1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987
|
# This file is a part of Julia. License is MIT: https://julialang.org/license
using Random
using LinearAlgebra
function isnan_type(::Type{T}, x) where T
isa(x, T) && isnan(x)
end
@testset "clamp" begin
@test clamp(0, 1, 3) == 1
@test clamp(1, 1, 3) == 1
@test clamp(2, 1, 3) == 2
@test clamp(3, 1, 3) == 3
@test clamp(4, 1, 3) == 3
@test clamp(0.0, 1, 3) == 1.0
@test clamp(1.0, 1, 3) == 1.0
@test clamp(2.0, 1, 3) == 2.0
@test clamp(3.0, 1, 3) == 3.0
@test clamp(4.0, 1, 3) == 3.0
@test clamp.([0, 1, 2, 3, 4], 1.0, 3.0) == [1.0, 1.0, 2.0, 3.0, 3.0]
@test clamp.([0 1; 2 3], 1.0, 3.0) == [1.0 1.0; 2.0 3.0]
begin
x = [0.0, 1.0, 2.0, 3.0, 4.0]
clamp!(x, 1, 3)
@test x == [1.0, 1.0, 2.0, 3.0, 3.0]
end
end
@testset "constants" begin
@test pi != ℯ
@test ℯ != 1//2
@test 1//2 <= ℯ
@test ℯ <= 15//3
@test big(1//2) < ℯ
@test ℯ < big(20//6)
@test ℯ^pi == exp(pi)
@test ℯ^2 == exp(2)
@test ℯ^2.4 == exp(2.4)
@test ℯ^(2//3) == exp(2//3)
@test Float16(3.0) < pi
@test pi < Float16(4.0)
@test occursin("3.14159", sprint(show, π))
@test widen(pi) === pi
end
@testset "frexp,ldexp,significand,exponent" begin
@testset "$T" for T in (Float16,Float32,Float64)
for z in (zero(T),-zero(T))
frexp(z) === (z,0)
significand(z) === z
@test_throws DomainError exponent(z)
end
for (a,b) in [(T(12.8),T(0.8)),
(prevfloat(floatmin(T)), prevfloat(one(T), 2)),
(prevfloat(floatmin(T)), prevfloat(one(T), 2)),
(prevfloat(floatmin(T)), nextfloat(one(T), -2)),
(nextfloat(zero(T), 3), T(0.75)),
(prevfloat(zero(T), -3), T(0.75)),
(nextfloat(zero(T)), T(0.5))]
n = Int(log2(a/b))
@test frexp(a) == (b,n)
@test ldexp(b,n) == a
@test ldexp(a,-n) == b
@test significand(a) == 2b
@test exponent(a) == n-1
@test frexp(-a) == (-b,n)
@test ldexp(-b,n) == -a
@test ldexp(-a,-n) == -b
@test significand(-a) == -2b
@test exponent(-a) == n-1
end
@test_throws DomainError exponent(convert(T,NaN))
@test isnan_type(T, significand(convert(T,NaN)))
x,y = frexp(convert(T,NaN))
@test isnan_type(T, x)
@test y == 0
@testset "ldexp function" begin
@test ldexp(T(0.0), 0) === T(0.0)
@test ldexp(T(-0.0), 0) === T(-0.0)
@test ldexp(T(Inf), 1) === T(Inf)
@test ldexp(T(Inf), 10000) === T(Inf)
@test ldexp(T(-Inf), 1) === T(-Inf)
@test isnan_type(T, ldexp(T(NaN), 10))
@test ldexp(T(1.0), 0) === T(1.0)
@test ldexp(T(0.8), 4) === T(12.8)
@test ldexp(T(-0.854375), 5) === T(-27.34)
@test ldexp(T(1.0), typemax(Int)) === T(Inf)
@test ldexp(T(1.0), typemin(Int)) === T(0.0)
@test ldexp(prevfloat(floatmin(T)), typemax(Int)) === T(Inf)
@test ldexp(prevfloat(floatmin(T)), typemin(Int)) === T(0.0)
@test ldexp(T(0.0), Int128(0)) === T(0.0)
@test ldexp(T(-0.0), Int128(0)) === T(-0.0)
@test ldexp(T(1.0), Int128(0)) === T(1.0)
@test ldexp(T(0.8), Int128(4)) === T(12.8)
@test ldexp(T(-0.854375), Int128(5)) === T(-27.34)
@test ldexp(T(1.0), typemax(Int128)) === T(Inf)
@test ldexp(T(1.0), typemin(Int128)) === T(0.0)
@test ldexp(prevfloat(floatmin(T)), typemax(Int128)) === T(Inf)
@test ldexp(prevfloat(floatmin(T)), typemin(Int128)) === T(0.0)
@test ldexp(T(0.0), BigInt(0)) === T(0.0)
@test ldexp(T(-0.0), BigInt(0)) === T(-0.0)
@test ldexp(T(1.0), BigInt(0)) === T(1.0)
@test ldexp(T(0.8), BigInt(4)) === T(12.8)
@test ldexp(T(-0.854375), BigInt(5)) === T(-27.34)
@test ldexp(T(1.0), BigInt(typemax(Int128))) === T(Inf)
@test ldexp(T(1.0), BigInt(typemin(Int128))) === T(0.0)
@test ldexp(prevfloat(floatmin(T)), BigInt(typemax(Int128))) === T(Inf)
@test ldexp(prevfloat(floatmin(T)), BigInt(typemin(Int128))) === T(0.0)
