin

    let x = spv_x1, x2 = spv_x2
        # negate
        @test exact_equal(-x, SparseVector(8, [2, 5, 6], [-1.25, 0.75, -3.5]))

        # abs and abs2
        @test exact_equal(abs.(x), SparseVector(8, [2, 5, 6], abs.([1.25, -0.75, 3.5])))
        @test exact_equal(abs2.(x), SparseVector(8, [2, 5, 6], abs2.([1.25, -0.75, 3.5])))

        # plus and minus
        xa = SparseVector(8, [1,2,5,6,7], [3.25,5.25,-0.75,-2.0,-6.0])

        @test exact_equal(x + x, x * 2)
        @test exact_equal(x + x2, xa)
        @test exact_equal(x2 + x, xa)

        xb = SparseVector(8, [1,2,5,6,7], [-3.25,-2.75,-0.75,9.0,6.0])
        @test exact_equal(x - x, SparseVector(8, Int[], Float64[]))
        @test exact_equal(x - x2, xb)
        @test exact_equal(x2 - x, -xb)

        @test Array(x) + x2 == Array(xa)
        @test Array(x) - x2 == Array(xb)
        @test x + Array(x2) == Array(xa)
        @test x - Array(x2) == Array(xb)

        # multiplies
        xm = SparseVector(8, [2, 6], [5.0, -19.25])
        @test exact_equal(x .* x, abs2.(x))
        @test exact_equal(x .* x2, xm)
        @test exact_equal(x2 .* x, xm)

        @test Array(x) .* x2 == Array(xm)
        @test x .* Array(x2) == Array(xm)

        # max & min
        @test exact_equal(max.(x, x), x)
        @test exact_equal(min.(x, x), x)
        @test exact_equal(max.(x, x2),
            SparseVector(8, Int[1, 2, 6], Float64[3.25, 4.0, 3.5]))
        @test exact_equal(min.(x, x2),
            SparseVector(8, Int[2, 5, 6, 7], Float64[1.25, -0.75, -5.5, -6.0]))
    end

    ### Complex

    let x = spv_x1, x2 = spv_x2
        # complex
        @test exact_equal(complex.(x, x),
            SparseVector(8, [2,5,6], [1.25+1.25im, -0.75-0.75im, 3.5+3.5im]))
        @test exact_equal(complex.(x, x2),
            SparseVector(8, [1,2,5,6,7], [3.25im, 1.25+4.0im, -0.75+0.0im, 3.5-5.5im, -6.0im]))
        @test exact_equal(complex.(x2, x),
            SparseVector(8, [1,2,5,6,7], [3.25+0.0im, 4.0+1.25im, -0.75im, -5.5+3.5im, -6.0+0.0im]))

        # real, imag and conj

        @test real(x) === x
        @test exact_equal(imag(x), spzeros(Float64, length(x)))
        @test conj(x) === x

        xcp = complex.(x, x2)
        @test exact_equal(real(xcp), x)
        @test exact_equal(imag(xcp), x2)
        @test exact_equal(conj(xcp), complex.(x, -x2))
    end
end
@testset "Zero-preserving math functions: sparse -> sparse" begin
    x1operations = (floor, ceil, trunc, round)
    x0operations = (log1p,  expm1,  sinpi,
                    sin,    tan,    sind,   tand,
                    asin,   atan,   asind,  atand,
                    sinh,   tanh,   asinh,  atanh)

    for (spvec, densevec, operations) in (
            (rnd_x0, rnd_x0f, x0operations),
            (rnd_x1, rnd_x1f, x1operations) )
        for op in operations
            spresvec = op.(spvec)
            @test spresvec == op.(densevec)
            @test all(!iszero, spresvec.nzval)
            resvaltype = typeof(op(zero(eltype(spvec))))
            resindtype = SparseArrays.indtype(spvec)
            @test isa(spresvec, SparseVector{resvaltype,resindtype})
        end
    end
end
@testset "Non-zero-preserving math functions: sparse -> dense" begin
    for op in (exp, exp2, exp10, log, log2, log10,
            cos, cosd, acos, cosh, cospi,
            csc, cscd, acot, csch, acsch,
            cot, cotd, acosd, coth,
            sec, secd, acotd, sech, asech)
        spvec = rnd_x0
        densevec = rnd_x0f
        spresvec = op.(spvec)
        @test spresvec == op.(densevec)
        resvaltype = typeof(op(zero(eltype(spvec))))
        resindtype = SparseArrays.indtype(spvec)
        @test isa(spresvec, SparseVector{resvaltype,resindtype})
    end
end

