File: typeinfer.jl

package info (click to toggle)
julia 1.5.3%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 91,132 kB
  • sloc: lisp: 278,486; ansic: 60,186; cpp: 29,801; sh: 2,403; makefile: 1,998; pascal: 1,313; objc: 647; javascript: 516; asm: 226; python: 161; xml: 34
file content (645 lines) | stat: -rw-r--r-- 23,324 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
# This file is a part of Julia. License is MIT: https://julialang.org/license

# build (and start inferring) the inference frame for the linfo
function typeinf(result::InferenceResult, cached::Bool, params::Params)
    frame = InferenceState(result, cached, params)
    frame === nothing && return false
    cached && (result.linfo.inInference = true)
    return typeinf(frame)
end

function typeinf(frame::InferenceState)
    typeinf_nocycle(frame) || return false # frame is now part of a higher cycle
    # with no active ip's, frame is done
    frames = frame.callers_in_cycle
    isempty(frames) && push!(frames, frame)
    for caller in frames
        @assert !(caller.dont_work_on_me)
        caller.dont_work_on_me = true
    end
    for caller in frames
        finish(caller)
    end
    # collect results for the new expanded frame
    results = InferenceResult[ frames[i].result for i in 1:length(frames) ]
    # empty!(frames)
    min_valid = frame.min_valid
    max_valid = frame.max_valid
    cached = frame.cached
    if cached || frame.parent !== nothing
        for caller in results
            opt = caller.src
            if opt isa OptimizationState
                optimize(opt, caller.result)
                finish(opt.src)
                # finish updating the result struct
                validate_code_in_debug_mode(opt.linfo, opt.src, "optimized")
                if opt.const_api
                    if caller.result isa Const
                        caller.src = caller.result
                    else
                        @assert isconstType(caller.result)
                        caller.src = Const(caller.result.parameters[1])
                    end
                elseif opt.src.inferred
                    caller.src = opt.src::CodeInfo # stash a copy of the code (for inlining)
                else
                    caller.src = nothing
                end
                if min_valid < opt.min_valid
                    min_valid = opt.min_valid
                end
                if max_valid > opt.max_valid
                    max_valid = opt.max_valid
                end
            end
        end
    end
    if max_valid == get_world_counter()
        max_valid = typemax(UInt)
    end
    for caller in frames
        caller.min_valid = min_valid
        caller.max_valid = max_valid
        caller.src.min_world = min_valid
        caller.src.max_world = max_valid
        if cached
            cache_result(caller.result, min_valid, max_valid)
        end
        if max_valid == typemax(UInt)
            # if we aren't cached, we don't need this edge
            # but our caller might, so let's just make it anyways
            for caller in frames
                store_backedges(caller)
            end
        end
        # finalize and record the linfo result
        caller.inferred = true
    end
    return true
end

# inference completed on `me`
# update the MethodInstance and notify the edges
function cache_result(result::InferenceResult, min_valid::UInt, max_valid::UInt)
    def = result.linfo.def
    toplevel = !isa(result.linfo.def, Method)

    # check if the existing linfo metadata is also sufficient to describe the current inference result
    # to decide if it is worth caching this
    already_inferred = !result.linfo.inInference
    if inf_for_methodinstance(result.linfo, min_valid, max_valid) isa CodeInstance
        already_inferred = true
    end

    # TODO: also don't store inferred code if we've previously decided to interpret this function
    if !already_inferred
        inferred_result = result.src
        if inferred_result isa Const
            # use constant calling convention
            rettype_const = (result.src::Const).val
            const_flags = 0x3
        else
            if isa(result.result, Const)
                rettype_const = (result.result::Const).val
                const_flags = 0x2
            elseif isconstType(result.result)
                rettype_const = result.result.parameters[1]
                const_flags = 0x2
            else
                rettype_const = nothing
                const_flags = 0x00
            end
            if !toplevel && inferred_result isa CodeInfo
                cache_the_tree = result.src.inferred &&
                    (result.src.inlineable ||
                     ccall(:jl_isa_compileable_sig, Int32, (Any, Any), result.linfo.specTypes, def) != 0)
                if cache_the_tree
                    # compress code for non-toplevel thunks
                    nslots = length(inferred_result.slotflags)
                    resize!(inferred_result.slottypes, nslots)
                    resize!(inferred_result.slotnames, nslots)
                    inferred_result = ccall(:jl_compress_ir, Any, (Any, Any), def, inferred_result)
                else
                    inferred_result = nothing
                end
            end
        end
        if !isa(inferred_result, Union{CodeInfo, Vector{UInt8}})
            inferred_result = nothing
        end
        ccall(:jl_set_method_inferred, Ref{CodeInstance}, (Any, Any, Any, Any, Int32, UInt, UInt),
            result.linfo, widenconst(result.result), rettype_const, inferred_result,
            const_flags, min_valid, max_valid)
    end
    result.linfo.inInference = false
    nothing
end