# Test also against BigFloat reference. Needs to be exactly rounded.
@test ldexp(floatmin(T), -1) == T(ldexp(big(floatmin(T)), -1))
@test ldexp(floatmin(T), -2) == T(ldexp(big(floatmin(T)), -2))
@test ldexp(floatmin(T)/2, 0) == T(ldexp(big(floatmin(T)/2), 0))
@test ldexp(floatmin(T)/3, 0) == T(ldexp(big(floatmin(T)/3), 0))
@test ldexp(floatmin(T)/3, -1) == T(ldexp(big(floatmin(T)/3), -1))
@test ldexp(floatmin(T)/3, 11) == T(ldexp(big(floatmin(T)/3), 11))
@test ldexp(floatmin(T)/11, -10) == T(ldexp(big(floatmin(T)/11), -10))
@test ldexp(-floatmin(T)/11, -10) == T(ldexp(big(-floatmin(T)/11), -10))
end
end
end
# We compare to BigFloat instead of hard-coding
# values, assuming that BigFloat has an independently tested implementation.
@testset "basic math functions" begin
@testset "$T" for T in (Float32, Float64)
x = T(1//3)
y = T(1//2)
yi = 4
@testset "Random values" begin
@test x^y ≈ big(x)^big(y)
@test x^1 === x
@test x^yi ≈ big(x)^yi
@test acos(x) ≈ acos(big(x))
@test acosh(1+x) ≈ acosh(big(1+x))
@test asin(x) ≈ asin(big(x))
@test asinh(x) ≈ asinh(big(x))
@test atan(x) ≈ atan(big(x))
@test atan(x,y) ≈ atan(big(x),big(y))
@test atanh(x) ≈ atanh(big(x))
@test cbrt(x) ≈ cbrt(big(x))
@test cos(x) ≈ cos(big(x))
@test cosh(x) ≈ cosh(big(x))
@test exp(x) ≈ exp(big(x))
@test exp10(x) ≈ exp10(big(x))
@test exp2(x) ≈ exp2(big(x))
@test expm1(x) ≈ expm1(big(x))
@test hypot(x,y) ≈ hypot(big(x),big(y))
@test hypot(x,x,y) ≈ hypot(hypot(big(x),big(x)),big(y))
@test hypot(x,x,y,y) ≈ hypot(hypot(big(x),big(x)),hypot(big(y),big(y)))
@test log(x) ≈ log(big(x))
@test log10(x) ≈ log10(big(x))
@test log1p(x) ≈ log1p(big(x))
@test log2(x) ≈ log2(big(x))
@test sin(x) ≈ sin(big(x))
@test sinh(x) ≈ sinh(big(x))
@test sqrt(x) ≈ sqrt(big(x))
@test tan(x) ≈ tan(big(x))
@test tanh(x) ≈ tanh(big(x))
end
@testset "Special values" begin
@test isequal(T(1//4)^T(1//2), T(1//2))
@test isequal(T(1//4)^2, T(1//16))
@test isequal(acos(T(1)), T(0))
@test isequal(acosh(T(1)), T(0))
@test asin(T(1)) ≈ T(pi)/2 atol=eps(T)
@test atan(T(1)) ≈ T(pi)/4 atol=eps(T)
@test atan(T(1),T(1)) ≈ T(pi)/4 atol=eps(T)
@test isequal(cbrt(T(0)), T(0))
@test isequal(cbrt(T(1)), T(1))
@test isequal(cbrt(T(1000000000)), T(1000))
@test isequal(cos(T(0)), T(1))
@test cos(T(pi)/2) ≈ T(0) atol=eps(T)
@test isequal(cos(T(pi)), T(-1))
@test exp(T(1)) ≈ T(ℯ) atol=10*eps(T)
@test isequal(exp10(T(1)), T(10))
@test isequal(exp2(T(1)), T(2))
@test isequal(expm1(T(0)), T(0))
@test expm1(T(1)) ≈ T(ℯ)-1 atol=10*eps(T)
@test isequal(hypot(T(3),T(4)), T(5))
@test isequal(log(T(1)), T(0))
@test isequal(log(ℯ,T(1)), T(0))
@test log(T(ℯ)) ≈ T(1) atol=eps(T)
@test isequal(log10(T(1)), T(0))
@test isequal(log10(T(10)), T(1))
@test isequal(log1p(T(0)), T(0))
@test log1p(T(ℯ)-1) ≈ T(1) atol=eps(T)
@test isequal(log2(T(1)), T(0))
@test isequal(log2(T(2)), T(1))
@test isequal(sin(T(0)), T(0))
@test isequal(sin(T(pi)/2), T(1))
@test sin(T(pi)) ≈ T(0) atol=eps(T)
@test isequal(sqrt(T(0)), T(0))
@test isequal(sqrt(T(1)), T(1))
@test isequal(sqrt(T(100000000)), T(10000))
@test isequal(tan(T(0)), T(0))
@test tan(T(pi)/4) ≈ T(1) atol=eps(T)
end
@testset "Inverses" begin
@test acos(cos(x)) ≈ x
@test acosh(cosh(x)) ≈ x
@test asin(sin(x)) ≈ x
@test cbrt(x)^3 ≈ x
@test cbrt(x^3) ≈ x
@test asinh(sinh(x)) ≈ x
@test atan(tan(x)) ≈ x
@test atan(x,y) ≈ atan(x/y)
@test atanh(tanh(x)) ≈ x
@test cos(acos(x)) ≈ x
@test cosh(acosh(1+x)) ≈ 1+x
@test exp(log(x)) ≈ x
@test exp10(log10(x)) ≈ x
@test exp2(log2(x)) ≈ x
@test expm1(log1p(x)) ≈ x
@test log(exp(x)) ≈ x
@test log10(exp10(x)) ≈ x
@test log1p(expm1(x)) ≈ x
@test log2(exp2(x)) ≈ x
@test sin(asin(x)) ≈ x
@test sinh(asinh(x)) ≈ x
@test sqrt(x)^2 ≈ x
@test sqrt(x^2) ≈ x
@test tan(atan(x)) ≈ x
@test tanh(atanh(x)) ≈ x