### Reduction

@testset "sum, norm" begin
    x = spv_x1
    @test sum(x) == 4.0
    @test sum(abs, x) == 5.5
    @test sum(abs2, x) == 14.375

    @test norm(x) == sqrt(14.375)
    @test norm(x, 1) == 5.5
    @test norm(x, 2) == sqrt(14.375)
    @test norm(x, Inf) == 3.5
end

@testset "maximum, minimum" begin
    let x = spv_x1
        @test maximum(x) == 3.5
        @test minimum(x) == -0.75
        @test maximum(abs, x) == 3.5
        @test minimum(abs, x) == 0.0
    end

    let x = abs.(spv_x1)
        @test maximum(x) == 3.5
        @test minimum(x) == 0.0
    end

    let x = -abs.(spv_x1)
        @test maximum(x) == 0.0
        @test minimum(x) == -3.5
    end

    let x = SparseVector(3, [1, 2, 3], [-4.5, 2.5, 3.5])
        @test maximum(x) == 3.5
        @test minimum(x) == -4.5
        @test maximum(abs, x) == 4.5
        @test minimum(abs, x) == 2.5
    end

    let x = spzeros(Float64, 8)
        @test maximum(x) == 0.0
        @test minimum(x) == 0.0
        @test maximum(abs, x) == 0.0
        @test minimum(abs, x) == 0.0
    end
end

### linalg

@testset "BLAS Level-1" begin

    let x = sprand(16, 0.5), x2 = sprand(16, 0.4)
        xf = Array(x)
        xf2 = Array(x2)

        @testset "axpy!" begin
            for c in [1.0, -1.0, 2.0, -2.0]
                y = Array(x)
                @test LinearAlgebra.axpy!(c, x2, y) === y
                @test y == Array(x2 * c + x)
            end
        end
        @testset "scale" begin
            α = 2.5
            sx = SparseVector(x.n, x.nzind, x.nzval * α)
            @test exact_equal(x * α, sx)
            @test exact_equal(x * (α + 0.0*im), complex(sx))
            @test exact_equal(α * x, sx)
            @test exact_equal((α + 0.0*im) * x, complex(sx))
            @test exact_equal(x * α, sx)
            @test exact_equal(α * x, sx)
            @test exact_equal(x .* α, sx)
            @test exact_equal(α .* x, sx)
            @test exact_equal(x / α, SparseVector(x.n, x.nzind, x.nzval / α))

            xc = copy(x)
            @test rmul!(xc, α) === xc
            @test exact_equal(xc, sx)
            xc = copy(x)
            @test lmul!(α, xc) === xc
            @test exact_equal(xc, sx)
            xc = copy(x)
            @test rmul!(xc, complex(α, 0.0)) === xc
            @test exact_equal(xc, sx)
            xc = copy(x)
            @test lmul!(complex(α, 0.0), xc) === xc
            @test exact_equal(xc, sx)
        end

        @testset "dot" begin
            dv = dot(xf, xf2)
            @test dot(x, x) == sum(abs2, x)
            @test dot(x2, x2) == sum(abs2, x2)
            @test dot(x, x2) ≈ dv
            @test dot(x2, x) ≈ dv
            @test dot(Array(x), x2) ≈ dv
            @test dot(x, Array(x2)) ≈ dv
        end
    end

    let x = complex.(sprand(32, 0.6), sprand(32, 0.6)),
        y = complex.(sprand(32, 0.6), sprand(32, 0.6))
        xf = Array(x)::Vector{ComplexF64}
        yf = Array(y)::Vector{ComplexF64}
        @test dot(x, x) ≈ dot(xf, xf)
        @test dot(x, y) ≈ dot(xf, yf)
    end
end

