1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924
|
# This file is a part of Julia. License is MIT: https://julialang.org/license
using Random, LinearAlgebra, SparseArrays
A = rand(5,4,3)
@testset "Bounds checking" begin
@test checkbounds(Bool, A, 1, 1, 1) == true
@test checkbounds(Bool, A, 5, 4, 3) == true
@test checkbounds(Bool, A, 0, 1, 1) == false
@test checkbounds(Bool, A, 1, 0, 1) == false
@test checkbounds(Bool, A, 1, 1, 0) == false
@test checkbounds(Bool, A, 6, 4, 3) == false
@test checkbounds(Bool, A, 5, 5, 3) == false
@test checkbounds(Bool, A, 5, 4, 4) == false
@test checkbounds(Bool, A, 1) == true # linear indexing
@test checkbounds(Bool, A, 60) == true
@test checkbounds(Bool, A, 61) == false
@test checkbounds(Bool, A, 2, 2, 2, 1) == true # extra indices
@test checkbounds(Bool, A, 2, 2, 2, 2) == false
@test checkbounds(Bool, A, 1, 1) == false
@test checkbounds(Bool, A, 1, 12) == false
@test checkbounds(Bool, A, 5, 12) == false
@test checkbounds(Bool, A, 1, 13) == false
@test checkbounds(Bool, A, 6, 12) == false
end
@testset "single CartesianIndex" begin
@test checkbounds(Bool, A, CartesianIndex((1, 1, 1))) == true
@test checkbounds(Bool, A, CartesianIndex((5, 4, 3))) == true
@test checkbounds(Bool, A, CartesianIndex((0, 1, 1))) == false
@test checkbounds(Bool, A, CartesianIndex((1, 0, 1))) == false
@test checkbounds(Bool, A, CartesianIndex((1, 1, 0))) == false
@test checkbounds(Bool, A, CartesianIndex((6, 4, 3))) == false
@test checkbounds(Bool, A, CartesianIndex((5, 5, 3))) == false
@test checkbounds(Bool, A, CartesianIndex((5, 4, 4))) == false
@test checkbounds(Bool, A, CartesianIndex((1,))) == false
@test checkbounds(Bool, A, CartesianIndex((60,))) == false
@test checkbounds(Bool, A, CartesianIndex((61,))) == false
@test checkbounds(Bool, A, CartesianIndex((2, 2, 2, 1,))) == true
@test checkbounds(Bool, A, CartesianIndex((2, 2, 2, 2,))) == false
@test checkbounds(Bool, A, CartesianIndex((1, 1,))) == false
@test checkbounds(Bool, A, CartesianIndex((1, 12,))) == false
@test checkbounds(Bool, A, CartesianIndex((5, 12,))) == false
@test checkbounds(Bool, A, CartesianIndex((1, 13,))) == false
@test checkbounds(Bool, A, CartesianIndex((6, 12,))) == false
end
@testset "mix of CartesianIndex and Int" begin
@test checkbounds(Bool, A, CartesianIndex((1,)), 1, CartesianIndex((1,))) == true
@test checkbounds(Bool, A, CartesianIndex((5, 4)), 3) == true
@test checkbounds(Bool, A, CartesianIndex((0, 1)), 1) == false
@test checkbounds(Bool, A, 1, CartesianIndex((0, 1))) == false
@test checkbounds(Bool, A, 1, 1, CartesianIndex((0,))) == false
@test checkbounds(Bool, A, 6, CartesianIndex((4, 3))) == false
@test checkbounds(Bool, A, 5, CartesianIndex((5,)), 3) == false
@test checkbounds(Bool, A, CartesianIndex((5,)), CartesianIndex((4,)), CartesianIndex((4,))) == false
end
@testset "vector indices" begin
@test checkbounds(Bool, A, 1:5, 1:4, 1:3) == true
@test checkbounds(Bool, A, 0:5, 1:4, 1:3) == false
@test checkbounds(Bool, A, 1:5, 0:4, 1:3) == false
@test checkbounds(Bool, A, 1:5, 1:4, 0:3) == false
@test checkbounds(Bool, A, 1:6, 1:4, 1:3) == false
@test checkbounds(Bool, A, 1:5, 1:5, 1:3) == false
@test checkbounds(Bool, A, 1:5, 1:4, 1:4) == false
@test checkbounds(Bool, A, 1:60) == true
@test checkbounds(Bool, A, 1:61) == false
@test checkbounds(Bool, A, 2, 2, 2, 1:1) == true # extra indices
@test checkbounds(Bool, A, 2, 2, 2, 1:2) == false
@test checkbounds(Bool, A, 1:5, 1:4) == false
@test checkbounds(Bool, A, 1:5, 1:12) == false
@test checkbounds(Bool, A, 1:5, 1:13) == false
@test checkbounds(Bool, A, 1:6, 1:12) == false
end
@testset "logical" begin
@test checkbounds(Bool, A, trues(5), trues(4), trues(3)) == true
@test checkbounds(Bool, A, trues(6), trues(4), trues(3)) == false
@test checkbounds(Bool, A, trues(5), trues(5), trues(3)) == false
@test checkbounds(Bool, A, trues(5), trues(4), trues(4)) == false