function finish(me::InferenceState)
    # prepare to run optimization passes on fulltree
    if me.limited && me.cached && me.parent !== nothing
        # a top parent will be cached still, but not this intermediate work
        # we can throw everything else away now
        me.cached = false
        me.linfo.inInference = false
        me.src.inlineable = false
    else
        # annotate fulltree with type information
        type_annotate!(me)
        run_optimizer = (me.cached || me.parent !== nothing)
        if run_optimizer
            # construct the optimizer for later use, if we're building this IR to cache it
            # (otherwise, we'll run the optimization passes later, outside of inference)
            opt = OptimizationState(me)
            me.result.src = opt
        end
    end
    me.result.result = me.bestguess
    nothing
end

function finish(src::CodeInfo)
    # convert all type information into the form consumed by the cache for inlining and code-generation
    widen_all_consts!(src)
    src.inferred = true
    nothing
end

# record the backedges
function store_backedges(frame::InferenceState)
    toplevel = !isa(frame.linfo.def, Method)
    if !toplevel && (frame.cached || frame.parent !== nothing)
        caller = frame.result.linfo
        for edges in frame.stmt_edges
            store_backedges(caller, edges)
        end
        store_backedges(caller, frame.src.edges)
        frame.src.edges = nothing
    end
end

store_backedges(caller, edges::Nothing) = nothing
function store_backedges(caller, edges::Vector)
    i = 1
    while i <= length(edges)
        to = edges[i]
        if isa(to, MethodInstance)
            ccall(:jl_method_instance_add_backedge, Cvoid, (Any, Any), to, caller)
            i += 1
        else
            typeassert(to, Core.MethodTable)
            typ = edges[i + 1]
            ccall(:jl_method_table_add_backedge, Cvoid, (Any, Any, Any), to, typ, caller)
            i += 2
        end
    end
end

# widen all Const elements in type annotations
function widen_all_consts!(src::CodeInfo)
    for i = 1:length(src.ssavaluetypes)
        src.ssavaluetypes[i] = widenconst(src.ssavaluetypes[i])
    end

    for i = 1:length(src.code)
        x = src.code[i]
        if isa(x, PiNode)
            src.code[i] = PiNode(x.val, widenconst(x.typ))
        end
    end

    src.rettype = widenconst(src.rettype)

    return src
end

function annotate_slot_load!(e::Expr, vtypes::VarTable, sv::InferenceState, undefs::Array{Bool,1})
    head = e.head
    i0 = 1
    if is_meta_expr_head(head) || head === :const
        return
    end
    if head === :(=) || head === :method
        i0 = 2
    end
    for i = i0:length(e.args)
        subex = e.args[i]
        if isa(subex, Expr)
            annotate_slot_load!(subex, vtypes, sv, undefs)
        elseif isa(subex, Slot)
            e.args[i] = visit_slot_load!(subex, vtypes, sv, undefs)
        end
    end
end

function visit_slot_load!(sl::Slot, vtypes::VarTable, sv::InferenceState, undefs::Array{Bool,1})
    id = slot_id(sl)
    s = vtypes[id]
    vt = widenconditional(s.typ)
    if s.undef
        # find used-undef variables
        undefs[id] = true
    end
    # add type annotations where needed
    if !(sv.slottypes[id] ⊑ vt)
        return TypedSlot(id, vt)
    end
    return sl
end

function record_slot_assign!(sv::InferenceState)
    # look at all assignments to slots
    # and union the set of types stored there
    # to compute a lower bound on the storage required
    states = sv.stmt_types
    body = sv.src.code::Vector{Any}
    slottypes = sv.slottypes::Vector{Any}
    for i = 1:length(body)
        expr = body[i]
        st_i = states[i]
        # find all reachable assignments to locals
        if isa(st_i, VarTable) && isa(expr, Expr) && expr.head === :(=)
            lhs = expr.args[1]
            rhs = expr.args[2]
            if isa(lhs, Slot)
                vt = widenconst(sv.src.ssavaluetypes[i])
                if vt !== Bottom
                    id = slot_id(lhs)
                    otherTy = slottypes[id]
                    if otherTy === Bottom
                        slottypes[id] = vt
                    elseif otherTy === Any
                        slottypes[id] = Any
                    else
                        slottypes[id] = tmerge(otherTy, vt)
                    end
                end
            end
        end
    end
end