@testset "BLAS Level-2" begin
    @testset "dense A * sparse x -> dense y" begin
        let A = randn(9, 16), x = sprand(16, 0.7)
            xf = Array(x)
            for α in [0.0, 1.0, 2.0], β in [0.0, 0.5, 1.0]
                y = rand(9)
                rr = α*A*xf + β*y
                @test mul!(y, A, x, α, β) === y
                @test y ≈ rr
            end
            y = A*x
            @test isa(y, Vector{Float64})
            @test A*x ≈ A*xf
        end

        let A = randn(16, 9), x = sprand(16, 0.7)
            xf = Array(x)
            for α in [0.0, 1.0, 2.0], β in [0.0, 0.5, 1.0]
                y = rand(9)
                rr = α*A'xf + β*y
                @test mul!(y, transpose(A), x, α, β) === y
                @test y ≈ rr
            end
            y = *(transpose(A), x)
            @test isa(y, Vector{Float64})
            @test y ≈ *(transpose(A), xf)
        end
    end
    @testset "sparse A * sparse x -> dense y" begin
        let A = sprandn(9, 16, 0.5), x = sprand(16, 0.7)
            Af = Array(A)
            xf = Array(x)
            for α in [0.0, 1.0, 2.0], β in [0.0, 0.5, 1.0]
                y = rand(9)
                rr = α*Af*xf + β*y
                @test mul!(y, A, x, α, β) === y
                @test y ≈ rr
            end
            y = SparseArrays.densemv(A, x)
            @test isa(y, Vector{Float64})
            @test y ≈ Af*xf
        end

        let A = sprandn(16, 9, 0.5), x = sprand(16, 0.7)
            Af = Array(A)
            xf = Array(x)
            for α in [0.0, 1.0, 2.0], β in [0.0, 0.5, 1.0]
                y = rand(9)
                rr = α*Af'xf + β*y
                @test mul!(y, transpose(A), x, α, β) === y
                @test y ≈ rr
            end
            y = SparseArrays.densemv(A, x; trans='T')
            @test isa(y, Vector{Float64})
            @test y ≈ *(transpose(Af), xf)
        end

        let A = complex.(sprandn(7, 8, 0.5), sprandn(7, 8, 0.5)),
            x = complex.(sprandn(8, 0.6), sprandn(8, 0.6)),
            x2 = complex.(sprandn(7, 0.75), sprandn(7, 0.75))
            Af = Array(A)
            xf = Array(x)
            x2f = Array(x2)
            @test SparseArrays.densemv(A, x; trans='N') ≈ Af * xf
            @test SparseArrays.densemv(A, x2; trans='T') ≈ transpose(Af) * x2f
            @test SparseArrays.densemv(A, x2; trans='C') ≈ Af'x2f
            @test_throws ArgumentError SparseArrays.densemv(A, x; trans='D')
        end
    end
    @testset "sparse A * sparse x -> sparse y" begin
        let A = sprandn(9, 16, 0.5), x = sprand(16, 0.7), x2 = sprand(9, 0.7)
            Af = Array(A)
            xf = Array(x)
            x2f = Array(x2)

            y = A*x
            @test isa(y, SparseVector{Float64,Int})
            @test all(nonzeros(y) .!= 0.0)
            @test Array(y) ≈ Af * xf

            y = *(transpose(A), x2)
            @test isa(y, SparseVector{Float64,Int})
            @test all(nonzeros(y) .!= 0.0)
            @test Array(y) ≈ Af'x2f
        end

        let A = complex.(sprandn(7, 8, 0.5), sprandn(7, 8, 0.5)),
            x = complex.(sprandn(8, 0.6), sprandn(8, 0.6)),
            x2 = complex.(sprandn(7, 0.75), sprandn(7, 0.75))
            Af = Array(A)
            xf = Array(x)
            x2f = Array(x2)