end
@testset "Relations between functions" begin
@test cosh(x) ≈ (exp(x)+exp(-x))/2
@test cosh(x)^2-sinh(x)^2 ≈ 1
@test hypot(x,y) ≈ sqrt(x^2+y^2)
@test sin(x)^2+cos(x)^2 ≈ 1
@test sinh(x) ≈ (exp(x)-exp(-x))/2
@test tan(x) ≈ sin(x)/cos(x)
@test tanh(x) ≈ sinh(x)/cosh(x)
end
@testset "Edge cases" begin
@test isinf(log(zero(T)))
@test isnan_type(T, log(convert(T,NaN)))
@test_throws DomainError log(-one(T))
@test isinf(log1p(-one(T)))
@test isnan_type(T, log1p(convert(T,NaN)))
@test_throws DomainError log1p(convert(T,-2.0))
@test hypot(T(0), T(0)) === T(0)
@test hypot(T(Inf), T(Inf)) === T(Inf)
@test hypot(T(Inf), T(x)) === T(Inf)
@test hypot(T(Inf), T(NaN)) === T(Inf)
@test isnan_type(T, hypot(T(x), T(NaN)))
end
end
end
@testset "exp function" for T in (Float64, Float32)
@testset "$T accuracy" begin
X = map(T, vcat(-10:0.0002:10, -80:0.001:80, 2.0^-27, 2.0^-28, 2.0^-14, 2.0^-13))
for x in X
y, yb = exp(x), exp(big(x))
@test abs(y-yb) <= 1.0*eps(T(yb))
end
end
@testset "$T edge cases" begin
@test isnan_type(T, exp(T(NaN)))
@test exp(T(-Inf)) === T(0.0)
@test exp(T(Inf)) === T(Inf)
@test exp(T(0.0)) === T(1.0) # exact
@test exp(T(5000.0)) === T(Inf)
@test exp(T(-5000.0)) === T(0.0)
end
end
@testset "exp10 function" begin
@testset "accuracy" begin
X = map(Float64, vcat(-10:0.00021:10, -35:0.0023:100, -300:0.001:300))
for x in X
y, yb = exp10(x), exp10(big(x))
@test abs(y-yb) <= 1.2*eps(Float64(yb))
end
X = map(Float32, vcat(-10:0.00021:10, -35:0.0023:35, -35:0.001:35))
for x in X
y, yb = exp10(x), exp10(big(x))
@test abs(y-yb) <= 1.2*eps(Float32(yb))
end
end
@testset "$T edge cases" for T in (Float64, Float32)
@test isnan_type(T, exp10(T(NaN)))
@test exp10(T(-Inf)) === T(0.0)
@test exp10(T(Inf)) === T(Inf)
@test exp10(T(0.0)) === T(1.0) # exact
@test exp10(T(1.0)) === T(10.0)
@test exp10(T(3.0)) === T(1000.0)
@test exp10(T(5000.0)) === T(Inf)
@test exp10(T(-5000.0)) === T(0.0)
end
end
@testset "test abstractarray trig functions" begin
TAA = rand(2,2)
TAA = (TAA + TAA')/2.
STAA = Symmetric(TAA)
@test Array(atanh.(STAA)) == atanh.(TAA)
@test Array(asinh.(STAA)) == asinh.(TAA)
TAA .+= 1
@test Array(acosh.(STAA)) == acosh.(TAA)
@test Array(acsch.(STAA)) == acsch.(TAA)
@test Array(acoth.(STAA)) == acoth.(TAA)
end
@testset "check exp2(::Integer) matches exp2(::Float)" begin
for ii in -2048:2048
expected = exp2(float(ii))
@test exp2(Int16(ii)) == expected
@test exp2(Int32(ii)) == expected
@test exp2(Int64(ii)) == expected
@test exp2(Int128(ii)) == expected
if ii >= 0
@test exp2(UInt16(ii)) == expected
@test exp2(UInt32(ii)) == expected
@test exp2(UInt64(ii)) == expected
@test exp2(UInt128(ii)) == expected
end
end
end
@testset "deg2rad/rad2deg" begin
@testset "$T" for T in (Int, Float64, BigFloat)
@test deg2rad(T(180)) ≈ 1pi
@test deg2rad.(T[45, 60]) ≈ [pi/T(4), pi/T(3)]
@test rad2deg.([pi/T(4), pi/T(3)]) ≈ [45, 60]
@test rad2deg(T(1)*pi) ≈ 180
@test rad2deg(T(1)) ≈ rad2deg(true)
@test deg2rad(T(1)) ≈ deg2rad(true)
end
@test deg2rad(180 + 60im) ≈ pi + (pi/3)*im
@test rad2deg(pi + (pi/3)*im) ≈ 180 + 60im
end
@testset "degree-based trig functions" begin
@testset "$T" for T = (Float32,Float64,Rational{Int})
fT = typeof(float(one(T)))
for x = -400:40:400
@test sind(convert(T,x))::fT ≈ convert(fT,sin(pi/180*x)) atol=eps(deg2rad(convert(fT,x)))
@test cosd(convert(T,x))::fT ≈ convert(fT,cos(pi/180*x)) atol=eps(deg2rad(convert(fT,x)))
end
@testset "sind" begin
@test sind(convert(T,0.0))::fT === zero(fT)
@test sind(convert(T,180.0))::fT === zero(fT)
@test sind(convert(T,360.0))::fT === zero(fT)
T != Rational{Int} && @test sind(convert(T,-0.0))::fT === -zero(fT)
@test sind(convert(T,-180.0))::fT === -zero(fT)
@test sind(convert(T,-360.0))::fT === -zero(fT)
end
@testset "cosd" begin