@test checkbounds(Bool, A, trues(60)) == true
@test checkbounds(Bool, A, trues(61)) == false
@test checkbounds(Bool, A, 2, 2, 2, trues(1)) == true # extra indices
@test checkbounds(Bool, A, 2, 2, 2, trues(2)) == false
@test checkbounds(Bool, A, trues(5), trues(12)) == false
@test checkbounds(Bool, A, trues(5), trues(13)) == false
@test checkbounds(Bool, A, trues(6), trues(12)) == false
@test checkbounds(Bool, A, trues(5, 4, 3)) == true
@test checkbounds(Bool, A, trues(5, 4, 2)) == false
@test checkbounds(Bool, A, trues(5, 12)) == false
@test checkbounds(Bool, A, trues(1, 5), trues(1, 4, 1), trues(1, 1, 3)) == false
@test checkbounds(Bool, A, trues(1, 5), trues(1, 4, 1), trues(1, 1, 2)) == false
@test checkbounds(Bool, A, trues(1, 5), trues(1, 5, 1), trues(1, 1, 3)) == false
@test checkbounds(Bool, A, trues(1, 5), :, 2) == false
end
@testset "array of CartesianIndex" begin
@test checkbounds(Bool, A, [CartesianIndex((1, 1, 1))]) == true
@test checkbounds(Bool, A, [CartesianIndex((5, 4, 3))]) == true
@test checkbounds(Bool, A, [CartesianIndex((0, 1, 1))]) == false
@test checkbounds(Bool, A, [CartesianIndex((1, 0, 1))]) == false
@test checkbounds(Bool, A, [CartesianIndex((1, 1, 0))]) == false
@test checkbounds(Bool, A, [CartesianIndex((6, 4, 3))]) == false
@test checkbounds(Bool, A, [CartesianIndex((5, 5, 3))]) == false
@test checkbounds(Bool, A, [CartesianIndex((5, 4, 4))]) == false
@test checkbounds(Bool, A, [CartesianIndex((1, 1))], 1) == true
@test checkbounds(Bool, A, [CartesianIndex((5, 4))], 3) == true
@test checkbounds(Bool, A, [CartesianIndex((0, 1))], 1) == false
@test checkbounds(Bool, A, [CartesianIndex((1, 0))], 1) == false
@test checkbounds(Bool, A, [CartesianIndex((1, 1))], 0) == false
@test checkbounds(Bool, A, [CartesianIndex((6, 4))], 3) == false
@test checkbounds(Bool, A, [CartesianIndex((5, 5))], 3) == false
@test checkbounds(Bool, A, [CartesianIndex((5, 4))], 4) == false
end
@testset "index conversion" begin
@testset "0-dimensional" begin
for i in ((), fill(0))
@test LinearIndices(i)[1] == 1
@test_throws BoundsError LinearIndices(i)[2]
@test_throws BoundsError LinearIndices(i)[1:2]
@test LinearIndices(i)[1,1] == 1
@test LinearIndices(i)[] == 1
@test size(LinearIndices(i)) == ()
@test CartesianIndices(i)[1] == CartesianIndex()
@test_throws BoundsError CartesianIndices(i)[2]
@test_throws BoundsError CartesianIndices(i)[1:2]
end
end
@testset "1-dimensional" begin
for i = 1:3
@test LinearIndices((3,))[i] == i
@test CartesianIndices((3,))[i] == CartesianIndex(i,)
end
@test LinearIndices((3,))[2,1] == 2
@test LinearIndices((3,))[[1]] == [1]
@test size(LinearIndices((3,))) == (3,)
@test LinearIndices((3,))[1:2] === 1:2
@test LinearIndices((3,))[1:2:3] === 1:2:3
@test_throws BoundsError LinearIndices((3,))[2:4]
@test_throws BoundsError CartesianIndices((3,))[2,2]
# ambiguity btw cartesian indexing and linear indexing in 1d when
# indices may be nontraditional
@test_throws ArgumentError Base._sub2ind((1:3,), 2)
@test_throws ArgumentError Base._ind2sub((1:3,), 2)
ci = CartesianIndices((2:4,))
@test first(ci) == ci[1] == CartesianIndex(2)
@test last(ci) == ci[end] == ci[3] == CartesianIndex(4)
li = LinearIndices(ci)
@test collect(li) == [1,2,3]
@test first(li) == li[1] == 1
@test last(li) == li[3] == 3
io = IOBuffer()
show(io, ci)
@test String(take!(io)) == "CartesianIndex{1}[CartesianIndex(2,), CartesianIndex(3,), CartesianIndex(4,)]"
end
@testset "2-dimensional" begin
k = 0
cartesian = CartesianIndices((4,3))
linear = LinearIndices(cartesian)
@test size(cartesian) == size(linear) == (4, 3)
for j = 1:3, i = 1:4
k += 1
@test linear[i,j] == linear[k] == k
@test cartesian[k] == CartesianIndex(i,j)
@test LinearIndices(map(Base.Slice, (0:3,3:5)))[i-1,j+2] == k
@test CartesianIndices(map(Base.Slice, (0:3,3:5)))[k] == CartesianIndex(i-1,j+2)
end
@test linear[linear] == linear
@test linear[vec(linear)] == vec(linear)