            y = A*x
            @test isa(y, SparseVector{ComplexF64,Int})
            @test Array(y) ≈ Af * xf

            y = *(transpose(A), x2)
            @test isa(y, SparseVector{ComplexF64,Int})
            @test Array(y) ≈ transpose(Af) * x2f

            y = *(adjoint(A), x2)
            @test isa(y, SparseVector{ComplexF64,Int})
            @test Array(y) ≈ Af'x2f
        end
    end
    @testset "ldiv ops with triangular matrices and sparse vecs (#14005)" begin
        m = 10
        sparsefloatvecs = SparseVector[sprand(m, 0.4) for k in 1:3]
        sparseintvecs = SparseVector[SparseVector(m, sprvec.nzind, round.(Int, sprvec.nzval*10)) for sprvec in sparsefloatvecs]
        sparsecomplexvecs = SparseVector[SparseVector(m, sprvec.nzind, complex.(sprvec.nzval, sprvec.nzval)) for sprvec in sparsefloatvecs]

        sprmat = sprand(m, m, 0.2)
        sparsefloatmat = I + sprmat/(2m)
        sparsecomplexmat = I + SparseMatrixCSC(m, m, sprmat.colptr, sprmat.rowval, complex.(sprmat.nzval, sprmat.nzval)/(4m))
        sparseintmat = 10m*I + SparseMatrixCSC(m, m, sprmat.colptr, sprmat.rowval, round.(Int, sprmat.nzval*10))

        denseintmat = I*10m + rand(1:m, m, m)
        densefloatmat = I + randn(m, m)/(2m)
        densecomplexmat = I + randn(Complex{Float64}, m, m)/(4m)

        inttypes = (Int32, Int64, BigInt)
        floattypes = (Float32, Float64, BigFloat)
        complextypes = (Complex{Float32}, Complex{Float64})
        eltypes = (inttypes..., floattypes..., complextypes...)

        for eltypemat in eltypes
            (densemat, sparsemat) = eltypemat in inttypes ? (denseintmat, sparseintmat) :
                                    eltypemat in floattypes ? (densefloatmat, sparsefloatmat) :
                                    eltypemat in complextypes && (densecomplexmat, sparsecomplexmat)
            densemat = convert(Matrix{eltypemat}, densemat)
            sparsemat = convert(SparseMatrixCSC{eltypemat}, sparsemat)
            trimats = (LowerTriangular(densemat), UpperTriangular(densemat),
                       LowerTriangular(sparsemat), UpperTriangular(sparsemat) )
            unittrimats = (LinearAlgebra.UnitLowerTriangular(densemat), LinearAlgebra.UnitUpperTriangular(densemat),
                           LinearAlgebra.UnitLowerTriangular(sparsemat), LinearAlgebra.UnitUpperTriangular(sparsemat) )

            for eltypevec in eltypes
                spvecs = eltypevec in inttypes ? sparseintvecs :
                         eltypevec in floattypes ? sparsefloatvecs :
                         eltypevec in complextypes && sparsecomplexvecs
                spvecs = SparseVector[SparseVector(m, spvec.nzind, convert(Vector{eltypevec}, spvec.nzval)) for spvec in spvecs]