@test cosd(convert(T,90))::fT === zero(fT)
@test cosd(convert(T,270))::fT === zero(fT)
@test cosd(convert(T,-90))::fT === zero(fT)
@test cosd(convert(T,-270))::fT === zero(fT)
end
@testset "sinpi and cospi" begin
for x = -3:0.3:3
@test sinpi(convert(T,x))::fT ≈ convert(fT,sin(pi*x)) atol=eps(pi*convert(fT,x))
@test cospi(convert(T,x))::fT ≈ convert(fT,cos(pi*x)) atol=eps(pi*convert(fT,x))
end
@test sinpi(convert(T,0.0))::fT === zero(fT)
@test sinpi(convert(T,1.0))::fT === zero(fT)
@test sinpi(convert(T,2.0))::fT === zero(fT)
T != Rational{Int} && @test sinpi(convert(T,-0.0))::fT === -zero(fT)
@test sinpi(convert(T,-1.0))::fT === -zero(fT)
@test sinpi(convert(T,-2.0))::fT === -zero(fT)
@test_throws DomainError sinpi(convert(T,Inf))
@test cospi(convert(T,0.5))::fT === zero(fT)
@test cospi(convert(T,1.5))::fT === zero(fT)
@test cospi(convert(T,-0.5))::fT === zero(fT)
@test cospi(convert(T,-1.5))::fT === zero(fT)
@test_throws DomainError cospi(convert(T,Inf))
end
@testset "Check exact values" begin
@test sind(convert(T,30)) == 0.5
@test cosd(convert(T,60)) == 0.5
@test sind(convert(T,150)) == 0.5
@test sinpi(one(T)/convert(T,6)) == 0.5
@test_throws DomainError sind(convert(T,Inf))
@test_throws DomainError cosd(convert(T,Inf))
T != Float32 && @test cospi(one(T)/convert(T,3)) == 0.5
T == Rational{Int} && @test sinpi(5//6) == 0.5
end
end
end
@testset "Integer args to sinpi/cospi/sinc/cosc" begin
@test sinpi(1) == 0
@test sinpi(-1) == -0
@test cospi(1) == -1
@test cospi(2) == 1
@test sinc(1) == 0
@test sinc(complex(1,0)) == 0
@test sinc(0) == 1
@test sinc(Inf) == 0
@test cosc(1) == -1
@test cosc(0) == 0
@test cosc(complex(1,0)) == -1
@test cosc(Inf) == 0
end
@testset "Irrational args to sinpi/cospi/sinc/cosc" begin
for x in (pi, ℯ, Base.MathConstants.golden)
@test sinpi(x) ≈ Float64(sinpi(big(x)))
@test cospi(x) ≈ Float64(cospi(big(x)))
@test sinc(x) ≈ Float64(sinc(big(x)))
@test cosc(x) ≈ Float64(cosc(big(x)))
@test sinpi(complex(x, x)) ≈ Complex{Float64}(sinpi(complex(big(x), big(x))))
@test cospi(complex(x, x)) ≈ Complex{Float64}(cospi(complex(big(x), big(x))))
@test sinc(complex(x, x)) ≈ Complex{Float64}(sinc(complex(big(x), big(x))))
@test cosc(complex(x, x)) ≈ Complex{Float64}(cosc(complex(big(x), big(x))))
end
end
@testset "trig function type stability" begin
@testset "$T $f" for T = (Float32,Float64,BigFloat), f = (sind,cosd,sinpi,cospi)
@test Base.return_types(f,Tuple{T}) == [T]
end
end
# useful test functions for relative error, which differ from isapprox (≈)
# in that relerrc separately looks at the real and imaginary parts
relerr(z, x) = z == x ? 0.0 : abs(z - x) / abs(x)
relerrc(z, x) = max(relerr(real(z),real(x)), relerr(imag(z),imag(x)))
≅(a,b) = relerrc(a,b) ≤ 1e-13
@testset "subnormal flags" begin
# Ensure subnormal flags functions don't segfault
@test any(set_zero_subnormals(true) .== [false,true])
@test any(get_zero_subnormals() .== [false,true])
@test set_zero_subnormals(false)
@test !get_zero_subnormals()
end
@testset "evalpoly" begin
@test @evalpoly(2,3,4,5,6) == 3+2*(4+2*(5+2*6)) == @evalpoly(2+0im,3,4,5,6)
@test let evalcounts=0
@evalpoly(begin
evalcounts += 1
4
end, 1,2,3,4,5)
evalcounts
end == 1
a0 = 1
a1 = 2
c = 3
@test @evalpoly(c, a0, a1) == 7
end
@testset "cis" begin
for z in (1.234, 1.234 + 5.678im)
@test cis(z) ≈ exp(im*z)
end
let z = [1.234, 5.678]
@test cis.(z) ≈ exp.(im*z)
end
end
@testset "modf" begin
@testset "$elty" for elty in (Float16, Float32, Float64)
@test modf( convert(elty,1.2) )[1] ≈ convert(elty,0.2)
@test modf( convert(elty,1.2) )[2] ≈ convert(elty,1.0)
@test modf( convert(elty,1.0) )[1] ≈ convert(elty,0.0)
@test modf( convert(elty,1.0) )[2] ≈ convert(elty,1.0)
end
end
@testset "frexp" begin