@test linear[cartesian] == linear
@test linear[vec(cartesian)] == vec(linear)
@test cartesian[linear] == cartesian
@test cartesian[vec(linear)] == vec(cartesian)
@test cartesian[cartesian] == cartesian
@test cartesian[vec(cartesian)] == vec(cartesian)
@test linear[2:3] === 2:3
@test linear[3:-1:1] === 3:-1:1
@test_throws BoundsError linear[4:13]
end
@testset "3-dimensional" begin
l = 0
for k = 1:2, j = 1:3, i = 1:4
l += 1
@test LinearIndices((4,3,2))[i,j,k] == l
@test LinearIndices((4,3,2))[l] == l
@test CartesianIndices((4,3,2))[i,j,k] == CartesianIndex(i,j,k)
@test CartesianIndices((4,3,2))[l] == CartesianIndex(i,j,k)
@test LinearIndices((1:4,1:3,1:2))[i,j,k] == l
@test LinearIndices((1:4,1:3,1:2))[l] == l
@test CartesianIndices((1:4,1:3,1:2))[i,j,k] == CartesianIndex(i,j,k)
@test CartesianIndices((1:4,1:3,1:2))[l] == CartesianIndex(i,j,k)
end
l = 0
for k = -101:-100, j = 3:5, i = 0:3
l += 1
@test LinearIndices(map(Base.Slice, (0:3,3:5,-101:-100)))[i,j,k] == l
@test LinearIndices(map(Base.Slice, (0:3,3:5,-101:-100)))[l] == l
@test CartesianIndices(map(Base.Slice, (0:3,3:5,-101:-100)))[i,j,k] == CartesianIndex(i,j,k)
@test CartesianIndices(map(Base.Slice, (0:3,3:5,-101:-100)))[l] == CartesianIndex(i,j,k)
end
local A = reshape(Vector(1:9), (3,3))
@test CartesianIndices(size(A))[6] == CartesianIndex(3,2)
@test LinearIndices(size(A))[3, 2] == 6
@test CartesianIndices(A)[6] == CartesianIndex(3,2)
@test LinearIndices(A)[3, 2] == 6
for i in 1:length(A)
@test LinearIndices(A)[CartesianIndices(A)[i]] == i
end
@testset "PR #9256" begin
function pr9256()
m = [1 2 3; 4 5 6; 7 8 9]
Base._ind2sub(m, 6)
end
@test pr9256() == (3,2)
end
end
end
# token type on which to dispatch testing methods in order to avoid potential
# name conflicts elsewhere in the base test suite
mutable struct TestAbstractArray end
## Tests for the abstract array interfaces with minimally defined array types
# A custom linear fast array type with 24 elements that doesn't rely upon Array storage
mutable struct T24Linear{T,N,dims} <: AbstractArray{T,N}
v1::T; v2::T; v3::T; v4::T; v5::T; v6::T; v7::T; v8::T
v9::T; v10::T; v11::T; v12::T; v13::T; v14::T; v15::T; v16::T
v17::T; v18::T; v19::T; v20::T; v21::T; v22::T; v23::T; v24::T
T24Linear{T,N,d}() where {T,N,d} =
(prod(d) == 24 || throw(DimensionMismatch("T24Linear must have 24 elements")); new())
function T24Linear{T,N,d}(v1,v2,v3,v4,v5,v6,v7,v8,v9,v10,v11,v12,
v13,v14,v15,v16,v17,v18,v19,v20,v21,v22,v23,v24) where {T,N,d}
prod(d) == 24 || throw(DimensionMismatch("T24Linear must have 24 elements"))
new(v1,v2,v3,v4,v5,v6,v7,v8,v9,v10,v11,v12,v13,v14,v15,v16,v17,v18,v19,v20,v21,v22,v23,v24)
end
end
T24Linear(::Type{T}, dims::Int...) where T = T24Linear(T, dims)
T24Linear(::Type{T}, dims::NTuple{N,Int}) where {T,N} = T24Linear{T,N,dims}()
T24Linear( X::AbstractArray{T,N}) where {T,N } = T24Linear{T,N}(X)
T24Linear{T }(X::AbstractArray{_,N}) where {T,N,_} = T24Linear{T,N}(X)
T24Linear{T,N}(X::AbstractArray ) where {T,N } = T24Linear{T,N,size(X)}(X...)
Base.size(::T24Linear{T,N,dims}) where {T,N,dims} = dims
import Base: IndexLinear
Base.IndexStyle(::Type{A}) where {A<:T24Linear} = IndexLinear()
Base.getindex(A::T24Linear, i::Int) = getfield(A, i)
Base.setindex!(A::T24Linear{T}, v, i::Int) where {T} = setfield!(A, i, convert(T, v))
# A custom linear slow sparse-like array that relies upon Dict for its storage
struct TSlow{T,N} <: AbstractArray{T,N}
data::Dict{NTuple{N,Int}, T}
dims::NTuple{N,Int}
end
TSlow(::Type{T}, dims::Int...) where {T} = TSlow(T, dims)
TSlow(::Type{T}, dims::NTuple{N,Int}) where {T,N} = TSlow{T,N}(Dict{NTuple{N,Int}, T}(), dims)
TSlow{T,N}(X::TSlow{T,N}) where {T,N } = X
TSlow( X::AbstractArray{T,N}) where {T,N } = TSlow{T,N}(X)
TSlow{T }(X::AbstractArray{_,N}) where {T,N,_} = TSlow{T,N}(X)
TSlow{T,N}(X::AbstractArray ) where {T,N } = begin
A = TSlow(T, size(X))
for I in CartesianIndices(size(X))
A[I.I...] = X[I.I...]