                for spvec in spvecs
                    fspvec = convert(Array, spvec)
                    # test out-of-place left-division methods
                    for mat in (trimats..., unittrimats...)
                        @test \(mat, spvec)            ≈ \(mat, fspvec)
                        @test \(adjoint(mat), spvec)   ≈ \(adjoint(mat), fspvec)
                        @test \(transpose(mat), spvec) ≈ \(transpose(mat), fspvec)
                    end
                    # test in-place left-division methods not involving quotients
                    if eltypevec == typeof(zero(eltypemat)*zero(eltypevec) + zero(eltypemat)*zero(eltypevec))
                        for mat in unittrimats
                            @test ldiv!(mat, copy(spvec)) ≈ ldiv!(mat, copy(fspvec))
                            @test ldiv!(adjoint(mat), copy(spvec)) ≈ ldiv!(adjoint(mat), copy(fspvec))
                            @test ldiv!(transpose(mat), copy(spvec)) ≈ ldiv!(transpose(mat), copy(fspvec))
                        end
                    end
                    # test in-place left-division methods involving quotients
                    if eltypevec == typeof((zero(eltypemat)*zero(eltypevec) + zero(eltypemat)*zero(eltypevec))/one(eltypemat))
                        for mat in trimats
                            @test ldiv!(mat, copy(spvec)) ≈ ldiv!(mat, copy(fspvec))
                            @test ldiv!(adjoint(mat), copy(spvec)) ≈ ldiv!(adjoint(mat), copy(fspvec))
                            @test ldiv!(transpose(mat), copy(spvec)) ≈ ldiv!(transpose(mat), copy(fspvec))
                        end
                    end
                end
            end
        end
    end
    @testset "#16716" begin
        # The preceding tests miss the edge case where the sparse vector is empty
        origmat = [-1.5 -0.7; 0.0 1.0]
        transmat = copy(origmat')
        utmat = UpperTriangular(origmat)
        ltmat = LowerTriangular(transmat)
        uutmat = LinearAlgebra.UnitUpperTriangular(origmat)
        ultmat = LinearAlgebra.UnitLowerTriangular(transmat)

        zerospvec = spzeros(Float64, 2)
        zerodvec = zeros(Float64, 2)

        for mat in (utmat, ltmat, uutmat, ultmat)
            @test isequal(\(mat, zerospvec), zerodvec)
            @test isequal(\(adjoint(mat), zerospvec), zerodvec)
            @test isequal(\(transpose(mat), zerospvec), zerodvec)
            @test isequal(ldiv!(mat, copy(zerospvec)), zerospvec)
            @test isequal(ldiv!(adjoint(mat), copy(zerospvec)), zerospvec)
            @test isequal(ldiv!(transpose(mat), copy(zerospvec)), zerospvec)
        end
    end
end

@testset "fkeep!" begin
    x = sparsevec(1:7, [3., 2., -1., 1., -2., -3., 3.], 7)
    # droptol
    xdrop = SparseArrays.droptol!(copy(x), 1.5)
    @test exact_equal(xdrop, SparseVector(7, [1, 2, 5, 6, 7], [3., 2., -2., -3., 3.]))
    SparseArrays.droptol!(xdrop, 2.5)
    @test exact_equal(xdrop, SparseVector(7, [1, 6, 7], [3., -3., 3.]))
    SparseArrays.droptol!(xdrop, 3.)
    @test exact_equal(xdrop, SparseVector(7, Int[], Float64[]))

    xdrop = copy(x)
    # This will keep index 1, 3, 4, 7 in xdrop
    f_drop(i, x) = (abs(x) == 1.) || (i in [1, 7])
    SparseArrays.fkeep!(xdrop, f_drop)
    @test exact_equal(xdrop, SparseVector(7, [1, 3, 4, 7], [3., -1., 1., 3.]))
end