@testset "$elty" for elty in (Float16, Float32, Float64)
@test frexp( convert(elty,0.5) ) == (0.5, 0)
@test frexp( convert(elty,4.0) ) == (0.5, 3)
@test frexp( convert(elty,10.5) ) == (0.65625, 4)
end
end
@testset "log/log1p" begin
# using Tang's algorithm, should be accurate to within 0.56 ulps
X = rand(100)
for x in X
for n = -5:5
xn = ldexp(x,n)
for T in (Float32,Float64)
xt = T(x)
y = log(xt)
yb = log(big(xt))
@test abs(y-yb) <= 0.56*eps(T(yb))
y = log1p(xt)
yb = log1p(big(xt))
@test abs(y-yb) <= 0.56*eps(T(yb))
if n <= 0
y = log1p(-xt)
yb = log1p(big(-xt))
@test abs(y-yb) <= 0.56*eps(T(yb))
end
end
end
end
for n = 0:28
@test log(2,2^n) == n
end
setprecision(10_000) do
@test log(2,big(2)^100) == 100
@test log(2,big(2)^200) == 200
@test log(2,big(2)^300) == 300
@test log(2,big(2)^400) == 400
end
for T in (Float32,Float64)
@test log(zero(T)) == -Inf
@test isnan_type(T, log(T(NaN)))
@test_throws DomainError log(-one(T))
@test log1p(-one(T)) == -Inf
@test isnan_type(T, log1p(T(NaN)))
@test_throws DomainError log1p(-2*one(T))
end
end
@testset "vectorization of 2-arg functions" begin
binary_math_functions = [
copysign, flipsign, log, atan, hypot, max, min,
]
@testset "$f" for f in binary_math_functions
x = y = 2
v = [f(x,y)]
@test f.([x],y) == v
@test f.(x,[y]) == v
@test f.([x],[y]) == v
end
end
@testset "issues #3024, #12822, #24240" begin
p2 = -2
p3 = -3
@test_throws DomainError 2 ^ p2
@test 2 ^ -2 == 0.25 == (2^-1)^2
@test_throws DomainError (-2)^(2.2)
@test_throws DomainError (-2.0)^(2.2)
@test_throws DomainError false ^ p2
@test false ^ -2 == Inf
@test 1 ^ -2 === (-1) ^ -2 == 1 ^ p2 === (-1) ^ p2 === 1
@test (-1) ^ -1 === (-1) ^ -3 == (-1) ^ p3 === -1
@test true ^ -2 == true ^ p2 === true
end
@testset "issue #13748" begin
let A = [1 2; 3 4]; B = [5 6; 7 8]; C = [9 10; 11 12]
@test muladd(A,B,C) == A*B + C
end
end
@testset "issue #19872" begin
f19872a(x) = x ^ 5
f19872b(x) = x ^ (-1024)
@test 0 < f19872b(2.0) < 1e-300
@test issubnormal(2.0 ^ (-1024))
@test issubnormal(f19872b(2.0))
@test !issubnormal(f19872b(0.0))
@test f19872a(2.0) === 32.0
@test !issubnormal(f19872a(2.0))
@test !issubnormal(0.0)
end
# no domain error is thrown for negative values
@test invoke(cbrt, Tuple{AbstractFloat}, -1.0) == -1.0
@testset "promote Float16 irrational #15359" begin
@test typeof(Float16(.5) * pi) == Float16
end
@testset "sincos" begin
@test sincos(1.0) === (sin(1.0), cos(1.0))
@test sincos(1f0) === (sin(1f0), cos(1f0))
@test sincos(Float16(1)) === (sin(Float16(1)), cos(Float16(1)))
@test sincos(1) === (sin(1), cos(1))
@test sincos(big(1)) == (sin(big(1)), cos(big(1)))
@test sincos(big(1.0)) == (sin(big(1.0)), cos(big(1.0)))
@test sincos(NaN) === (NaN, NaN)
@test sincos(NaN32) === (NaN32, NaN32)
end
@testset "test fallback definitions" begin
@test exp10(5) ≈ exp10(5.0)
@test exp10(50//10) ≈ exp10(5.0)
@test log10(exp10(ℯ)) ≈ ℯ
@test log(ℯ) === 1
@test exp2(Float16(2.0)) ≈ exp2(2.0)
@test exp2(Float16(1.0)) === Float16(exp2(1.0))
@test exp10(Float16(1.0)) === Float16(exp10(1.0))
end
# #22742: updated isapprox semantics
@test !isapprox(1.0, 1.0+1e-12, atol=1e-14)
@test isapprox(1.0, 1.0+0.5*sqrt(eps(1.0)))
@test !isapprox(1.0, 1.0+1.5*sqrt(eps(1.0)), atol=sqrt(eps(1.0)))
# test AbstractFloat fallback pr22716
struct Float22716{T<:AbstractFloat} <: AbstractFloat
x::T
end
Base.:^(x::Number, y::Float22716) = x^(y.x)
let x = 2.0
@test exp2(Float22716(x)) === 2^x
@test exp10(Float22716(x)) === 10^x
end
@testset "asin #23088" begin
for T in (Float32, Float64)
@test asin(zero(T)) === zero(T)
@test asin(-zero(T)) === -zero(T)
@test asin(nextfloat(zero(T))) === nextfloat(zero(T))
@test asin(prevfloat(zero(T))) === prevfloat(zero(T))
@test asin(one(T)) === T(pi)/2
@test asin(-one(T)) === -T(pi)/2
