1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
|
# This file is a part of Julia. License is MIT: https://julialang.org/license
#####################
# lattice utilities #
#####################
function rewrap(@nospecialize(t), @nospecialize(u))
if isa(t, TypeVar) || isa(t, Type)
return rewrap_unionall(t, u)
end
return t
end
isType(@nospecialize t) = isa(t, DataType) && t.name === _TYPE_NAME
# true if Type{T} is inlineable as constant T
# requires that T is a singleton, s.t. T == S implies T === S
isconstType(@nospecialize t) = isType(t) && hasuniquerep(t.parameters[1])
# test whether type T has a unique representation, s.t. T == S implies T === S
function hasuniquerep(@nospecialize t)
# typeof(Bottom) is special since even though it is a leaftype,
# at runtime, it might be Type{Union{}} instead, so don't attempt inference of it
t === typeof(Union{}) && return false
t === Union{} && return true
isa(t, TypeVar) && return false # TypeVars are identified by address, not equality
iskindtype(typeof(t)) || return true # non-types are always compared by egal in the type system
isconcretetype(t) && return true # these are also interned and pointer comparable
if isa(t, DataType) && t.name !== Tuple.name && !isvarargtype(t) # invariant DataTypes
return _all(hasuniquerep, t.parameters)
end
return false
end
function has_nontrivial_const_info(@nospecialize t)
isa(t, PartialStruct) && return true
return isa(t, Const) && !isdefined(typeof(t.val), :instance) && !(isa(t.val, Type) && hasuniquerep(t.val))
end
# Subtyping currently intentionally answers certain queries incorrectly for kind types. For
# some of these queries, this check can be used to somewhat protect against making incorrect
# decisions based on incorrect subtyping. Note that this check, itself, is broken for
# certain combinations of `a` and `b` where one/both isa/are `Union`/`UnionAll` type(s)s.
isnotbrokensubtype(@nospecialize(a), @nospecialize(b)) = (!iskindtype(b) || !isType(a) || hasuniquerep(a.parameters[1]))
argtypes_to_type(argtypes::Array{Any,1}) = Tuple{anymap(widenconst, argtypes)...}
function isknownlength(t::DataType)
isvatuple(t) || return true
return length(t.parameters) > 0 && isa(unwrap_unionall(t.parameters[end]).parameters[2], Int)
end
# test if non-Type, non-TypeVar `x` can be used to parameterize a type
function valid_tparam(@nospecialize(x))
if isa(x, Tuple)
for t in x
isa(t, Symbol) || isbits(t) || return false
end
return true
end
return isa(x, Symbol) || isbits(x)
end
# return an upper-bound on type `a` with type `b` removed
# such that `return <: a` && `Union{return, b} == Union{a, b}`
function typesubtract(@nospecialize(a), @nospecialize(b))
if a <: b && isnotbrokensubtype(a, b)
return Bottom
end
if isa(a, Union)
return Union{typesubtract(a.a, b),
typesubtract(a.b, b)}
end
return a # TODO: improve this bound?
end
function tvar_extent(@nospecialize t)
while t isa TypeVar
t = t.ub
end
return t
end
_typename(@nospecialize a) = Union{}
_typename(a::TypeVar) = Core.TypeName
function _typename(a::Union)
ta = _typename(a.a)
tb = _typename(a.b)
ta === tb && return ta # same type-name
(ta === Union{} || tb === Union{}) && return Union{} # threw an error
(ta isa Const && tb isa Const) && return Union{} # will throw an error (different type-names)
return Core.TypeName # uncertain result
end
_typename(union::UnionAll) = _typename(union.body)
_typename(a::DataType) = Const(a.name)
function tuple_tail_elem(@nospecialize(init), ct::Vector{Any})
t = init
for x in ct
# FIXME: this is broken: it violates subtyping relations and creates invalid types with free typevars
t = tmerge(t, tvar_extent(unwrapva(x)))
end
return Vararg{widenconst(t)}
end
function countunionsplit(atypes::Union{SimpleVector,Vector{Any}})
nu = 1
for ti in atypes
if isa(ti, Union)
nu, ovf = Core.Intrinsics.checked_smul_int(nu, unionlen(ti::Union))
if ovf
return typemax(Int)
end
end
end
return nu
end
# take a Tuple where one or more parameters are Unions
# and return an array such that those Unions are removed
# and `Union{return...} == ty`
function switchtupleunion(@nospecialize(ty))
tparams = (unwrap_unionall(ty)::DataType).parameters
return _switchtupleunion(Any[tparams...], length(tparams), [], ty)
end
function _switchtupleunion(t::Vector{Any}, i::Int, tunion::Vector{Any}, @nospecialize(origt))
if i == 0
tpl = rewrap_unionall(Tuple{t...}, origt)
push!(tunion, tpl)
else
ti = t[i]
if isa(ti, Union)
for ty in uniontypes(ti::Union)
t[i] = ty
_switchtupleunion(t, i - 1, tunion, origt)
end
t[i] = ti
else
_switchtupleunion(t, i - 1, tunion, origt)
end
end
return tunion
end
# unioncomplexity estimates the number of calls to `tmerge` to obtain the given type by
# counting the Union instances, taking also into account those hidden in a Tuple or UnionAll
function unioncomplexity(u::Union)
return unioncomplexity(u.a) + unioncomplexity(u.b) + 1
end
function unioncomplexity(t::DataType)
t.name === Tuple.name || isvarargtype(t) || return 0
c = 0
for ti in t.parameters
c = max(c, unioncomplexity(ti))
end
return c
end
unioncomplexity(u::UnionAll) = max(unioncomplexity(u.body), unioncomplexity(u.var.ub))
unioncomplexity(@nospecialize(x)) = 0
function improvable_via_constant_propagation(@nospecialize(t))
if isconcretetype(t) && t <: Tuple
for p in t.parameters
p === DataType && return true
end
end
return false
end
|