@testset "dropzeros[!] with length=$m" for m in (10, 20, 30)
    Random.seed!(123)
    nzprob, targetnumposzeros, targetnumnegzeros = 0.4, 5, 5
    v = sprand(m, nzprob)
    struczerosv = findall(x -> x == 0, v)
    poszerosinds = unique(rand(struczerosv, targetnumposzeros))
    negzerosinds = unique(rand(struczerosv, targetnumnegzeros))
    vposzeros = copy(v)
    vposzeros[poszerosinds] .= 2
    vnegzeros = copy(v)
    vnegzeros[negzerosinds] .= -2
    vbothsigns = copy(vposzeros)
    vbothsigns[negzerosinds] .= -2
    map!(x -> x == 2 ? 0.0 : x, vposzeros.nzval, vposzeros.nzval)
    map!(x -> x == -2 ? -0.0 : x, vnegzeros.nzval, vnegzeros.nzval)
    map!(x -> x == 2 ? 0.0 : x == -2 ? -0.0 : x, vbothsigns.nzval, vbothsigns.nzval)
    for vwithzeros in (vposzeros, vnegzeros, vbothsigns)
        # Basic functionality / dropzeros!
        @test dropzeros!(copy(vwithzeros)) == v
        @test dropzeros!(copy(vwithzeros), trim = false) == v
        # Basic functionality / dropzeros
        @test dropzeros(vwithzeros) == v
        @test dropzeros(vwithzeros, trim = false) == v
        # Check trimming works as expected
        @test length(dropzeros!(copy(vwithzeros)).nzval) == length(v.nzval)
        @test length(dropzeros!(copy(vwithzeros)).nzind) == length(v.nzind)
        @test length(dropzeros!(copy(vwithzeros), trim = false).nzval) == length(vwithzeros.nzval)
        @test length(dropzeros!(copy(vwithzeros), trim = false).nzind) == length(vwithzeros.nzind)
    end
end

@testset "original dropzeros! test" begin
    xdrop = sparsevec(1:7, [3., 2., -1., 1., -2., -3., 3.], 7)
    xdrop.nzval[[2, 4, 6]] .= 0.0
    SparseArrays.dropzeros!(xdrop)
    @test exact_equal(xdrop, SparseVector(7, [1, 3, 5, 7], [3, -1., -2., 3.]))
end

# It's tempting to share data between a SparseVector and a SparseMatrix,
# but if that's done, then modifications to one or the other will cause
# an inconsistent state:
sv = sparse(1:10)
sm = convert(SparseMatrixCSC, sv)
sv[1] = 0
@test Array(sm)[2:end] == 2:10

# Ensure that sparsevec with all-zero values returns an array of zeros
@test sparsevec([1,2,3],[0,0,0]) == [0,0,0]

@testset "stored zero semantics" begin
    # Compare stored zero semantics between SparseVector and SparseMatrixCSC
    let S = SparseMatrixCSC(10,1,[1,6],[1,3,5,6,7],[0,1,2,0,3]), x = SparseVector(10,[1,3,5,6,7],[0,1,2,0,3])
        @test nnz(S) == nnz(x) == 5
        for I = (:, 1:10, Vector(1:10))
            @test S[I,1] == S[I] == x[I] == x
            @test nnz(S[I,1]) == nnz(S[I]) == nnz(x[I]) == nnz(x)
        end
        for I = (2:9, 1:2, 9:10, [3,6,1], [10,9,8], [])
            @test S[I,1] == S[I] == x[I]
            @test nnz(S[I,1]) == nnz(S[I]) == nnz(x[I])
        end
        @test S[[1 3 5; 2 4 6]] == x[[1 3 5; 2 4 6]]
        @test nnz(S[[1 3 5; 2 4 6]]) == nnz(x[[1 3 5; 2 4 6]])
    end
end