end
A
end
Base.size(A::TSlow) = A.dims
Base.similar(A::TSlow, ::Type{T}, dims::Dims) where {T} = TSlow(T, dims)
import Base: IndexCartesian
Base.IndexStyle(::Type{A}) where {A<:TSlow} = IndexCartesian()
# Until #11242 is merged, we need to define each dimension independently
Base.getindex(A::TSlow{T,0}) where {T} = get(A.data, (), zero(T))
Base.getindex(A::TSlow{T,1}, i1::Int) where {T} = get(A.data, (i1,), zero(T))
Base.getindex(A::TSlow{T,2}, i1::Int, i2::Int) where {T} = get(A.data, (i1,i2), zero(T))
Base.getindex(A::TSlow{T,3}, i1::Int, i2::Int, i3::Int) where {T} =
get(A.data, (i1,i2,i3), zero(T))
Base.getindex(A::TSlow{T,4}, i1::Int, i2::Int, i3::Int, i4::Int) where {T} =
get(A.data, (i1,i2,i3,i4), zero(T))
Base.getindex(A::TSlow{T,5}, i1::Int, i2::Int, i3::Int, i4::Int, i5::Int) where {T} =
get(A.data, (i1,i2,i3,i4,i5), zero(T))
Base.setindex!(A::TSlow{T,0}, v) where {T} = (A.data[()] = v)
Base.setindex!(A::TSlow{T,1}, v, i1::Int) where {T} = (A.data[(i1,)] = v)
Base.setindex!(A::TSlow{T,2}, v, i1::Int, i2::Int) where {T} = (A.data[(i1,i2)] = v)
Base.setindex!(A::TSlow{T,3}, v, i1::Int, i2::Int, i3::Int) where {T} =
(A.data[(i1,i2,i3)] = v)
Base.setindex!(A::TSlow{T,4}, v, i1::Int, i2::Int, i3::Int, i4::Int) where {T} =
(A.data[(i1,i2,i3,i4)] = v)
Base.setindex!(A::TSlow{T,5}, v, i1::Int, i2::Int, i3::Int, i4::Int, i5::Int) where {T} =
(A.data[(i1,i2,i3,i4,i5)] = v)
const can_inline = Base.JLOptions().can_inline != 0
function test_scalar_indexing(::Type{T}, shape, ::Type{TestAbstractArray}) where T
N = prod(shape)
A = reshape(Vector(1:N), shape)
B = T(A)
@test A == B
# Test indexing up to 5 dimensions
trailing5 = CartesianIndex(ntuple(x->1, max(ndims(B)-5, 0)))
trailing4 = CartesianIndex(ntuple(x->1, max(ndims(B)-4, 0)))
trailing3 = CartesianIndex(ntuple(x->1, max(ndims(B)-3, 0)))
trailing2 = CartesianIndex(ntuple(x->1, max(ndims(B)-2, 0)))
i=0
for i5 = 1:size(B, 5)
for i4 = 1:size(B, 4)
for i3 = 1:size(B, 3)
for i2 = 1:size(B, 2)
for i1 = 1:size(B, 1)
i += 1
@test A[i1,i2,i3,i4,i5,trailing5] == B[i1,i2,i3,i4,i5,trailing5] == i
@test A[i1,i2,i3,i4,i5,trailing5] ==
Base.unsafe_getindex(B, i1, i2, i3, i4, i5, trailing5) == i
end
end
end
end
end
# Test linear indexing and partial linear indexing
i=0
for i1 = 1:length(B)
i += 1
@test A[i1] == B[i1] == i
end
i=0
for i2 = 1:size(B, 2)
for i1 = 1:size(B, 1)
i += 1
@test A[i1,i2,trailing2] == B[i1,i2,trailing2] == i
end
end
@test A == B
i=0
for i3 = 1:size(B, 3)
for i2 = 1:size(B, 2)
for i1 = 1:size(B, 1)
i += 1
@test A[i1,i2,i3,trailing3] == B[i1,i2,i3,trailing3] == i
end
end
end
# Test zero-dimensional accesses
@test A[1] == B[1] == 1
# Test multidimensional scalar indexed assignment
C = T(Int, shape)
D1 = T(Int, shape)
D2 = T(Int, shape)
D3 = T(Int, shape)
i=0
for i5 = 1:size(B, 5)
for i4 = 1:size(B, 4)
for i3 = 1:size(B, 3)
for i2 = 1:size(B, 2)
for i1 = 1:size(B, 1)
