1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508
|
# This file is a part of Julia. License is MIT: https://julialang.org/license
#########################
# limitation parameters #
#########################
const MAX_TYPEUNION_COMPLEXITY = 3
const MAX_TYPEUNION_LENGTH = 3
const MAX_INLINE_CONST_SIZE = 256
#########################
# limitation heuristics #
#########################
# limit the complexity of type `t` to be simpler than the comparison type `compare`
# no new values may be introduced, so the parameter `source` encodes the set of all values already present
# the outermost tuple type is permitted to have up to `allowed_tuplelen` parameters
function limit_type_size(@nospecialize(t), @nospecialize(compare), @nospecialize(source), allowed_tupledepth::Int, allowed_tuplelen::Int)
source = svec(unwrap_unionall(compare), unwrap_unionall(source))
source[1] === source[2] && (source = svec(source[1]))
type_more_complex(t, compare, source, 1, allowed_tupledepth, allowed_tuplelen) || return t
r = _limit_type_size(t, compare, source, 1, allowed_tuplelen)
#@assert t <: r # this may fail if t contains a typevar in invariant and multiple times
# in covariant position and r looses the occurence in invariant position (see #36407)
if !(t <: r) # ideally, this should never happen
# widen to minimum complexity to obtain a valid result
r = _limit_type_size(t, Any, source, 1, allowed_tuplelen)
t <: r || (r = Any) # final escape hatch
end
#@assert r === _limit_type_size(r, t, source) # this monotonicity constraint is slightly stronger than actually required,
# since we only actually need to demonstrate that repeated application would reaches a fixed point,
#not that it is already at the fixed point
return r
end
# try to find `type` somewhere in `comparison` type
# at a minimum nesting depth of `mindepth`
function is_derived_type(@nospecialize(t), @nospecialize(c), mindepth::Int)
if t === c
return mindepth <= 1
end
if isa(c, Union)
# see if it is one of the elements of the union
return is_derived_type(t, c.a, mindepth) || is_derived_type(t, c.b, mindepth)
elseif isa(c, UnionAll)
# see if it is derived from the body
# also handle the var here, since this construct bounds the mindepth to the smallest possible value
return is_derived_type(t, c.var.ub, mindepth) || is_derived_type(t, c.body, mindepth)
elseif isa(c, DataType)
if mindepth > 0
mindepth -= 1
end
if isa(t, DataType)
# see if it is one of the supertypes of a parameter
super = supertype(c)
while super !== Any
t === super && return true
super = supertype(super)
end
end
# see if it was extracted from a type parameter
cP = c.parameters
for p in cP
is_derived_type(t, p, mindepth) && return true
end
end
return false
end
function is_derived_type_from_any(@nospecialize(t), sources::SimpleVector, mindepth::Int)
for s in sources
is_derived_type(t, s, mindepth) && return true
end
return false
end
# The goal of this function is to return a type of greater "size" and less "complexity" than
# both `t` or `c` over the lattice defined by `sources`, `depth`, and `allowed_tuplelen`.
function _limit_type_size(@nospecialize(t), @nospecialize(c), sources::SimpleVector, depth::Int, allowed_tuplelen::Int)
if t === c
return t # quick egal test
elseif t === Union{}
return t # easy case
elseif isa(t, DataType) && isempty(t.parameters)
return t # fast path: unparameterized are always simple
else
ut = unwrap_unionall(t)
if isa(ut, DataType) && ut.name !== _va_typename && isa(c, Type) && c !== Union{} && c <: t
# TODO: need to check that the UnionAll bounds on t are limited enough too
return t # t is already wider than the comparison in the type lattice
elseif is_derived_type_from_any(ut, sources, depth)
return t # t isn't something new
end
end
# peel off (and ignore) wrappers - they contribute no useful information, so we don't need to consider their size
# first attempt to turn `c` into a type that contributes meaningful information
# by peeling off meaningless non-matching wrappers of comparison one at a time
# then unwrap `t`
if isa(c, TypeVar)
if isa(t, TypeVar) && t.ub === c.ub && (t.lb === Union{} || t.lb === c.lb)
return t # it's ok to change the name, or widen `lb` to Union{}, so we can handle this immediately here
end
return _limit_type_size(t, c.ub, sources, depth, allowed_tuplelen)
end
if isa(c, UnionAll)
return _limit_type_size(t, c.body, sources, depth, allowed_tuplelen)
end
if isa(t, UnionAll)
tbody = _limit_type_size(t.body, c, sources, depth, allowed_tuplelen)
tbody === t.body && return t
return UnionAll(t.var, tbody)
elseif isa(t, TypeVar)
# don't have a matching TypeVar in comparison, so we keep just the upper bound
return _limit_type_size(t.ub, c, sources, depth, allowed_tuplelen)