@testset "Issue 14013" begin
    s14013 = sparse([10.0 0.0 30.0; 0.0 1.0 0.0])
    a14013 = [10.0 0.0 30.0; 0.0 1.0 0.0]
    @test s14013 == a14013
    @test vec(s14013) == s14013[:] == a14013[:]
    @test Array(s14013)[1,:] == s14013[1,:] == a14013[1,:] == [10.0, 0.0, 30.0]
    @test Array(s14013)[2,:] == s14013[2,:] == a14013[2,:] == [0.0, 1.0, 0.0]
end
@testset "Issue 14046" begin
    s14046 = sprand(5, 1.0)
    @test spzeros(5) + s14046 == s14046
    @test 2*s14046 == s14046 + s14046
end
@testset "Issue 14589" begin
    # test vectors with no zero elements
    let x = sparsevec(1:7, [3., 2., -1., 1., -2., -3., 3.], 7)
        @test Vector(sort(x)) == sort(Vector(x))
    end
    # test vectors with all zero elements
    let x = sparsevec(Int64[], Float64[], 7)
        @test Vector(sort(x)) == sort(Vector(x))
    end
    # test vector with sparsity approx 1/2
    let x = sparsevec(1:7, [3., 2., -1., 1., -2., -3., 3.], 15)
        @test Vector(sort(x)) == sort(Vector(x))
        # apply three distinct transformations where zeros sort into start/middle/end
        @test Vector(sort(x, by=abs)) == sort(Vector(x), by=abs)
        @test Vector(sort(x, by=sign)) == sort(Vector(x), by=sign)
        @test Vector(sort(x, by=inv)) == sort(Vector(x), by=inv)
    end
end
@testset "fill!" begin
    for Tv in [Float32, Float64, Int64, Int32, ComplexF64]
        for Ti in [Int16, Int32, Int64, BigInt]
            sptypes = (SparseMatrixCSC{Tv, Ti}, SparseVector{Tv, Ti})
            sizes = [(3, 4), (3,)]
            for (siz, Sp) in zip(sizes, sptypes)
                arr = rand(Tv, siz...)
                sparr = Sp(arr)
                x = rand(Tv)
                @test fill!(sparr, x) == fill(x, siz)
                @test fill!(sparr, 0) == fill(0, siz)
            end
        end
    end
end

@testset "13130 and 16661" begin
    @test issparse([sprand(10,10,.1) sprand(10,.1)])
    @test issparse([sprand(10,1,.1); sprand(10,.1)])

    @test issparse([sprand(10,10,.1) rand(10)])
    @test issparse([sprand(10,1,.1)  rand(10)])
    @test issparse([sprand(10,2,.1) sprand(10,1,.1) rand(10)])
    @test issparse([sprand(10,1,.1); rand(10)])

    @test issparse([sprand(10,.1)  rand(10)])
    @test issparse([sprand(10,.1); rand(10)])
end

mutable struct t20488 end

@testset "show" begin
    io = IOBuffer()
    show(io, MIME"text/plain"(), sparsevec(Int64[1], [1.0]))
    @test String(take!(io)) == "1-element SparseArrays.SparseVector{Float64,Int64} with 1 stored entry:\n  [1]  =  1.0"
    show(io, MIME"text/plain"(),  spzeros(Float64, Int64, 2))
    @test String(take!(io)) == "2-element SparseArrays.SparseVector{Float64,Int64} with 0 stored entries"
    show(io, similar(sparsevec(rand(3) .+ 0.1), t20488))
    @test String(take!(io)) == "  [1]  =  #undef\n  [2]  =  #undef\n  [3]  =  #undef"
end

@testset "spzeros with index type" begin
    @test typeof(spzeros(Float32, Int16, 3)) == SparseVector{Float32,Int16}
end

@testset "corner cases of broadcast arithmetic operations with scalars (#21515)" begin
    # test both scalar literals and variables
    areequal(a, b, c) = isequal(a, b) && isequal(b, c)
    inf, zeroh, zv, spzv = Inf, 0.0, zeros(1), spzeros(1)
    @test areequal(spzv .* Inf,  spzv .* inf,    sparsevec(zv .* Inf))
    @test areequal(Inf .* spzv,  inf .* spzv,    sparsevec(Inf .* zv))
    @test areequal(spzv ./ 0.0,  spzv ./ zeroh,  sparsevec(zv ./ 0.0))
    @test areequal(0.0 .\ spzv,  zeroh .\ spzv,  sparsevec(0.0 .\ zv))
end