for x in (0.45, 0.6, 0.98)
by = asin(big(T(x)))
@test T(abs(asin(T(x)) - by))/eps(T(abs(by))) <= 1
bym = asin(big(T(-x)))
@test T(abs(asin(T(-x)) - bym))/eps(T(abs(bym))) <= 1
end
@test_throws DomainError asin(-T(Inf))
@test_throws DomainError asin(T(Inf))
@test isnan_type(T, asin(T(NaN)))
end
end
@testset "sin, cos, sincos, tan #23088" begin
for T in (Float32, Float64)
@test sin(zero(T)) === zero(T)
@test sin(-zero(T)) === -zero(T)
@test cos(zero(T)) === T(1.0)
@test cos(-zero(T)) === T(1.0)
@test sin(nextfloat(zero(T))) === nextfloat(zero(T))
@test sin(prevfloat(zero(T))) === prevfloat(zero(T))
@test cos(nextfloat(zero(T))) === T(1.0)
@test cos(prevfloat(zero(T))) === T(1.0)
for x in (0.1, 0.45, 0.6, 0.75, 0.79, 0.98)
for op in (sin, cos, tan)
by = T(op(big(x)))
@test abs(op(T(x)) - by)/eps(by) <= one(T)
bym = T(op(big(-x)))
@test abs(op(T(-x)) - bym)/eps(bym) <= one(T)
end
end
@test_throws DomainError sin(-T(Inf))
@test_throws DomainError sin(T(Inf))
@test_throws DomainError cos(-T(Inf))
@test_throws DomainError cos(T(Inf))
@test_throws DomainError tan(-T(Inf))
@test_throws DomainError tan(T(Inf))
@test sin(T(NaN)) === T(NaN)
@test cos(T(NaN)) === T(NaN)
@test tan(T(NaN)) === T(NaN)
end
end
@testset "rem_pio2 #23088" begin
vals = (2.356194490192345f0, 3.9269908169872414f0, 7.0685834705770345f0,
5.497787143782138f0, 4.216574282663131f8, 4.216574282663131f12)
for (i, x) in enumerate(vals)
for op in (prevfloat, nextfloat)
Ty = Float32(Base.Math.rem_pio2_kernel(op(vals[i]))[2].hi)
By = Float32(rem(big(op(x)), pi/2))
@test Ty ≈ By || Ty ≈ By-Float32(pi)/2
end
end
end
@testset "atan #23383" begin
for T in (Float32, Float64)
@test atan(T(NaN)) === T(NaN)
@test atan(-T(Inf)) === -T(pi)/2
@test atan(T(Inf)) === T(pi)/2
# no reduction needed |x| < 7/16
@test atan(zero(T)) === zero(T)
@test atan(prevfloat(zero(T))) === prevfloat(zero(T))
@test atan(nextfloat(zero(T))) === nextfloat(zero(T))
for x in (T(7/16), (T(7/16)+T(11/16))/2, T(11/16),
(T(11/16)+T(19/16))/2, T(19/16),
(T(19/16)+T(39/16))/2, T(39/16),
(T(39/16)+T(2)^23)/2, T(2)^23)
x = T(7/16)
by = T(atan(big(x)))
@test abs(atan(x) - by)/eps(by) <= one(T)
x = prevfloat(T(7/16))
by = T(atan(big(x)))
@test abs(atan(x) - by)/eps(by) <= one(T)
x = nextfloat(T(7/16))
by = T(atan(big(x)))
@test abs(atan(x) - by)/eps(by) <= one(T)
end
# This case was used to find a bug, but it isn't special in itself
@test atan(1.7581305072934137) ≈ 1.053644580517088
end
end
@testset "atan" begin
for T in (Float32, Float64)
@test isnan_type(T, atan(T(NaN), T(NaN)))
@test isnan_type(T, atan(T(NaN), T(0.1)))
@test isnan_type(T, atan(T(0.1), T(NaN)))
r = T(randn())
absr = abs(r)
# y zero
@test atan(T(r), one(T)) === atan(T(r))
@test atan(zero(T), absr) === zero(T)
@test atan(-zero(T), absr) === -zero(T)
@test atan(zero(T), -absr) === T(pi)
@test atan(-zero(T), -absr) === -T(pi)
# x zero and y not zero
@test atan(one(T), zero(T)) === T(pi)/2
@test atan(-one(T), zero(T)) === -T(pi)/2
# isinf(x) == true && isinf(y) == true
@test atan(T(Inf), T(Inf)) === T(pi)/4 # m == 0 (see atan code)
@test atan(-T(Inf), T(Inf)) === -T(pi)/4 # m == 1
@test atan(T(Inf), -T(Inf)) === 3*T(pi)/4 # m == 2
@test atan(-T(Inf), -T(Inf)) === -3*T(pi)/4 # m == 3
# isinf(x) == true && isinf(y) == false
@test atan(absr, T(Inf)) === zero(T) # m == 0
@test atan(-absr, T(Inf)) === -zero(T) # m == 1
@test atan(absr, -T(Inf)) === T(pi) # m == 2
@test atan(-absr, -T(Inf)) === -T(pi) # m == 3
# isinf(y) == true && isinf(x) == false
@test atan(T(Inf), absr) === T(pi)/2
@test atan(-T(Inf), absr) === -T(pi)/2
@test atan(T(Inf), -absr) === T(pi)/2
@test atan(-T(Inf), -absr) === -T(pi)/2
# |y/x| above high threshold
atanpi = T(1.5707963267948966)
@test atan(T(2.0^61), T(1.0)) === atanpi # m==0