elseif isa(t, Union)
if isa(c, Union)
a = _limit_type_size(t.a, c.a, sources, depth, allowed_tuplelen)
b = _limit_type_size(t.b, c.b, sources, depth, allowed_tuplelen)
return Union{a, b}
end
elseif isa(t, DataType)
if isa(c, DataType)
tP = t.parameters
cP = c.parameters
if t.name === c.name && !isempty(cP)
if isvarargtype(t)
VaT = _limit_type_size(tP[1], cP[1], sources, depth + 1, 0)
N = tP[2]
if isa(N, TypeVar) || N === cP[2]
return Vararg{VaT, N}
end
return Vararg{VaT}
elseif t.name === Tuple.name
# for covariant datatypes (Tuple),
# apply type-size limit element-wise
ltP = length(tP)
lcP = length(cP)
np = min(ltP, max(lcP, allowed_tuplelen))
Q = Any[ tP[i] for i in 1:np ]
if ltP > np
# combine tp[np:end] into tP[np] using Vararg
Q[np] = tuple_tail_elem(Bottom, Any[ tP[i] for i in np:ltP ])
end
for i = 1:np
# now apply limit element-wise to Q
# padding out the comparison as needed to allowed_tuplelen elements
if i <= lcP
cPi = cP[i]
elseif isvarargtype(cP[lcP])
cPi = cP[lcP]
else
cPi = Any
end
Q[i] = _limit_type_size(Q[i], cPi, sources, depth + 1, 0)
end
return Tuple{Q...}
end
elseif isvarargtype(c)
# Tuple{Vararg{T}} --> Tuple{T} is OK
return _limit_type_size(t, cP[1], sources, depth, 0)
end
end
if isType(t) # allow taking typeof as Type{...}, but ensure it doesn't start nesting
tt = unwrap_unionall(t.parameters[1])
if isa(tt, DataType) && !isType(tt)
is_derived_type_from_any(tt, sources, depth) && return t
end
end
if isvarargtype(t)
# never replace Vararg with non-Vararg
return Vararg
end
if allowed_tuplelen < 1 && t.name === Tuple.name
return Any
end
widert = t.name.wrapper
if !(t <: widert)
# This can happen when a typevar has bounds too wide for its context, e.g.
# `Complex{T} where T` is not a subtype of `Complex`. In that case widen even
# faster to something safe to ensure the result is a supertype of the input.
return Any
end
return widert
end
return Any
end
function type_more_complex(@nospecialize(t), @nospecialize(c), sources::SimpleVector, depth::Int, tupledepth::Int, allowed_tuplelen::Int)
# detect cases where the comparison is trivial
if t === c
return false
elseif t === Union{}
return false # Bottom is as simple as they come
elseif isa(t, DataType) && isempty(t.parameters)
return false # fastpath: unparameterized types are always finite
elseif tupledepth > 0 && isa(unwrap_unionall(t), DataType) && isa(c, Type) && c !== Union{} && c <: t
# TODO: need to check that the UnionAll bounds on t are limited enough too
return false # t is already wider than the comparison in the type lattice
elseif tupledepth > 0 && is_derived_type_from_any(unwrap_unionall(t), sources, depth)
return false # t isn't something new
end
# peel off wrappers
if isa(c, UnionAll)
# allow wrapping type with fewer UnionAlls than comparison if in a covariant context
if !isa(t, UnionAll) && tupledepth == 0
return true
end
t = unwrap_unionall(t)
c = unwrap_unionall(c)
end
# rules for various comparison types
if isa(c, TypeVar)
tupledepth = 1 # allow replacing a TypeVar with a concrete value (since we know the UnionAll must be in covariant position)
if isa(t, TypeVar)
return !(t.lb === Union{} || t.lb === c.lb) || # simplify lb towards Union{}
type_more_complex(t.ub, c.ub, sources, depth + 1, tupledepth, 0)
end
c.lb === Union{} || return true
return type_more_complex(t, c.ub, sources, depth, tupledepth, 0)
elseif isa(c, Union)
if isa(t, Union)
return type_more_complex(t.a, c.a, sources, depth, tupledepth, allowed_tuplelen) ||
type_more_complex(t.b, c.b, sources, depth, tupledepth, allowed_tuplelen)
end
return type_more_complex(t, c.a, sources, depth, tupledepth, allowed_tuplelen) &&
type_more_complex(t, c.b, sources, depth, tupledepth, allowed_tuplelen)
elseif isa(t, Int) && isa(c, Int)
return t !== 1 && !(0 <= t < c) # alternatively, could use !(abs(t) <= abs(c) || abs(t) < n) for some n
end
# base case for data types
if isa(t, DataType)
tP = t.parameters
if isa(c, DataType) && t.name === c.name
cP = c.parameters
length(cP) < length(tP) && return true
length(cP) > length(tP) && !isvarargtype(tP[end]) && depth == 1 && return false
ntail = length(cP) - length(tP) # assume parameters were dropped from the tuple head
# allow creating variation within a nested tuple, but only so deep
if t.name === Tuple.name && tupledepth > 0
tupledepth -= 1
elseif !isvarargtype(t)
tupledepth = 0
end
isgenerator = (t.name.name === :Generator && t.name.module === _topmod(t.name.module))
for i = 1:length(tP)
tPi = tP[i]
cPi = cP[i + ntail]
if isgenerator
let tPi = unwrap_unionall(tPi),
cPi = unwrap_unionall(cPi)
if isa(tPi, DataType) && isa(cPi, DataType) &&
!tPi.abstract && !cPi.abstract &&
sym_isless(cPi.name.name, tPi.name.name)