# annotate types of all symbols in AST
function type_annotate!(sv::InferenceState)
    # delete dead statements only if we're building this IR to cache it
    # (otherwise, we'll run the optimization passes later, outside of inference)
    run_optimizer = (sv.cached || sv.parent !== nothing)

    # remove all unused ssa values
    gt = sv.src.ssavaluetypes
    for j = 1:length(gt)
        if gt[j] === NOT_FOUND
            gt[j] = Union{}
        end
        gt[j] = widenconditional(gt[j])
    end

    # compute the required type for each slot
    # to hold all of the items assigned into it
    record_slot_assign!(sv)
    sv.src.slottypes = sv.slottypes
    sv.src.rettype = sv.bestguess

    # annotate variables load types
    # remove dead code optimization
    # and compute which variables may be used undef
    src = sv.src
    states = sv.stmt_types
    nargs = sv.nargs
    nslots = length(states[1]::Array{Any,1})
    undefs = fill(false, nslots)
    body = src.code::Array{Any,1}
    nexpr = length(body)

    # replace gotoifnot with its condition if the branch target is unreachable
    for i = 1:nexpr
        expr = body[i]
        if isa(expr, Expr) && expr.head === :gotoifnot
            tgt = expr.args[2]::Int
            if !isa(states[tgt], VarTable)
                body[i] = expr.args[1]
            end
        end
    end

    i = 1
    oldidx = 0
    changemap = fill(0, nexpr)

    while i <= nexpr
        oldidx += 1
        st_i = states[i]
        expr = body[i]
        if isa(st_i, VarTable)
            # st_i === nothing  =>  unreached statement  (see issue #7836)
            if isa(expr, Expr)
                annotate_slot_load!(expr, st_i, sv, undefs)
            elseif isa(expr, Slot)
                body[i] = visit_slot_load!(expr, st_i, sv, undefs)
            end
        else
            if isa(expr, Expr) && is_meta_expr_head(expr.head)
                # keep any lexically scoped expressions
            elseif run_optimizer
                deleteat!(body, i)
                deleteat!(states, i)
                deleteat!(src.ssavaluetypes, i)
                deleteat!(src.codelocs, i)
                nexpr -= 1
                if oldidx < length(changemap)
                    changemap[oldidx + 1] = -1
                end
                continue
            else
                body[i] = Const(expr) # annotate that this statement actually is dead
            end
        end
        i += 1
    end

    if run_optimizer
        renumber_ir_elements!(body, changemap)
    end

    # finish marking used-undef variables
    for j = 1:nslots
        if undefs[j]
            src.slotflags[j] |= SLOT_USEDUNDEF | SLOT_STATICUNDEF
        end
    end
    nothing
end

# at the end, all items in b's cycle
# will now be added to a's cycle
function union_caller_cycle!(a::InferenceState, b::InferenceState)
    callers_in_cycle = b.callers_in_cycle
    b.parent = a.parent
    b.callers_in_cycle = a.callers_in_cycle
    contains_is(a.callers_in_cycle, b) || push!(a.callers_in_cycle, b)
    if callers_in_cycle !== a.callers_in_cycle
        for caller in callers_in_cycle
            if caller !== b
                caller.parent = a.parent
                caller.callers_in_cycle = a.callers_in_cycle
                push!(a.callers_in_cycle, caller)
            end
        end
    end
    return
end

function merge_call_chain!(parent::InferenceState, ancestor::InferenceState, child::InferenceState, limited::Bool)
    # add backedge of parent <- child
    # then add all backedges of parent <- parent.parent
    # and merge all of the callers into ancestor.callers_in_cycle
    # and ensure that walking the parent list will get the same result (DAG) from everywhere
    while true
        add_cycle_backedge!(child, parent, parent.currpc)
        union_caller_cycle!(ancestor, child)
        child = parent
        parent = child.parent
        child === ancestor && break
    end
    if limited
        for caller in ancestor.callers_in_cycle
            caller.limited = true
        end
    end
end