@testset "similar for SparseVector" begin
    A = SparseVector(10, Int[1, 3, 5, 7], Float64[1.0, 3.0, 5.0, 7.0])
    # test similar without specifications (preserves stored-entry structure)
    simA = similar(A)
    @test typeof(simA) == typeof(A)
    @test size(simA) == size(A)
    @test simA.nzind == A.nzind
    @test length(simA.nzval) == length(A.nzval)
    # test similar with entry type specification (preserves stored-entry structure)
    simA = similar(A, Float32)
    @test typeof(simA) == SparseVector{Float32,eltype(A.nzind)}
    @test size(simA) == size(A)
    @test simA.nzind == A.nzind
    @test length(simA.nzval) == length(A.nzval)
    # test similar with entry and index type specification (preserves stored-entry structure)
    simA = similar(A, Float32, Int8)
    @test typeof(simA) == SparseVector{Float32,Int8}
    @test size(simA) == size(A)
    @test simA.nzind == A.nzind
    @test length(simA.nzval) == length(A.nzval)
    # test similar with Dims{1} specification (preserves nothing)
    simA = similar(A, (6,))
    @test typeof(simA) == typeof(A)
    @test size(simA) == (6,)
    @test length(simA.nzind) == 0
    @test length(simA.nzval) == 0
    # test similar with entry type and Dims{1} specification (preserves nothing)
    simA = similar(A, Float32, (6,))
    @test typeof(simA) == SparseVector{Float32,eltype(A.nzind)}
    @test size(simA) == (6,)
    @test length(simA.nzind) == 0
    @test length(simA.nzval) == 0
    # test similar with entry type, index type, and Dims{1} specification (preserves nothing)
    simA = similar(A, Float32, Int8, (6,))
    @test typeof(simA) == SparseVector{Float32,Int8}
    @test size(simA) == (6,)
    @test length(simA.nzind) == 0
    @test length(simA.nzval) == 0
    # test entry points to similar with entry type, index type, and non-Dims shape specification
    @test similar(A, Float32, Int8, 6, 6) == similar(A, Float32, Int8, (6, 6))
    @test similar(A, Float32, Int8, 6) == similar(A, Float32, Int8, (6,))
    # test similar with Dims{2} specification (preserves storage space only, not stored-entry structure)
    simA = similar(A, (6,6))
    @test typeof(simA) == SparseMatrixCSC{eltype(A.nzval),eltype(A.nzind)}
    @test size(simA) == (6,6)
    @test simA.colptr == fill(1, 6+1)
    @test length(simA.rowval) == length(A.nzind)
    @test length(simA.nzval) == length(A.nzval)
    # test similar with entry type and Dims{2} specification (preserves storage space only)
    simA = similar(A, Float32, (6,6))
    @test typeof(simA) == SparseMatrixCSC{Float32,eltype(A.nzind)}
    @test size(simA) == (6,6)
    @test simA.colptr == fill(1, 6+1)
    @test length(simA.rowval) == length(A.nzind)
    @test length(simA.nzval) == length(A.nzval)
    # test similar with entry type, index type, and Dims{2} specification (preserves storage space only)
    simA = similar(A, Float32, Int8, (6,6))
    @test typeof(simA) == SparseMatrixCSC{Float32, Int8}
    @test size(simA) == (6,6)
    @test simA.colptr == fill(1, 6+1)
    @test length(simA.rowval) == length(A.nzind)
    @test length(simA.nzval) == length(A.nzval)
end

@testset "Fast operations on full column views" begin
    n = 1000
    A = sprandn(n, n, 0.01)
    for j in 1:5:n
        Aj, Ajview = A[:, j], view(A, :, j)
        @test norm(Aj)          == norm(Ajview)
        @test dot(Aj, copy(Aj)) == dot(Ajview, Aj) # don't alias since it takes a different code path
        @test rmul!(Aj, 0.1)    == rmul!(Ajview, 0.1)
        @test Aj*0.1            == Ajview*0.1
        @test 0.1*Aj            == 0.1*Ajview
        @test Aj/0.1            == Ajview/0.1
        @test LinearAlgebra.axpy!(1.0, Aj,     sparse(fill(1., n))) ==
              LinearAlgebra.axpy!(1.0, Ajview, sparse(fill(1., n)))
        @test LinearAlgebra.lowrankupdate!(Matrix(1.0*I, n, n), fill(1.0, n), Aj) ==
              LinearAlgebra.lowrankupdate!(Matrix(1.0*I, n, n), fill(1.0, n), Ajview)
    end
end

end # module