1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
|
# This file is a part of Julia. License is MIT: https://julialang.org/license
function simd_loop_example_from_manual(x, y, z)
s = zero(eltype(z))
n = min(length(x),length(y),length(z))
@simd for i in 1:n
@inbounds begin
z[i] = x[i]-y[i]
s += z[i]*z[i]
end
end
s
end
function simd_loop_axpy!(a, X, Y)
@simd ivdep for i in eachindex(X)
@inbounds Y[i] += a*X[i]
end
return Y
end
function simd_loop_with_multiple_reductions(x, y, z)
# Use non-zero initial value to make sure reduction values include it.
(s,t) = (one(eltype(x)),one(eltype(y)))
@simd for i in 1:length(z)
@inbounds begin
s += x[i]
t += 2*y[i]
s += z[i] # Two reductions go into s
end
end
(s,t)
end
for T in [Int32,Int64,Float32,Float64]
# Try various lengths to make sure "remainder loop" works
for n in [0,1,2,3,4,255,256,257]
local n, a, b, c, s, t
# Dataset chosen so that results will be exact with only 24 bits of mantissa
a = convert(Array{T},[2*j+1 for j in 1:n])
b = convert(Array{T},[3*j+2 for j in 1:n])
c = convert(Array{T},[5*j+3 for j in 1:n])
s = simd_loop_example_from_manual(a,b,c)
@test a==[2*j+1 for j in 1:n]
@test b==[3*j+2 for j in 1:n]
@test c==[-j-1 for j in 1:n]
@test s==sum(c.*c)
(s,t) = simd_loop_with_multiple_reductions(a,b,c)
@test s==sum(a)+sum(c)+1
@test t==2*sum(b)+1
X = ones(T, n)
Y = zeros(T, n)
simd_loop_axpy!(T(2), X, Y)
@test all(y->y==T(2), Y)
end
end
# Test that scope rules match regular for
let j=4
# Use existing local variable.
@simd for j=1:0 end
@test j==4
@simd for j=1:3 end
@test j==3
# Use global variable
global simd_glob = 4
@simd for simd_glob=1:0 end
@test simd_glob==4
@simd for simd_glob=1:3 end
@test simd_glob==3
# Index that is local to loop
@simd for simd_loop_local=1:0 end
simd_loop_local_present = true
try
simd_loop_local += 1
catch
simd_loop_local_present = false
end
@test !simd_loop_local_present
end
import Base.SimdLoop.SimdError
# Test that @simd rejects inner loop body with invalid control flow statements
# issue #8613
macro test_throws(ty, ex)
return quote
Test.@test_throws $(esc(ty)) try
$(esc(ex))
catch err
@test err isa LoadError
@test err.file === $(string(__source__.file))
@test err.line === $(__source__.line + 1)
rethrow(err.error)
end
end
end
@test_throws SimdError("break is not allowed inside a @simd loop body") @macroexpand begin
@simd for x = 1:10
x == 1 && break
end
end
@test_throws SimdError("continue is not allowed inside a @simd loop body") @macroexpand begin
@simd for x = 1:10
x < 5 && continue
end
end
@test_throws SimdError("@goto is not allowed inside a @simd loop body") @macroexpand begin
@simd for x = 1:10
x == 1 || @goto exit_loop
end
@label exit_loop
end
# @simd with cartesian iteration
function simd_cartesian_range!(indices, crng)
@simd for I in crng
push!(indices, I)
end
indices
end
crng = CartesianIndices(map(Base.Slice, (2:4, 0:1, 1:1, 3:5)))
indices = simd_cartesian_range!(Vector{eltype(crng)}(), crng)
@test indices == vec(collect(crng))
crng = CartesianIndices(map(Base.Slice, (-1:1, 1:3)))
indices = simd_cartesian_range!(Vector{eltype(crng)}(), crng)
@test indices == vec(collect(crng))
crng = CartesianIndices(map(Base.Slice, (-1:-1, 1:3)))
indices = simd_cartesian_range!(Vector{eltype(crng)}(), crng)
@test indices == vec(collect(crng))
crng = CartesianIndices(map(Base.Slice, (2:4,)))
indices = simd_cartesian_range!(Vector{eltype(crng)}(), crng)
@test indices == collect(crng)
crng = CartesianIndices(())
indices = simd_cartesian_range!(Vector{eltype(crng)}(), crng)
@test indices == vec(collect(crng))
# @simd with array as "range"
# issue #13869
function simd_sum_over_array(a)
s = zero(eltype(a))
@inbounds @simd for x in a
s += x
end
s
end
@test 2001000 == simd_sum_over_array(Vector(1:2000))
@test 2001000 == simd_sum_over_array(Float32[i+j*500 for i=1:500, j=0:3])
|