@test atan(-T(2.0^61), T(1.0)) === -atanpi # m==1
@test atan(T(2.0^61), -T(1.0)) === atanpi # m==2
@test atan(-T(2.0^61), -T(1.0)) === -atanpi # m==3
@test atan(-T(Inf), -absr) === -T(pi)/2
# |y|/x between 0 and low threshold
@test atan(T(2.0^-61), -T(1.0)) === T(pi) # m==2
@test atan(-T(2.0^-61), -T(1.0)) === -T(pi) # m==3
# y/x is "safe" ("arbitrary values", just need to hit the branch)
_ATAN_PI_LO(::Type{Float32}) = -8.7422776573f-08
_ATAN_PI_LO(::Type{Float64}) = 1.2246467991473531772E-16
@test atan(T(5.0), T(2.5)) === atan(abs(T(5.0)/T(2.5)))
@test atan(-T(5.0), T(2.5)) === -atan(abs(-T(5.0)/T(2.5)))
@test atan(T(5.0), -T(2.5)) === T(pi)-(atan(abs(T(5.0)/-T(2.5)))-_ATAN_PI_LO(T))
@test atan(-T(5.0), -T(2.5)) === -(T(pi)-atan(abs(-T(5.0)/-T(2.5)))-_ATAN_PI_LO(T))
@test atan(T(1235.2341234), T(2.5)) === atan(abs(T(1235.2341234)/T(2.5)))
@test atan(-T(1235.2341234), T(2.5)) === -atan(abs(-T(1235.2341234)/T(2.5)))
@test atan(T(1235.2341234), -T(2.5)) === T(pi)-(atan(abs(T(1235.2341234)/-T(2.5)))-_ATAN_PI_LO(T))
@test atan(-T(1235.2341234), -T(2.5)) === -(T(pi)-(atan(abs(-T(1235.2341234)/T(2.5)))-_ATAN_PI_LO(T)))
end
end
@testset "atand" begin
for T in (Float32, Float64)
r = T(randn())
absr = abs(r)
# Tests related to the 1-argument version of `atan`.
# ==================================================
@test atand(T(Inf)) === T(90.0)
@test atand(-T(Inf)) === -T(90.0)
@test atand(zero(T)) === T(0.0)
@test atand(one(T)) === T(45.0)
@test atand(-one(T)) === -T(45.0)
# Tests related to the 2-argument version of `atan`.
# ==================================================
# If `x` is one, then `atand(y,x)` must be equal to `atand(y)`.
@test atand(T(r), one(T)) === atand(T(r))
# `y` zero.
@test atand(zero(T), absr) === zero(T)
@test atand(-zero(T), absr) === -zero(T)
@test atand(zero(T), -absr) === T(180.0)
@test atand(-zero(T), -absr) === -T(180.0)
# `x` zero and `y` not zero.
@test atand(one(T), zero(T)) === T(90.0)
@test atand(-one(T), zero(T)) === -T(90.0)
# `x` and `y` equal for each quadrant.
@test atand(+absr, +absr) === T(45.0)
@test atand(-absr, +absr) === -T(45.0)
@test atand(+absr, -absr) === T(135.0)
@test atand(-absr, -absr) === -T(135.0)
end
end
@testset "acos #23283" begin
for T in (Float32, Float64)
@test acos(zero(T)) === T(pi)/2
@test acos(-zero(T)) === T(pi)/2
@test acos(nextfloat(zero(T))) === T(pi)/2
@test acos(prevfloat(zero(T))) === T(pi)/2
@test acos(one(T)) === T(0.0)
@test acos(-one(T)) === T(pi)
for x in (0.45, 0.6, 0.98)
by = acos(big(T(x)))
@test T((acos(T(x)) - by))/eps(abs(T(by))) <= 1
bym = acos(big(T(-x)))
@test T(abs(acos(T(-x)) - bym))/eps(abs(T(bym))) <= 1
end
@test_throws DomainError acos(-T(Inf))
@test_throws DomainError acos(T(Inf))
@test isnan_type(T, acos(T(NaN)))
end
end
#prev, current, next float
pcnfloat(x) = prevfloat(x), x, nextfloat(x)
import Base.Math: COSH_SMALL_X, H_SMALL_X, H_MEDIUM_X, H_LARGE_X
@testset "sinh" begin
for T in (Float32, Float64)
@test sinh(zero(T)) === zero(T)
@test sinh(-zero(T)) === -zero(T)
@test sinh(nextfloat(zero(T))) === nextfloat(zero(T))
@test sinh(prevfloat(zero(T))) === prevfloat(zero(T))
@test sinh(T(1000)) === T(Inf)
@test sinh(-T(1000)) === -T(Inf)
@test isnan_type(T, sinh(T(NaN)))
for x in Iterators.flatten(pcnfloat.([H_SMALL_X(T), H_MEDIUM_X(T), H_LARGE_X(T)]))
@test sinh(x) ≈ sinh(big(x)) rtol=eps(T)
@test sinh(-x) ≈ sinh(big(-x)) rtol=eps(T)
end
end
end
@testset "cosh" begin
for T in (Float32, Float64)
@test cosh(zero(T)) === one(T)
@test cosh(-zero(T)) === one(T)
@test cosh(nextfloat(zero(T))) === one(T)
@test cosh(prevfloat(zero(T))) === one(T)
@test cosh(T(1000)) === T(Inf)
@test cosh(-T(1000)) === T(Inf)
@test isnan_type(T, cosh(T(NaN)))
