File: abstractset.jl

package info (click to toggle)
julia 1.5.3%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 91,132 kB
  • sloc: lisp: 278,486; ansic: 60,186; cpp: 29,801; sh: 2,403; makefile: 1,998; pascal: 1,313; objc: 647; javascript: 516; asm: 226; python: 161; xml: 34
file content (425 lines) | stat: -rw-r--r-- 9,281 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
# This file is a part of Julia. License is MIT: https://julialang.org/license

eltype(::Type{<:AbstractSet{T}}) where {T} = @isdefined(T) ? T : Any
sizehint!(s::AbstractSet, n) = nothing

copy!(dst::AbstractSet, src::AbstractSet) = union!(empty!(dst), src)

## set operations (union, intersection, symmetric difference)

"""
    union(s, itrs...)
    ∪(s, itrs...)

Construct the union of sets. Maintain order with arrays.

# Examples
```jldoctest
julia> union([1, 2], [3, 4])
4-element Array{Int64,1}:
 1
 2
 3
 4

julia> union([1, 2], [2, 4])
3-element Array{Int64,1}:
 1
 2
 4

julia> union([4, 2], 1:2)
3-element Array{Int64,1}:
 4
 2
 1

julia> union(Set([1, 2]), 2:3)
Set{Int64} with 3 elements:
  2
  3
  1
```
"""
function union end

_in(itr) = x -> x in itr

union(s, sets...) = union!(emptymutable(s, promote_eltype(s, sets...)), s, sets...)
union(s::AbstractSet) = copy(s)

const ∪ = union

"""
    union!(s::Union{AbstractSet,AbstractVector}, itrs...)

Construct the union of passed in sets and overwrite `s` with the result.
Maintain order with arrays.

# Examples
```jldoctest
julia> a = Set([1, 3, 4, 5]);

julia> union!(a, 1:2:8);

julia> a
Set{Int64} with 5 elements:
  7
  4
  3
  5
  1
```
"""
function union!(s::AbstractSet, sets...)
    for x in sets
        union!(s, x)
    end
    return s
end

max_values(::Type) = typemax(Int)
max_values(T::Union{map(X -> Type{X}, BitIntegerSmall_types)...}) = 1 << (8*sizeof(T))
# saturated addition to prevent overflow with typemax(Int)
max_values(T::Union) = max(max_values(T.a), max_values(T.b), max_values(T.a) + max_values(T.b))
max_values(::Type{Bool}) = 2
max_values(::Type{Nothing}) = 1

function union!(s::AbstractSet{T}, itr) where T
    haslength(itr) && sizehint!(s, length(s) + length(itr))
    for x in itr
        push!(s, x)
        length(s) == max_values(T) && break
    end
    return s
end

"""
    intersect(s, itrs...)
    ∩(s, itrs...)

Construct the intersection of sets.
Maintain order with arrays.

# Examples
```jldoctest
julia> intersect([1, 2, 3], [3, 4, 5])
1-element Array{Int64,1}:
 3

julia> intersect([1, 4, 4, 5, 6], [4, 6, 6, 7, 8])
2-element Array{Int64,1}:
 4
 6

julia> intersect(Set([1, 2]), BitSet([2, 3]))
Set{Int64} with 1 element:
  2
```
"""
intersect(s::AbstractSet, itr, itrs...) = intersect!(intersect(s, itr), itrs...)
intersect(s) = union(s)
intersect(s::AbstractSet, itr) = mapfilter(_in(s), push!, itr, emptymutable(s))

const ∩ = intersect

"""
    intersect!(s::Union{AbstractSet,AbstractVector}, itrs...)

Intersect all passed in sets and overwrite `s` with the result.
Maintain order with arrays.
"""
function intersect!(s::AbstractSet, itrs...)
    for x in itrs
        intersect!(s, x)
    end
    return s
end
intersect!(s::AbstractSet, s2::AbstractSet) = filter!(_in(s2), s)
intersect!(s::AbstractSet, itr) =
    intersect!(s, union!(emptymutable(s, eltype(itr)), itr))

"""
    setdiff(s, itrs...)