i += 1
C[i1,i2,i3,i4,i5,trailing5] = i
# test general unsafe_setindex!
Base.unsafe_setindex!(D1, i, i1,i2,i3,i4,i5,trailing5)
# test for dropping trailing dims
Base.unsafe_setindex!(D2, i, i1,i2,i3,i4,i5,trailing5, 1, 1, 1)
# test for expanding index argument to appropriate dims
Base.unsafe_setindex!(D3, i, i1,i2,i3,i4,trailing4)
end
end
end
end
end
@test D1 == D2 == C == B == A
@test D3[:, :, :, :, 1, trailing5] == D2[:, :, :, :, 1, trailing5]
# Test linear indexing and partial linear indexing
C = T(Int, shape)
fill!(C, 0)
@test C != B && C != A
i=0
for i1 = 1:length(C)
i += 1
C[i1] = i
end
@test C == B == A
C = T(Int, shape)
i=0
C2 = reshape(C, Val(2))
for i2 = 1:size(C2, 2)
for i1 = 1:size(C2, 1)
i += 1
C2[i1,i2,trailing2] = i
end
end
@test C == B == A
C = T(Int, shape)
i=0
C3 = reshape(C, Val(3))
for i3 = 1:size(C3, 3)
for i2 = 1:size(C3, 2)
for i1 = 1:size(C3, 1)
i += 1
C3[i1,i2,i3,trailing3] = i
end
end
end
@test C == B == A
# Test zero-dimensional setindex
if length(A) == 1
A[] = 0; B[] = 0
@test A[] == B[] == 0
@test A == B
else
@test_throws BoundsError A[] = 0
@test_throws BoundsError B[] = 0
@test_throws BoundsError A[]
@test_throws BoundsError B[]
end
end
function test_vector_indexing(::Type{T}, shape, ::Type{TestAbstractArray}) where T
@testset "test_vector_indexing{$(T)}" begin
N = prod(shape)
A = reshape(Vector(1:N), shape)
B = T(A)
trailing5 = CartesianIndex(ntuple(x->1, max(ndims(B)-5, 0)))
trailing4 = CartesianIndex(ntuple(x->1, max(ndims(B)-4, 0)))
trailing3 = CartesianIndex(ntuple(x->1, max(ndims(B)-3, 0)))
trailing2 = CartesianIndex(ntuple(x->1, max(ndims(B)-2, 0)))
idxs = rand(1:N, 3, 3, 3)
@test B[idxs] == A[idxs] == idxs
@test B[vec(idxs)] == A[vec(idxs)] == vec(idxs)
@test B[:] == A[:] == 1:N
@test B[1:end] == A[1:end] == 1:N
@test B[:,:,trailing2] == A[:,:,trailing2] == B[:,:,1,trailing3] == A[:,:,1,trailing3]
B[1:end,1:end,trailing2] == A[1:end,1:end,trailing2] == B[1:end,1:end,1,trailing3] == A[1:end,1:end,1,trailing3]
@testset "Test with containers that aren't Int[]" begin
@test B[[]] == A[[]] == []
@test B[convert(Array{Any}, idxs)] == A[convert(Array{Any}, idxs)] == idxs
end
idx1 = rand(1:size(A, 1), 3)
idx2 = rand(1:size(A, 2), 4, 5)
@testset "Test adding dimensions with matrices" begin
@test B[idx1, idx2, trailing2] == A[idx1, idx2, trailing2] == reshape(A[idx1, vec(idx2), trailing2], 3, 4, 5) == reshape(B[idx1, vec(idx2), trailing2], 3, 4, 5)
@test B[1, idx2, trailing2] == A[1, idx2, trailing2] == reshape(A[1, vec(idx2), trailing2], 4, 5) == reshape(B[1, vec(idx2), trailing2], 4, 5)
end
# test removing dimensions with 0-d arrays
@testset "test removing dimensions with 0-d arrays" begin
idx0 = reshape([rand(1:size(A, 1))])
@test B[idx0, idx2, trailing2] == A[idx0, idx2, trailing2] == reshape(A[idx0[], vec(idx2), trailing2], 4, 5) == reshape(B[idx0[], vec(idx2), trailing2], 4, 5)
@test B[reshape([end]), reshape([end]), trailing2] == A[reshape([end]), reshape([end]), trailing2] == reshape([A[end,end,trailing2]]) == reshape([B[end,end,trailing2]])
end
mask = bitrand(shape)
@testset "test logical indexing" begin
@test B[mask] == A[mask] == B[findall(mask)] == A[findall(mask)] == LinearIndices(mask)[findall(mask)]
@test B[vec(mask)] == A[vec(mask)] == LinearIndices(mask)[findall(mask)]
mask1 = bitrand(size(A, 1))
mask2 = bitrand(size(A, 2))
@test B[mask1, mask2, trailing2] == A[mask1, mask2, trailing2] ==
B[LinearIndices(mask1)[findall(mask1)], LinearIndices(mask2)[findall(mask2)], trailing2]
@test B[mask1, 1, trailing2] == A[mask1, 1, trailing2] == LinearIndices(mask)[findall(mask1)]
end
end
end
function test_primitives(::Type{T}, shape, ::Type{TestAbstractArray}) where T
N = prod(shape)
A = reshape(Vector(1:N), shape)
B = T(A)
# last(a)
@test last(B) == B[lastindex(B)] == B[end] == A[end]
@test lastindex(B) == lastindex(A) == last(LinearIndices(B))
@test lastindex(B, 1) == lastindex(A, 1) == last(axes(B, 1))
@test lastindex(B, 2) == lastindex(A, 2) == last(axes(B, 2))
# first(a)
@test first(B) == B[firstindex(B)] == B[1] == A[1] # TODO: use B[begin] once parser transforms it
@test firstindex(B) == firstindex(A) == first(LinearIndices(B))
@test firstindex(B, 1) == firstindex(A, 1) == first(axes(B, 1))
@test firstindex(B, 2) == firstindex(A, 2) == first(axes(B, 2))
# isassigned(a::AbstractArray, i::Int...)
j = rand(1:length(B))
@test isassigned(B, j) == true
if T == T24Linear
@test isassigned(B, length(B) + 1) == false
end
# reshape(a::AbstractArray, dims::Dims)
@test_throws DimensionMismatch reshape(B, (0, 1))
# copyto!(dest::AbstractArray, src::AbstractArray)
@test_throws BoundsError copyto!(Vector{Int}(undef, 10), [1:11...])
# convert{T, N}(::Type{Array}, A::AbstractArray{T, N})
X = [1:10...]