# allow collect on (anonymous) Generators to nest, provided that their functions are appropriately ordered
# TODO: is there a better way?
continue
end
end
end
type_more_complex(tPi, cPi, sources, depth + 1, tupledepth, 0) && return true
end
return false
elseif isvarargtype(c)
return type_more_complex(t, unwrapva(c), sources, depth, tupledepth, 0)
end
if isType(t) # allow taking typeof any source type anywhere as Type{...}, as long as it isn't nesting Type{Type{...}}
tt = unwrap_unionall(t.parameters[1])
if isa(tt, DataType) && !isType(tt)
is_derived_type_from_any(tt, sources, depth) || return true
return false
end
end
end
return true
end
function issimpleenoughtype(@nospecialize t)
return unionlen(t) <= MAX_TYPEUNION_LENGTH && unioncomplexity(t) <= MAX_TYPEUNION_COMPLEXITY
end
# pick a wider type that contains both typea and typeb,
# with some limits on how "large" it can get,
# but without losing too much precision in common cases
# and also trying to be mostly associative and commutative
function tmerge(@nospecialize(typea), @nospecialize(typeb))
typea === Union{} && return typeb
typeb === Union{} && return typea
suba = typea ⊑ typeb
suba && issimpleenoughtype(typeb) && return typeb
subb = typeb ⊑ typea
suba && subb && return typea
subb && issimpleenoughtype(typea) && return typea
# type-lattice for MaybeUndef wrapper
if isa(typea, MaybeUndef) || isa(typeb, MaybeUndef)
return MaybeUndef(tmerge(
isa(typea, MaybeUndef) ? typea.typ : typea,
isa(typeb, MaybeUndef) ? typeb.typ : typeb))
end
# type-lattice for Conditional wrapper
if isa(typea, Conditional) && isa(typeb, Const)
if typeb.val === true
typeb = Conditional(typea.var, Any, Union{})
elseif typeb.val === false
typeb = Conditional(typea.var, Union{}, Any)
end
end
if isa(typeb, Conditional) && isa(typea, Const)
if typea.val === true
typea = Conditional(typeb.var, Any, Union{})
elseif typea.val === false
typea = Conditional(typeb.var, Union{}, Any)
end
end
if isa(typea, Conditional) && isa(typeb, Conditional)
if typea.var === typeb.var
vtype = tmerge(typea.vtype, typeb.vtype)
elsetype = tmerge(typea.elsetype, typeb.elsetype)
if vtype != elsetype
return Conditional(typea.var, vtype, elsetype)
end
end
val = maybe_extract_const_bool(typea)
if val isa Bool && val === maybe_extract_const_bool(typeb)
return Const(val)
end
return Bool
end
if (isa(typea, PartialStruct) || isa(typea, Const)) &&
(isa(typeb, PartialStruct) || isa(typeb, Const)) &&
widenconst(typea) === widenconst(typeb)
typea_nfields = nfields_tfunc(typea)
typeb_nfields = nfields_tfunc(typeb)
if !isa(typea_nfields, Const) || !isa(typea_nfields, Const) || typea_nfields.val !== typeb_nfields.val
return widenconst(typea)
end
type_nfields = typea_nfields.val::Int
fields = Vector{Any}(undef, type_nfields)
anyconst = false
for i = 1:type_nfields
fields[i] = tmerge(getfield_tfunc(typea, Const(i)),
getfield_tfunc(typeb, Const(i)))
anyconst |= has_nontrivial_const_info(fields[i])
end
return anyconst ? PartialStruct(widenconst(typea), fields) :
widenconst(typea)
end
# no special type-inference lattice, join the types
typea, typeb = widenconst(typea), widenconst(typeb)
typea == typeb && return typea
if !(isa(typea, Type) || isa(typea, TypeVar)) ||
!(isa(typeb, Type) || isa(typeb, TypeVar))
# XXX: this should never happen
return Any
end
# it's always ok to form a Union of two concrete types
if (isconcretetype(typea) || isType(typea)) && (isconcretetype(typeb) || isType(typeb))
return Union{typea, typeb}
end
# collect the list of types from past tmerge calls returning Union
# and then reduce over that list
types = Any[]
_uniontypes(typea, types)
_uniontypes(typeb, types)
typenames = Vector{Core.TypeName}(undef, length(types))
for i in 1:length(types)