Construct the set of elements in `s` but not in any of the iterables in `itrs`.
Maintain order with arrays.

# Examples
```jldoctest
julia> setdiff([1,2,3], [3,4,5])
2-element Array{Int64,1}:
 1
 2
```
"""
setdiff(s::AbstractSet, itrs...) = setdiff!(copymutable(s), itrs...)
setdiff(s) = union(s)

"""
    setdiff!(s, itrs...)

Remove from set `s` (in-place) each element of each iterable from `itrs`.
Maintain order with arrays.

# Examples
```jldoctest
julia> a = Set([1, 3, 4, 5]);

julia> setdiff!(a, 1:2:6);

julia> a
Set{Int64} with 1 element:
  4
```
"""
function setdiff!(s::AbstractSet, itrs...)
    for x in itrs
        setdiff!(s, x)
    end
    return s
end
function setdiff!(s::AbstractSet, itr)
    for x in itr
        delete!(s, x)
    end
    return s
end


"""
    symdiff(s, itrs...)

Construct the symmetric difference of elements in the passed in sets.
When `s` is not an `AbstractSet`, the order is maintained.
Note that in this case the multiplicity of elements matters.

# Examples
```jldoctest
julia> symdiff([1,2,3], [3,4,5], [4,5,6])
3-element Array{Int64,1}:
 1
 2
 6

julia> symdiff([1,2,1], [2, 1, 2])
2-element Array{Int64,1}:
 1
 2

julia> symdiff(unique([1,2,1]), unique([2, 1, 2]))
Int64[]
```
"""
symdiff(s, sets...) = symdiff!(emptymutable(s, promote_eltype(s, sets...)), s, sets...)
symdiff(s) = symdiff!(copy(s))

"""
    symdiff!(s::Union{AbstractSet,AbstractVector}, itrs...)

Construct the symmetric difference of the passed in sets, and overwrite `s` with the result.
When `s` is an array, the order is maintained.
Note that in this case the multiplicity of elements matters.
"""
function symdiff!(s::AbstractSet, itrs...)
    for x in itrs
        symdiff!(s, x)
    end
    return s
end

function symdiff!(s::AbstractSet, itr)
    for x in itr
        x in s ? delete!(s, x) : push!(s, x)
    end
    return s
end

## non-strict subset comparison

const ⊆ = issubset
function ⊇ end
"""
    issubset(a, b) -> Bool
    ⊆(a, b) -> Bool
    ⊇(b, a) -> Bool

Determine whether every element of `a` is also in `b`, using [`in`](@ref).

# Examples
```jldoctest
julia> issubset([1, 2], [1, 2, 3])
true

julia> [1, 2, 3] ⊆ [1, 2]
false

julia> [1, 2, 3] ⊇ [1, 2]
true
```
"""
issubset, ⊆, ⊇

const FASTIN_SET_THRESHOLD = 70

function issubset(l, r)
    if haslength(r) && (isa(l, AbstractSet) || !hasfastin(r))
        rlen = length(r) # conditions above make this length computed only when needed
        # check l for too many unique elements
        if isa(l, AbstractSet) && length(l) > rlen
            return false
        end
        # when `in` would be too slow and r is big enough, convert it to a Set
        # this threshold was empirically determined (cf. #26198)
        if !hasfastin(r) && rlen > FASTIN_SET_THRESHOLD
            return issubset(l, Set(r))
        end
    end
    for elt in l
        elt in r || return false
    end
    return true
end

"""
    hasfastin(T)

Determine whether the computation `x ∈ collection` where `collection::T` can be considered
as a "fast" operation (typically constant or logarithmic complexity).
The definition `hasfastin(x) = hasfastin(typeof(x))` is provided for convenience so that instances
can be passed instead of types.
However the form that accepts a type argument should be defined for new types.
"""
hasfastin(::Type) = false
hasfastin(::Union{Type{<:AbstractSet},Type{<:AbstractDict},Type{<:AbstractRange}}) = true
hasfastin(x) = hasfastin(typeof(x))

⊇(l, r) = r ⊆ l

## strict subset comparison

function ⊊ end
function ⊋ end
"""
    ⊊(a, b) -> Bool
    ⊋(b, a) -> Bool

Determines if `a` is a subset of, but not equal to, `b`.