Y = [1 2; 3 4]
@test convert(Array, X) == X
@test convert(Array, Y) == Y
# convert{T}(::Type{Vector}, A::AbstractVector{T})
@test convert(Vector, X) == X
@test convert(Vector, view(X, 2:4)) == [2,3,4]
@test_throws MethodError convert(Vector, Y)
# convert{T}(::Type{Matrix}, A::AbstractMatrix{T})
@test convert(Matrix, Y) == Y
@test convert(Matrix, view(Y, 1:2, 1:2)) == Y
@test_throws MethodError convert(Matrix, X)
end
mutable struct TestThrowNoGetindex{T} <: AbstractVector{T} end
@testset "ErrorException if getindex is not defined" begin
Base.length(::TestThrowNoGetindex) = 2
Base.size(::TestThrowNoGetindex) = (2,)
@test_throws ErrorException isassigned(TestThrowNoGetindex{Float64}(), 1)
end
function test_in_bounds(::Type{TestAbstractArray})
n = rand(2:5)
sz = rand(2:5, n)
len = prod(sz)
A = zeros(sz...)
for i in 1:len
@test checkbounds(Bool, A, i) == true
end
@test checkbounds(Bool, A, len + 1) == false
end
mutable struct UnimplementedFastArray{T, N} <: AbstractArray{T, N} end
Base.IndexStyle(::UnimplementedFastArray) = Base.IndexLinear()
mutable struct UnimplementedSlowArray{T, N} <: AbstractArray{T, N} end
Base.IndexStyle(::UnimplementedSlowArray) = Base.IndexCartesian()
mutable struct UnimplementedArray{T, N} <: AbstractArray{T, N} end
function test_getindex_internals(::Type{T}, shape, ::Type{TestAbstractArray}) where T
N = prod(shape)
A = reshape(Vector(1:N), shape)
B = T(A)
@test getindex(A, 1) == 1
@test getindex(B, 1) == 1
@test Base.unsafe_getindex(A, 1) == 1
@test Base.unsafe_getindex(B, 1) == 1
end
function test_getindex_internals(::Type{TestAbstractArray})
U = UnimplementedFastArray{Int, 2}()
V = UnimplementedSlowArray{Int, 2}()
@test_throws ErrorException getindex(U, 1)
@test_throws ErrorException Base.unsafe_getindex(U, 1)
@test_throws ErrorException getindex(V, 1, 1)
@test_throws ErrorException Base.unsafe_getindex(V, 1, 1)
end
function test_setindex!_internals(::Type{T}, shape, ::Type{TestAbstractArray}) where T
N = prod(shape)
A = reshape(Vector(1:N), shape)
B = T(A)
Base.unsafe_setindex!(B, 2, 1)
@test B[1] == 2
end
function test_setindex!_internals(::Type{TestAbstractArray})
U = UnimplementedFastArray{Int, 2}()
V = UnimplementedSlowArray{Int, 2}()
@test_throws ErrorException setindex!(U, 0, 1)
@test_throws ErrorException Base.unsafe_setindex!(U, 0, 1)
@test_throws ErrorException setindex!(V, 0, 1, 1)
@test_throws ErrorException Base.unsafe_setindex!(V, 0, 1, 1)
end
function test_get(::Type{TestAbstractArray})
A = T24Linear([1:24...])
B = TSlow([1:24...])
@test get(A, (), 0) == Int[]
@test get(B, (), 0) == TSlow(Int, 0)
end
function test_cat(::Type{TestAbstractArray})
A = T24Linear([1:24...])
b_int = reshape([1:27...], 3, 3, 3)
b_float = reshape(Float64[1:27...], 3, 3, 3)
b2hcat = Array{Float64}(undef, 3, 6, 3)
b1 = reshape([1:9...], 3, 3)
b2 = reshape([10:18...], 3, 3)
b3 = reshape([19:27...], 3, 3)
b2hcat[:, :, 1] = hcat(b1, b1)
b2hcat[:, :, 2] = hcat(b2, b2)
b2hcat[:, :, 3] = hcat(b3, b3)
b3hcat = Array{Float64}(undef, 3, 9, 3)
b3hcat[:, :, 1] = hcat(b1, b1, b1)
b3hcat[:, :, 2] = hcat(b2, b2, b2)
b3hcat[:, :, 3] = hcat(b3, b3, b3)
B = TSlow(b_int)
B1 = TSlow([1:24...])
B2 = TSlow([1:25...])
C1 = TSlow([1 2; 3 4])
C2 = TSlow([1 2 3; 4 5 6])
C3 = TSlow([1 2; 3 4; 5 6])
D = [1:24...]
i = rand(1:10)
@test cat(;dims=i) == Any[]
@test vcat() == Any[]
@test hcat() == Any[]
@test hcat(1, 1.0, 3, 3.0) == [1.0 1.0 3.0 3.0]
@test_throws ArgumentError hcat(B1, B2)
@test_throws ArgumentError vcat(C1, C2)
@test vcat(B) == B
@test hcat(B) == B
@test Base.typed_hcat(Float64, B) == TSlow(b_float)
@test Base.typed_hcat(Float64, B, B) == TSlow(b2hcat)
@test Base.typed_hcat(Float64, B, B, B) == TSlow(b3hcat)
@test vcat(B1, B2) == TSlow(vcat([1:24...], [1:25...]))