for x in Iterators.flatten(pcnfloat.([COSH_SMALL_X(T), H_MEDIUM_X(T), H_LARGE_X(T)]))
@test cosh(x) ≈ cosh(big(x)) rtol=eps(T)
@test cosh(-x) ≈ cosh(big(-x)) rtol=eps(T)
end
end
end
@testset "tanh" begin
for T in (Float32, Float64)
@test tanh(zero(T)) === zero(T)
@test tanh(-zero(T)) === -zero(T)
@test tanh(nextfloat(zero(T))) === nextfloat(zero(T))
@test tanh(prevfloat(zero(T))) === prevfloat(zero(T))
@test tanh(T(1000)) === one(T)
@test tanh(-T(1000)) === -one(T)
@test isnan_type(T, tanh(T(NaN)))
for x in Iterators.flatten(pcnfloat.([H_SMALL_X(T), T(1.0), H_MEDIUM_X(T)]))
@test tanh(x) ≈ tanh(big(x)) rtol=eps(T)
@test tanh(-x) ≈ tanh(big(-x)) rtol=eps(T)
end
end
end
@testset "asinh" begin
for T in (Float32, Float64)
@test asinh(zero(T)) === zero(T)
@test asinh(-zero(T)) === -zero(T)
@test asinh(nextfloat(zero(T))) === nextfloat(zero(T))
@test asinh(prevfloat(zero(T))) === prevfloat(zero(T))
@test isnan_type(T, asinh(T(NaN)))
for x in Iterators.flatten(pcnfloat.([T(2)^-28,T(2),T(2)^28]))
@test asinh(x) ≈ asinh(big(x)) rtol=eps(T)
@test asinh(-x) ≈ asinh(big(-x)) rtol=eps(T)
end
end
end
@testset "acosh" begin
for T in (Float32, Float64)
@test_throws DomainError acosh(T(0.1))
@test acosh(one(T)) === zero(T)
@test isnan_type(T, acosh(T(NaN)))
for x in Iterators.flatten(pcnfloat.([nextfloat(T(1.0)), T(2), T(2)^28]))
@test acosh(x) ≈ acosh(big(x)) rtol=eps(T)
end
end
end
@testset "atanh" begin
for T in (Float32, Float64)
@test_throws DomainError atanh(T(1.1))
@test atanh(zero(T)) === zero(T)
@test atanh(-zero(T)) === -zero(T)
@test atanh(one(T)) === T(Inf)
@test atanh(-one(T)) === -T(Inf)
@test atanh(nextfloat(zero(T))) === nextfloat(zero(T))
@test atanh(prevfloat(zero(T))) === prevfloat(zero(T))
@test isnan_type(T, atanh(T(NaN)))
for x in Iterators.flatten(pcnfloat.([T(2.0)^-28, T(0.5)]))
@test atanh(x) ≈ atanh(big(x)) rtol=eps(T)
@test atanh(-x) ≈ atanh(big(-x)) rtol=eps(T)
end
end
end
# Define simple wrapper of a Float type:
struct FloatWrapper <: Real
x::Float64
end
import Base: +, -, *, /, ^, sin, cos, exp, sinh, cosh, convert, isfinite, float, promote_rule
for op in (:+, :-, :*, :/, :^)
@eval $op(x::FloatWrapper, y::FloatWrapper) = FloatWrapper($op(x.x, y.x))
end
for op in (:sin, :cos, :exp, :sinh, :cosh, :-)
@eval $op(x::FloatWrapper) = FloatWrapper($op(x.x))
end
for op in (:isfinite,)
@eval $op(x::FloatWrapper) = $op(x.x)
end
convert(::Type{FloatWrapper}, x::Int) = FloatWrapper(float(x))
promote_rule(::Type{FloatWrapper}, ::Type{Int}) = FloatWrapper
float(x::FloatWrapper) = x
@testset "exp(Complex(a, b)) for a and b of non-standard real type #25292" begin
x = FloatWrapper(3.1)
y = FloatWrapper(4.1)
@test sincos(x) == (sin(x), cos(x))
z = Complex(x, y)
@test isa(exp(z), Complex)
@test isa(sin(z), Complex)
@test isa(cos(z), Complex)
end
@testset "cbrt" begin
for T in (Float32, Float64)
@test cbrt(zero(T)) === zero(T)
@test cbrt(-zero(T)) === -zero(T)
@test cbrt(one(T)) === one(T)
@test cbrt(-one(T)) === -one(T)
@test cbrt(T(Inf)) === T(Inf)
@test cbrt(-T(Inf)) === -T(Inf)
@test isnan_type(T, cbrt(T(NaN)))
for x in (pcnfloat(nextfloat(nextfloat(zero(T))))...,
pcnfloat(prevfloat(prevfloat(zero(T))))...,
0.45, 0.6, 0.98,
map(x->x^3, 1.0:1.0:1024.0)...,
nextfloat(-T(Inf)), prevfloat(T(Inf)))
by = cbrt(big(T(x)))
@test cbrt(T(x)) ≈ by rtol=eps(T)
bym = cbrt(big(T(-x)))
@test cbrt(T(-x)) ≈ bym rtol=eps(T)
end
end
end
isdefined(Main, :Furlongs) || @eval Main include("testhelpers/Furlongs.jl")
using .Main.Furlongs
@test hypot(Furlong(0), Furlong(0)) == Furlong(0.0)
@test hypot(Furlong(3), Furlong(4)) == Furlong(5.0)
@test hypot(Furlong(NaN), Furlong(Inf)) == Furlong(Inf)
@test hypot(Furlong(Inf), Furlong(NaN)) == Furlong(Inf)
@test hypot(Furlong(Inf), Furlong(Inf)) == Furlong(Inf)
|