# Walk through `linfo`'s upstream call chain, starting at `parent`. If a parent
# frame matching `linfo` is encountered, then there is a cycle in the call graph
# (i.e. `linfo` is a descendant callee of itself). Upon encountering this cycle,
# we "resolve" it by merging the call chain, which entails unioning each intermediary
# frame's `callers_in_cycle` field and adding the appropriate backedges. Finally,
# we return `linfo`'s pre-existing frame. If no cycles are found, `nothing` is
# returned instead.
function resolve_call_cycle!(linfo::MethodInstance, parent::InferenceState)
    frame = parent
    uncached = false
    limited = false
    while isa(frame, InferenceState)
        uncached |= !frame.cached # ensure we never add an uncached frame to a cycle
        limited |= frame.limited
        if frame.linfo === linfo
            if uncached
                # our attempt to speculate into a constant call lead to an undesired self-cycle
                # that cannot be converged: poison our call-stack (up to the discovered duplicate frame)
                # with the limited flag and abort (set return type to Any) now
                poison_callstack(parent, frame, false)
                return true
            end
            merge_call_chain!(parent, frame, frame, limited)
            return frame
        end
        for caller in frame.callers_in_cycle
            if caller.linfo === linfo
                if uncached
                    poison_callstack(parent, frame, false)
                    return true
                end
                merge_call_chain!(parent, frame, caller, limited)
                return caller
            end
        end
        frame = frame.parent
    end
    return false
end

# compute (and cache) an inferred AST and return the current best estimate of the result type
function typeinf_edge(method::Method, @nospecialize(atypes), sparams::SimpleVector, caller::InferenceState)
    mi = specialize_method(method, atypes, sparams)::MethodInstance
    code = inf_for_methodinstance(mi, caller.params.world)
    if code isa CodeInstance # return existing rettype if the code is already inferred
        update_valid_age!(min_world(code), max_world(code), caller)
        if isdefined(code, :rettype_const)
            return Const(code.rettype_const), mi
        else
            return code.rettype, mi
        end
    end
    if !caller.cached && caller.parent === nothing
        # this caller exists to return to the user
        # (if we asked resolve_call_cyle, it might instead detect that there is a cycle that it can't merge)
        frame = false
    else
        frame = resolve_call_cycle!(mi, caller)
    end
    if frame === false
        # completely new
        mi.inInference = true
        result = InferenceResult(mi)
        frame = InferenceState(result, #=cached=#true, caller.params) # always use the cache for edge targets
        if frame === nothing
            # can't get the source for this, so we know nothing
            mi.inInference = false
            return Any, nothing
        end
        if caller.cached || caller.limited # don't involve uncached functions in cycle resolution
            frame.parent = caller
        end
        typeinf(frame)
        update_valid_age!(frame, caller)
        return widenconst_bestguess(frame.bestguess), frame.inferred ? mi : nothing
    elseif frame === true
        # unresolvable cycle
        return Any, nothing
    end
    # return the current knowledge about this cycle
    frame = frame::InferenceState
    update_valid_age!(frame, caller)
    return widenconst_bestguess(frame.bestguess), nothing
end

function widenconst_bestguess(bestguess)
    !isa(bestguess, Const) && !isa(bestguess, Type) && return widenconst(bestguess)
    return bestguess
end

#### entry points for inferring a MethodInstance given a type signature ####

# compute an inferred AST and return type
function typeinf_code(method::Method, @nospecialize(atypes), sparams::SimpleVector, run_optimizer::Bool, params::Params)
    mi = specialize_method(method, atypes, sparams)::MethodInstance
    ccall(:jl_typeinf_begin, Cvoid, ())
    result = InferenceResult(mi)
    frame = InferenceState(result, false, params)
    frame === nothing && return (nothing, Any)
    if typeinf(frame) && run_optimizer
        opt = OptimizationState(frame)
        optimize(opt, result.result)
        opt.src.inferred = true
    end
    ccall(:jl_typeinf_end, Cvoid, ())
    frame.inferred || return (nothing, Any)
    return (frame.src, widenconst(result.result))
end

