1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
|
# This file is a part of Julia. License is MIT: https://julialang.org/license
## efficient value-based hashing of integers ##
function hash_integer(n::Integer, h::UInt)
h ⊻= hash_uint((n % UInt) ⊻ h)
n = abs(n)
n >>>= sizeof(UInt) << 3
while n != 0
h ⊻= hash_uint((n % UInt) ⊻ h)
n >>>= sizeof(UInt) << 3
end
return h
end
# this condition is true most (all?) of the time, and in this case we can define
# an optimized version of the above hash_integer(::Integer, ::UInt) method for BigInt
if GMP.Limb === UInt
# used e.g. for Rational{BigInt}
function hash_integer(n::BigInt, h::UInt)
GC.@preserve n begin
s = n.size
s == 0 && return hash_integer(0, h)
p = convert(Ptr{UInt}, n.d)
b = unsafe_load(p)
h ⊻= hash_uint(ifelse(s < 0, -b, b) ⊻ h)
for k = 2:abs(s)
h ⊻= hash_uint(unsafe_load(p, k) ⊻ h)
end
return h
end
end
end
## generic hashing for rational values ##
function hash(x::Real, h::UInt)
# decompose x as num*2^pow/den
num, pow, den = decompose(x)
# handle special values
num == 0 && den == 0 && return hash(NaN, h)
num == 0 && return hash(ifelse(den > 0, 0.0, -0.0), h)
den == 0 && return hash(ifelse(num > 0, Inf, -Inf), h)
# normalize decomposition
if den < 0
num = -num
den = -den
end
z = trailing_zeros(num)
if z != 0
num >>= z
pow += z
end
z = trailing_zeros(den)
if z != 0
den >>= z
pow -= z
end
# handle values representable as Int64, UInt64, Float64
if den == 1
left = ndigits0z(num,2) + pow
right = trailing_zeros(num) + pow
if -1074 <= right
if 0 <= right && left <= 64
left <= 63 && return hash(Int64(num) << Int(pow), h)
signbit(num) == signbit(den) && return hash(UInt64(num) << Int(pow), h)
end # typemin(Int64) handled by Float64 case
left <= 1024 && left - right <= 53 && return hash(ldexp(Float64(num),pow), h)
end
end
# handle generic rational values
h = hash_integer(den, h)
h = hash_integer(pow, h)
h = hash_integer(num, h)
return h
end
## streamlined hashing for BigInt, by avoiding allocation from shifts ##
if GMP.Limb === UInt
_divLimb(n) = UInt === UInt64 ? n >>> 6 : n >>> 5
_modLimb(n) = UInt === UInt64 ? n & 63 : n & 31
function hash(x::BigInt, h::UInt)
GC.@preserve x begin
sz = x.size
sz == 0 && return hash(0, h)
ptr = Ptr{UInt}(x.d)
if sz == 1
return hash(unsafe_load(ptr), h)
elseif sz == -1
limb = unsafe_load(ptr)
limb <= typemin(Int) % UInt && return hash(-(limb % Int), h)
end
pow = trailing_zeros(x)
nd = ndigits0z(x, 2)
idx = _divLimb(pow) + 1
shift = _modLimb(pow) % UInt
upshift = GMP.BITS_PER_LIMB - shift
asz = abs(sz)
if shift == 0
limb = unsafe_load(ptr, idx)
else
limb1 = unsafe_load(ptr, idx)
limb2 = idx < asz ? unsafe_load(ptr, idx+1) : UInt(0)
limb = limb2 << upshift | limb1 >> shift
end
if nd <= 1024 && nd - pow <= 53
return hash(ldexp(flipsign(Float64(limb), sz), pow), h)
end
h = hash_integer(1, h)
h = hash_integer(pow, h)
h ⊻= hash_uint(flipsign(limb, sz) ⊻ h)
for idx = idx+1:asz
if shift == 0
limb = unsafe_load(ptr, idx)
else
limb1 = limb2
if idx == asz
limb = limb1 >> shift
limb == 0 && break # don't hash leading zeros
else
limb2 = unsafe_load(ptr, idx+1)
limb = limb2 << upshift | limb1 >> shift
end
end
h ⊻= hash_uint(limb ⊻ h)
end
return h
end
end
end
#=
`decompose(x)`: non-canonical decomposition of rational values as `num*2^pow/den`.