# Examples
```jldoctest
julia> (1, 2) ⊊ (1, 2, 3)
true

julia> (1, 2) ⊊ (1, 2)
false
```
"""
⊊, ⊋

⊊(l::AbstractSet, r) = length(l) < length(r) && l ⊆ r
⊊(l, r) = Set(l) ⊊ r
⊋(l, r) = r ⊊ l

function ⊈ end
function ⊉ end
"""
    ⊈(a, b) -> Bool
    ⊉(b, a) -> Bool

Negation of `⊆` and `⊇`, i.e. checks that `a` is not a subset of `b`.

# Examples
```jldoctest
julia> (1, 2) ⊈ (2, 3)
true

julia> (1, 2) ⊈ (1, 2, 3)
false
```
"""
⊈, ⊉

⊈(l, r) = !⊆(l, r)
⊉(l, r) = r ⊈ l

## set equality comparison

"""
    issetequal(a, b) -> Bool

Determine whether `a` and `b` have the same elements. Equivalent
to `a ⊆ b && b ⊆ a` but more efficient when possible.

# Examples
```jldoctest
julia> issetequal([1, 2], [1, 2, 3])
false

julia> issetequal([1, 2], [2, 1])
true
```
"""
issetequal(l::AbstractSet, r::AbstractSet) = l == r
issetequal(l::AbstractSet, r) = issetequal(l, Set(r))

function issetequal(l, r::AbstractSet)
    if haslength(l)
        # check r for too many unique elements
        length(l) < length(r) && return false
    end
    return issetequal(Set(l), r)
end

function issetequal(l, r)
    haslength(l) && return issetequal(l, Set(r))
    haslength(r) && return issetequal(r, Set(l))
    return issetequal(Set(l), Set(r))
end

## set disjoint comparison
"""
    isdisjoint(v1, v2) -> Bool

Return whether the collections `v1` and `v2` are disjoint, i.e. whether
their intersection is empty.

!!! compat "Julia 1.5"
    This function requires at least Julia 1.5.
"""
function isdisjoint(l, r)
    function _isdisjoint(l, r)
        hasfastin(r) && return !any(in(r), l)
        hasfastin(l) && return !any(in(l), r)
        haslength(r) && length(r) < FASTIN_SET_THRESHOLD &&
            return !any(in(r), l)
        return !any(in(Set(r)), l)
    end
    if haslength(l) && haslength(r) && length(r) < length(l)
        return _isdisjoint(r, l)
    end
    _isdisjoint(l, r)
end

## partial ordering of sets by containment

==(l::AbstractSet, r::AbstractSet) = length(l) == length(r) && l ⊆ r
# convenience functions for AbstractSet
# (if needed, only their synonyms ⊊ and ⊆ must be specialized)
<( l::AbstractSet, r::AbstractSet) = l ⊊ r
<=(l::AbstractSet, r::AbstractSet) = l ⊆ r

## filtering sets

filter(pred, s::AbstractSet) = mapfilter(pred, push!, s, emptymutable(s))

# it must be safe to delete the current element while iterating over s:
unsafe_filter!(pred, s::AbstractSet) = mapfilter(!pred, delete!, s, s)

# TODO: delete mapfilter in favor of comprehensions/foldl/filter when competitive
function mapfilter(pred, f, itr, res)
    for x in itr
        pred(x) && f(res, x)
    end
    res
end