# compute (and cache) an inferred AST and return type
function typeinf_ext(mi::MethodInstance, params::Params)
    method = mi.def::Method
    for i = 1:2 # test-and-lock-and-test
        i == 2 && ccall(:jl_typeinf_begin, Cvoid, ())
        code = inf_for_methodinstance(mi, params.world)
        if code isa CodeInstance
            # see if this code already exists in the cache
            inf = code.inferred
            if invoke_api(code) == 2
                i == 2 && ccall(:jl_typeinf_end, Cvoid, ())
                tree = ccall(:jl_new_code_info_uninit, Ref{CodeInfo}, ())
                tree.code = Any[ Expr(:return, quoted(code.rettype_const)) ]
                nargs = Int(method.nargs)
                tree.slotnames = ccall(:jl_uncompress_argnames, Vector{Symbol}, (Any,), method.slot_syms)
                tree.slotflags = fill(0x00, nargs)
                tree.ssavaluetypes = 1
                tree.codelocs = Int32[1]
                tree.linetable = [LineInfoNode(method, method.file, Int(method.line), 0)]
                tree.inferred = true
                tree.ssaflags = UInt8[0]
                tree.pure = true
                tree.inlineable = true
                tree.parent = mi
                tree.rettype = Core.Typeof(code.rettype_const)
                tree.min_world = code.min_world
                tree.max_world = code.max_world
                return tree
            elseif isa(inf, CodeInfo)
                i == 2 && ccall(:jl_typeinf_end, Cvoid, ())
                if !(inf.min_world == code.min_world &&
                     inf.max_world == code.max_world &&
                     inf.rettype === code.rettype)
                    inf = copy(inf)
                    inf.min_world = code.min_world
                    inf.max_world = code.max_world
                    inf.rettype = code.rettype
                end
                return inf
            elseif isa(inf, Vector{UInt8})
                i == 2 && ccall(:jl_typeinf_end, Cvoid, ())
                inf = _uncompressed_ir(code, inf)
                return inf
            end
        end
    end
    mi.inInference = true
    frame = InferenceState(InferenceResult(mi), #=cached=#true, params)
    frame === nothing && return nothing
    typeinf(frame)
    ccall(:jl_typeinf_end, Cvoid, ())
    frame.src.inferred || return nothing
    return frame.src
end

# compute (and cache) an inferred AST and return the inferred return type
function typeinf_type(method::Method, @nospecialize(atypes), sparams::SimpleVector, params::Params)
    if contains_is(unwrap_unionall(atypes).parameters, Union{})
        return Union{} # don't ask: it does weird and unnecessary things, if it occurs during bootstrap
    end
    mi = specialize_method(method, atypes, sparams)::MethodInstance
    for i = 1:2 # test-and-lock-and-test
        i == 2 && ccall(:jl_typeinf_begin, Cvoid, ())
        code = inf_for_methodinstance(mi, params.world)
        if code isa CodeInstance
            # see if this rettype already exists in the cache
            i == 2 && ccall(:jl_typeinf_end, Cvoid, ())
            return code.rettype
        end
    end
    frame = InferenceResult(mi)
    typeinf(frame, true, params)
    ccall(:jl_typeinf_end, Cvoid, ())
    frame.result isa InferenceState && return nothing
    return widenconst(frame.result)
end

@timeit function typeinf_ext(linfo::MethodInstance, world::UInt)
    if isa(linfo.def, Method)
        # method lambda - infer this specialization via the method cache
        src = typeinf_ext(linfo, Params(world))
    else
        src = linfo.uninferred::CodeInfo
        if !src.inferred
            # toplevel lambda - infer directly
            ccall(:jl_typeinf_begin, Cvoid, ())
            if !src.inferred
                result = InferenceResult(linfo)
                frame = InferenceState(result, src, #=cached=#true, Params(world))
                typeinf(frame)
                @assert frame.inferred # TODO: deal with this better
                src = frame.src
            end
            ccall(:jl_typeinf_end, Cvoid, ())
        end
    end
    return src
end


function return_type(@nospecialize(f), @nospecialize(t))
    world = ccall(:jl_get_tls_world_age, UInt, ())
    return ccall(:jl_call_in_typeinf_world, Any, (Ptr{Ptr{Cvoid}}, Cint), Any[_return_type, f, t, world], 4)
end

function _return_type(@nospecialize(f), @nospecialize(t), world)
    params = Params(world)
    rt = Union{}
    if isa(f, Builtin)
        rt = builtin_tfunction(f, Any[t.parameters...], nothing, params)
        if isa(rt, TypeVar)
            rt = rt.ub
        else
            rt = widenconst(rt)
        end
    else
        for m in _methods(f, t, -1, params.world)
            ty = typeinf_type(m[3], m[1], m[2], params)
            ty === nothing && return Any
            rt = tmerge(rt, ty)
            rt === Any && break
        end
    end
    return rt
end