@test hcat(C1, C2) == TSlow([1 2 1 2 3; 3 4 4 5 6])
@test hcat(C1, C2, C1) == TSlow([1 2 1 2 3 1 2; 3 4 4 5 6 3 4])
# hvcat
for nbc in (1, 2, 3, 4, 5, 6)
@test hvcat(nbc, 1:120...) == reshape([1:120...], nbc, round(Int, 120 / nbc))'
end
@test_throws ArgumentError hvcat(7, 1:20...)
@test_throws ArgumentError hvcat((2), C1, C3)
@test_throws ArgumentError hvcat((1), C1, C2)
@test_throws ArgumentError hvcat((1), C2, C3)
tup = tuple(rand(1:10, i)...)
@test hvcat(tup) == []
# check for shape mismatch
@test_throws ArgumentError hvcat((2, 2), 1, 2, 3, 4, 5)
@test_throws ArgumentError Base.typed_hvcat(Int, (2, 2), 1, 2, 3, 4, 5)
# check for # of columns mismatch b/w rows
@test_throws ArgumentError hvcat((3, 2), 1, 2, 3, 4, 5, 6)
@test_throws ArgumentError Base.typed_hvcat(Int, (3, 2), 1, 2, 3, 4, 5, 6)
# 18395
@test isa(Any["a" 5; 2//3 1.0][2,1], Rational{Int})
# 13665, 19038
@test @inferred(hcat([1.0 2.0], 3))::Array{Float64,2} == [1.0 2.0 3.0]
@test @inferred(vcat([1.0, 2.0], 3))::Array{Float64,1} == [1.0, 2.0, 3.0]
@test @inferred(vcat(["a"], "b"))::Vector{String} == ["a", "b"]
@test @inferred(vcat((1,), (2.0,)))::Vector{Tuple{Real}} == [(1,), (2.0,)]
end
function test_ind2sub(::Type{TestAbstractArray})
n = rand(2:5)
dims = tuple(rand(1:5, n)...)
len = prod(dims)
A = reshape(Vector(1:len), dims...)
I = CartesianIndices(dims)
for i in 1:len
@test A[I[i]] == A[i]
end
end
# A custom linear slow array that insists upon Cartesian indexing
mutable struct TSlowNIndexes{T,N} <: AbstractArray{T,N}
data::Array{T,N}
end
Base.IndexStyle(::Type{A}) where {A<:TSlowNIndexes} = Base.IndexCartesian()
Base.size(A::TSlowNIndexes) = size(A.data)
Base.getindex(A::TSlowNIndexes, index::Int...) = error("Must use $(ndims(A)) indices")
Base.getindex(A::TSlowNIndexes{T,2}, i::Int, j::Int) where {T} = A.data[i,j]
@testset "issue #15689, mapping an abstract type" begin
@test isa(map(Set, Array[[1,2],[3,4]]), Vector{Set{Int}})
end
@testset "mapping over scalars and empty arguments:" begin
@test map(sin, 1) === sin(1)
@test map(()->1234) === 1234
end
function test_UInt_indexing(::Type{TestAbstractArray})
A = [1:100...]
_A = Expr(:quote, A)
for i in 1:100
_i8 = convert(UInt8, i)
_i16 = convert(UInt16, i)
_i32 = convert(UInt32, i)
for _i in (_i8, _i16, _i32)
@eval begin
@test $_A[$_i] == $i
end
end
end
end
# Issue 13315
function test_13315(::Type{TestAbstractArray})
U = UInt(1):UInt(2)
@test [U;[U;]] == [UInt(1), UInt(2), UInt(1), UInt(2)]
end
# checksquare
function test_checksquare()
@test LinearAlgebra.checksquare(zeros(2,2)) == 2
@test LinearAlgebra.checksquare(zeros(2,2),zeros(3,3)) == [2,3]
@test_throws DimensionMismatch LinearAlgebra.checksquare(zeros(2,3))
end
#----- run tests -------------------------------------------------------------#
@testset for T in (T24Linear, TSlow), shape in ((24,), (2, 12), (2,3,4), (1,2,3,4), (4,3,2,1))
test_scalar_indexing(T, shape, TestAbstractArray)
test_vector_indexing(T, shape, TestAbstractArray)
test_primitives(T, shape, TestAbstractArray)
test_getindex_internals(T, shape, TestAbstractArray)
test_setindex!_internals(T, shape, TestAbstractArray)
end
test_in_bounds(TestAbstractArray)
test_getindex_internals(TestAbstractArray)
test_setindex!_internals(TestAbstractArray)
test_get(TestAbstractArray)
test_cat(TestAbstractArray)
test_ind2sub(TestAbstractArray)
include("generic_map_tests.jl")
generic_map_tests(map, map!)