The decompose function is the point where rational-valued numeric types that support
hashing hook into the hashing protocol. `decompose(x)` should return three integer
values `num, pow, den`, such that the value of `x` is mathematically equal to
num*2^pow/den
The decomposition need not be canonical in the sense that it just needs to be *some*
way to express `x` in this form, not any particular way – with the restriction that
`num` and `den` may not share any odd common factors. They may, however, have powers
of two in common – the generic hashing code will normalize those as necessary.
Special values:
- `x` is zero: `num` should be zero and `den` should have the same sign as `x`
- `x` is infinite: `den` should be zero and `num` should have the same sign as `x`
- `x` is not a number: `num` and `den` should both be zero
=#
decompose(x::Integer) = x, 0, 1
decompose(x::Rational) = numerator(x), 0, denominator(x)
function decompose(x::Float16)::NTuple{3,Int}
isnan(x) && return 0, 0, 0
isinf(x) && return ifelse(x < 0, -1, 1), 0, 0
n = reinterpret(UInt16, x)
s = (n & 0x03ff) % Int16
e = ((n & 0x7c00) >> 10) % Int
s |= Int16(e != 0) << 10
d = ifelse(signbit(x), -1, 1)
s, e - 25 + (e == 0), d
end
function decompose(x::Float32)::NTuple{3,Int}
isnan(x) && return 0, 0, 0
isinf(x) && return ifelse(x < 0, -1, 1), 0, 0
n = reinterpret(UInt32, x)
s = (n & 0x007fffff) % Int32
e = ((n & 0x7f800000) >> 23) % Int
s |= Int32(e != 0) << 23
d = ifelse(signbit(x), -1, 1)
s, e - 150 + (e == 0), d
end
function decompose(x::Float64)::Tuple{Int64, Int, Int}
isnan(x) && return 0, 0, 0
isinf(x) && return ifelse(x < 0, -1, 1), 0, 0
n = reinterpret(UInt64, x)
s = (n & 0x000fffffffffffff) % Int64
e = ((n & 0x7ff0000000000000) >> 52) % Int
s |= Int64(e != 0) << 52
d = ifelse(signbit(x), -1, 1)
s, e - 1075 + (e == 0), d
end
function decompose(x::BigFloat)::Tuple{BigInt, Int, Int}
isnan(x) && return 0, 0, 0
isinf(x) && return x.sign, 0, 0
x == 0 && return 0, 0, x.sign
s = BigInt()
s.size = cld(x.prec, 8*sizeof(GMP.Limb)) # limbs
b = s.size * sizeof(GMP.Limb) # bytes
ccall((:__gmpz_realloc2, :libgmp), Cvoid, (Ref{BigInt}, Culong), s, 8b) # bits
ccall(:memcpy, Ptr{Cvoid}, (Ptr{Cvoid}, Ptr{Cvoid}, Csize_t), s.d, x.d, b) # bytes
s, x.exp - 8b, x.sign
end
## streamlined hashing for smallish rational types ##
function hash(x::Rational{<:BitInteger64}, h::UInt)
num, den = Base.numerator(x), Base.denominator(x)
den == 1 && return hash(num, h)
den == 0 && return hash(ifelse(num > 0, Inf, -Inf), h)
if isodd(den)
pow = trailing_zeros(num)
num >>= pow
else
pow = trailing_zeros(den)
den >>= pow
pow = -pow
if den == 1 && abs(num) < 9007199254740992
return hash(ldexp(Float64(num),pow),h)
end
end
h = hash_integer(den, h)
h = hash_integer(pow, h)
h = hash_integer(num, h)
return h
end
## hashing Float16s ##
hash(x::Float16, h::UInt) = hash(Float64(x), h)
## hashing strings ##
const memhash = UInt === UInt64 ? :memhash_seed : :memhash32_seed
const memhash_seed = UInt === UInt64 ? 0x71e729fd56419c81 : 0x56419c81
function hash(s::Union{String,SubString{String}}, h::UInt)
h += memhash_seed
ccall(memhash, UInt, (Ptr{UInt8}, Csize_t, UInt32), s, sizeof(s), h % UInt32) + h
end
hash(s::AbstractString, h::UInt) = hash(String(s), h)
|