# check that we will be able to analyze (and simplify) everything
# bail if everything isn't a well-formed DataType
ti = types[i]
uw = unwrap_unionall(ti)
(uw isa DataType && ti <: uw.name.wrapper) || return Any
typenames[i] = uw.name
end
# see if any of the union elements have the same TypeName
# in which case, simplify this tmerge by replacing it with
# the widest possible version of itself (the wrapper)
for i in 1:length(types)
ti = types[i]
for j in (i + 1):length(types)
if typenames[i] === typenames[j]
tj = types[j]
if ti <: tj
types[i] = Union{}
typenames[i] = Any.name
break
elseif tj <: ti
types[j] = Union{}
typenames[j] = Any.name
else
if typenames[i] === Tuple.name
# try to widen Tuple slower: make a single non-concrete Tuple containing both
# converge the Tuple element-wise if they are the same length
# see 4ee2b41552a6bc95465c12ca66146d69b354317b, be59686f7613a2ccfd63491c7b354d0b16a95c05,
widen = tuplemerge(unwrap_unionall(ti)::DataType, unwrap_unionall(tj)::DataType)
widen = rewrap_unionall(rewrap_unionall(widen, ti), tj)
else
widen = typenames[i].wrapper
end
types[i] = Union{}
typenames[i] = Any.name
types[j] = widen
break
end
end
end
end
u = Union{types...}
# don't let type unions get too big, if the above didn't reduce it enough
if issimpleenoughtype(u)
return u
end
# don't let the slow widening of Tuple cause the whole type to grow too fast
for i in 1:length(types)
if typenames[i] === Tuple.name
widen = unwrap_unionall(types[i])
if isa(widen, DataType) && !isvatuple(widen)
widen = NTuple{length(widen.parameters), Any}
else
widen = Tuple
end
types[i] = widen
u = Union{types...}
if issimpleenoughtype(u)
return u
end
break
end
end
# finally, just return the widest possible type
return Any
end
# the inverse of switchtupleunion, with limits on max element union size
function tuplemerge(a::DataType, b::DataType)
@assert a.name === b.name === Tuple.name "assertion failure"
ap, bp = a.parameters, b.parameters
lar = length(ap)::Int
lbr = length(bp)::Int
va = lar > 0 && isvarargtype(ap[lar])
vb = lbr > 0 && isvarargtype(bp[lbr])
if lar == lbr && !va && !vb
lt = lar
vt = false
else
lt = 0 # or min(lar - va, lbr - vb)
vt = true
end
# combine the common elements
p = Vector{Any}(undef, lt + vt)
for i = 1:lt
ui = Union{ap[i], bp[i]}
p[i] = issimpleenoughtype(ui) ? ui : Any
end
# merge the remaining tail into a single, simple Tuple{Vararg{T}} (#22120)
if vt
tail = Union{}
for loop_b = (false, true)
for i = (lt + 1):(loop_b ? lbr : lar)
ti = unwrapva(loop_b ? bp[i] : ap[i])
while ti isa TypeVar
ti = ti.ub
end
# compare (ti <-> tail), (wrapper ti <-> tail), (ti <-> wrapper tail), then (wrapper ti <-> wrapper tail)
# until we find the first element that contains the other in the pair
# TODO: this result would be more stable (and more associative and more commutative)
# if we either joined all of the element wrappers first into a wide-tail, then picked between that or an exact tail,
# or (equivalently?) iteratively took super-types until reaching a common wrapper
# e.g. consider the results of `tuplemerge(Tuple{Complex}, Tuple{Number, Int})` and of
# `tuplemerge(Tuple{Int}, Tuple{String}, Tuple{Int, String})`
if !(ti <: tail)
if tail <: ti
tail = ti # widen to ti
else
uw = unwrap_unionall(tail)
if uw isa DataType && tail <: uw.name.wrapper
# widen tail to wrapper(tail)
tail = uw.name.wrapper
if !(ti <: tail)
#assert !(tail <: ti)
uw = unwrap_unionall(ti)
if uw isa DataType && ti <: uw.name.wrapper
# widen ti to wrapper(ti)
ti = uw.name.wrapper
#assert !(ti <: tail)
if tail <: ti
tail = ti
else
tail = Any # couldn't find common super-type
end
else
tail = Any # couldn't analyze type
end
end
else
tail = Any # couldn't analyze type
end
end
end
tail === Any && return Tuple # short-circuit loop
end
end
@assert !(tail === Union{})
p[lt + 1] = Vararg{tail}
end
return Tuple{p...}
end
|