test_UInt_indexing(TestAbstractArray)
test_13315(TestAbstractArray)
test_checksquare()
A = TSlowNIndexes(rand(2,2))
@test_throws ErrorException A[1]
@test A[1,1] == A.data[1]
@test first(A) == A.data[1]
@testset "#16381" begin
@inferred size(rand(3,2,1))
@inferred size(rand(3,2,1), 2)
@test @inferred(axes(rand(3,2))) == (1:3,1:2)
@test @inferred(axes(rand(3,2,1))) == (1:3,1:2,1:1)
@test @inferred(axes(rand(3,2), 1)) == 1:3
@test @inferred(axes(rand(3,2), 2)) == 1:2
@test @inferred(axes(rand(3,2), 3)) == 1:1
end
@testset "#17088" begin
n = 10
M = rand(n, n)
@testset "vector of vectors" begin
v = [[M]; [M]] # using vcat
@test size(v) == (2,)
@test !issparse(v)
end
@testset "matrix of vectors" begin
m1 = [[M] [M]] # using hcat
m2 = [[M] [M];] # using hvcat
@test m1 == m2
@test size(m1) == (1,2)
@test !issparse(m1)
@test !issparse(m2)
end
end
@testset "isinteger and isreal" begin
@test all(isinteger, Diagonal(rand(1:5,5)))
@test isreal(Diagonal(rand(5)))
end
@testset "unary ops" begin
let A = Diagonal(rand(1:5,5))
@test +(A) == A
@test *(A) == A
end
end
@testset "reverse dim on empty" begin
@test reverse(Diagonal([]),dims=1) == Diagonal([])
end
@testset "ndims and friends" begin
@test ndims(Diagonal(rand(1:5,5))) == 2
@test ndims(Diagonal{Float64}) == 2
end
@testset "Issue #17811" begin
A17811 = Integer[]
I = [abs(x) for x in A17811]
@test isa(I, Array{Any,1})
push!(I, 1)
@test I == Any[1]
@test isa(map(abs, A17811), Array{Any,1})
end
@testset "copymutable for itrs" begin
@test Base.copymutable((1,2,3)) == [1,2,3]
end
@testset "_sub2ind for empty tuple" begin
@test Base._sub2ind(()) == 1
end
@testset "to_shape" begin
@test Base.to_shape(()) === ()
@test Base.to_shape(1) === 1
end
@testset "issue #19267" begin
@test ndims((1:3)[:]) == 1
@test ndims((1:3)[:,:]) == 2
@test ndims((1:3)[:,[1],:]) == 3
@test ndims((1:3)[:,[1],:,[1]]) == 4
@test ndims((1:3)[:,[1],1:1,:]) == 4
@test ndims((1:3)[:,:,1:1,:]) == 4
@test ndims((1:3)[:,:,1:1]) == 3
@test ndims((1:3)[:,:,1:1,:,:,[1]]) == 6
end
@testset "dispatch loop introduced in #19305" begin
Z22, O33 = fill(0, 2, 2), fill(1, 3, 3)
@test [(1:2) Z22; O33] == [[1,2] Z22; O33] == [[1 2]' Z22; O33]
end
@testset "checkbounds_indices method ambiguities #20989" begin
@test Base.checkbounds_indices(Bool, (1:1,), ([CartesianIndex(1)],))
end
# keys, values, pairs
for A in (rand(2), rand(2,3))
local A
for (i, v) in pairs(A)
@test A[i] == v
end
@test Array(values(A)) == A
end
# nextind and prevind
@test nextind(zeros(4), 2) == 3
@test nextind(zeros(2,3), CartesianIndex(2,1)) == CartesianIndex(1, 2)
@test prevind(zeros(4), 2) == 1
@test prevind(zeros(2,3), CartesianIndex(2,1)) == CartesianIndex(1, 1)
@testset "ImageCore #40" begin
Base.convert(::Type{Array{T,n}}, a::Array{T,n}) where {T<:Number,n} = a
Base.convert(::Type{Array{T,n}}, a::Array) where {T<:Number,n} =
copyto!(Array{T,n}(undef, size(a)), a)
@test isa(empty(Dict(:a=>1, :b=>2.0), Union{}, Union{}), Dict{Union{}, Union{}})
end
@testset "zero-dimensional copy" begin
Z = Array{Int,0}(undef); Z[] = 17
@test Z == Array(Z) == copy(Z)
end
@testset "empty" begin
@test isempty([])
v = [1, 2, 3]
v2 = empty(v)
v3 = empty(v, Float64)
@test !isempty(v)
empty!(v)
@test isempty(v)
@test isempty(v2::Vector{Int})
@test isempty(v3::Vector{Float64})
end
@testset "CartesianIndices" begin
xrng = 2:4
yrng = 1:5
CR = CartesianIndices(map(Base.Slice, (xrng,yrng)))
for i in xrng, j in yrng
@test CR[i,j] == CartesianIndex(i,j)
end
for i_lin in LinearIndices(CR)
i = (i_lin-1) % length(xrng) + 1
j = (i_lin-i) รท length(xrng) + 1
@test CR[i_lin] == CartesianIndex(xrng[i],yrng[j])
end
@test CartesianIndices(fill(1., 2, 3)) == CartesianIndices((2,3))
@test LinearIndices((2,3)) == [1 3 5; 2 4 6]
for IType in (CartesianIndices, LinearIndices)
I1 = IType((Base.OneTo(3),))
I2 = IType((1:3,))
@test !(I1 === I2)
J1, J2 = @inferred(promote(I1, I2))
@test J1 === J2
end
end
@testset "issue #25770" begin
@test vcat(1:3, fill(1, (2,1))) == vcat([1:3;], fill(1, (2,1))) == reshape([1,2,3,1,1], 5,1)
@test hcat(1:2, fill(1, (2,1))) == hcat([1:2;], fill(1, (2,1))) == reshape([1,2,1,1],2,2)
@test [(1:3) (4:6); fill(1, (3,2))] == reshape([1,2,3,1,1,1,4,5,6,1,1,1], 6,2)
end
@testset "Issue 30145" begin
X = [1,2,3]
@test isempty(X[Union{}[]])
end
@testset "Issue 30145" begin
X = [1,2,3]
@test isempty(X[Union{}[]])
end
|