1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
|
# This file is a part of Julia. License is MIT: https://julialang.org/license
## general machinery for irrational mathematical constants
"""
AbstractIrrational <: Real
Number type representing an exact irrational value, which is automatically rounded to the correct precision in
arithmetic operations with other numeric quantities.
Subtypes `MyIrrational <: AbstractIrrational` should implement at least `==(::MyIrrational, ::MyIrrational)`,
`hash(x::MyIrrational, h::UInt)`, and `convert(::Type{F}, x::MyIrrational) where {F <: Union{BigFloat,Float32,Float64}}`.
If a subtype is used to represent values that may occasionally be rational (e.g. a square-root type that represents `√n`
for integers `n` will give a rational result when `n` is a perfect square), then it should also implement
`isinteger`, `iszero`, `isone`, and `==` with `Real` values (since all of these default to `false` for
`AbstractIrrational` types), as well as defining [`hash`](@ref) to equal that of the corresponding `Rational`.
"""
abstract type AbstractIrrational <: Real end
"""
Irrational{sym} <: AbstractIrrational
Number type representing an exact irrational value denoted by the
symbol `sym`.
"""
struct Irrational{sym} <: AbstractIrrational end
show(io::IO, x::Irrational{sym}) where {sym} = print(io, sym)
function show(io::IO, ::MIME"text/plain", x::Irrational{sym}) where {sym}
if get(io, :compact, false)
print(io, sym)
else
print(io, sym, " = ", string(float(x))[1:15], "...")
end
end
promote_rule(::Type{<:AbstractIrrational}, ::Type{Float16}) = Float16
promote_rule(::Type{<:AbstractIrrational}, ::Type{Float32}) = Float32
promote_rule(::Type{<:AbstractIrrational}, ::Type{<:AbstractIrrational}) = Float64
promote_rule(::Type{<:AbstractIrrational}, ::Type{T}) where {T<:Real} = promote_type(Float64, T)
promote_rule(::Type{S}, ::Type{T}) where {S<:AbstractIrrational,T<:Number} = promote_type(promote_type(S, real(T)), T)
AbstractFloat(x::AbstractIrrational) = Float64(x)
Float16(x::AbstractIrrational) = Float16(Float32(x))
Complex{T}(x::AbstractIrrational) where {T<:Real} = Complex{T}(T(x))
@pure function Rational{T}(x::AbstractIrrational) where T<:Integer
o = precision(BigFloat)
p = 256
while true
setprecision(BigFloat, p)
bx = BigFloat(x)
r = rationalize(T, bx, tol=0)
if abs(BigFloat(r) - bx) > eps(bx)
setprecision(BigFloat, o)
return r
end
p += 32
end
end
(::Type{Rational{BigInt}})(x::AbstractIrrational) = throw(ArgumentError("Cannot convert an AbstractIrrational to a Rational{BigInt}: use rationalize(BigInt, x) instead"))
@pure function (t::Type{T})(x::AbstractIrrational, r::RoundingMode) where T<:Union{Float32,Float64}
setprecision(BigFloat, 256) do
T(BigFloat(x), r)
end
end
float(::Type{<:AbstractIrrational}) = Float64
==(::Irrational{s}, ::Irrational{s}) where {s} = true
==(::AbstractIrrational, ::AbstractIrrational) = false
<(::Irrational{s}, ::Irrational{s}) where {s} = false
function <(x::AbstractIrrational, y::AbstractIrrational)
Float64(x) != Float64(y) || throw(MethodError(<, (x, y)))
return Float64(x) < Float64(y)
end
<=(::Irrational{s}, ::Irrational{s}) where {s} = true
<=(x::AbstractIrrational, y::AbstractIrrational) = x==y || x<y
# Irrationals, by definition, can't have a finite representation equal them exactly
==(x::AbstractIrrational, y::Real) = false
==(x::Real, y::AbstractIrrational) = false
# Irrational vs AbstractFloat
<(x::AbstractIrrational, y::Float64) = Float64(x,RoundUp) <= y
<(x::Float64, y::AbstractIrrational) = x <= Float64(y,RoundDown)
<(x::AbstractIrrational, y::Float32) = Float32(x,RoundUp) <= y
<(x::Float32, y::AbstractIrrational) = x <= Float32(y,RoundDown)
<(x::AbstractIrrational, y::Float16) = Float32(x,RoundUp) <= y
<(x::Float16, y::AbstractIrrational) = x <= Float32(y,RoundDown)
<(x::AbstractIrrational, y::BigFloat) = setprecision(precision(y)+32) do
big(x) < y
end
<(x::BigFloat, y::AbstractIrrational) = setprecision(precision(x)+32) do
x < big(y)
end
<=(x::AbstractIrrational, y::AbstractFloat) = x < y
<=(x::AbstractFloat, y::AbstractIrrational) = x < y
# Irrational vs Rational
@pure function rationalize(::Type{T}, x::AbstractIrrational; tol::Real=0) where T
return rationalize(T, big(x), tol=tol)
end
@pure function lessrational(rx::Rational{<:Integer}, x::AbstractIrrational)
# an @pure version of `<` for determining if the rationalization of
# an irrational number required rounding up or down
return rx < big(x)
end
function <(x::AbstractIrrational, y::Rational{T}) where T
T <: Unsigned && x < 0.0 && return true
rx = rationalize(T, x)
if lessrational(rx, x)
return rx < y
else
return rx <= y
end
end
function <(x::Rational{T}, y::AbstractIrrational) where T
T <: Unsigned && y < 0.0 && return false
ry = rationalize(T, y)
if lessrational(ry, y)
return x <= ry
else
return x < ry
end
end
<(x::AbstractIrrational, y::Rational{BigInt}) = big(x) < y
<(x::Rational{BigInt}, y::AbstractIrrational) = x < big(y)
<=(x::AbstractIrrational, y::Rational) = x < y
<=(x::Rational, y::AbstractIrrational) = x < y
isfinite(::AbstractIrrational) = true
isinteger(::AbstractIrrational) = false
iszero(::AbstractIrrational) = false
isone(::AbstractIrrational) = false
hash(x::Irrational, h::UInt) = 3*objectid(x) - h
widen(::Type{T}) where {T<:Irrational} = T
zero(::AbstractIrrational) = false
zero(::Type{<:AbstractIrrational}) = false
one(::AbstractIrrational) = true
one(::Type{<:AbstractIrrational}) = true
-(x::AbstractIrrational) = -Float64(x)
for op in Symbol[:+, :-, :*, :/, :^]
@eval $op(x::AbstractIrrational, y::AbstractIrrational) = $op(Float64(x),Float64(y))
end
*(x::Bool, y::AbstractIrrational) = ifelse(x, Float64(y), 0.0)
round(x::Irrational, r::RoundingMode) = round(float(x), r)
"""
@irrational sym val def
@irrational(sym, val, def)
Define a new `Irrational` value, `sym`, with pre-computed `Float64` value `val`,
and arbitrary-precision definition in terms of `BigFloat`s given be the expression `def`.
"""
macro irrational(sym, val, def)
esym = esc(sym)
qsym = esc(Expr(:quote, sym))
bigconvert = isa(def,Symbol) ? quote
function Base.BigFloat(::Irrational{$qsym}, r::MPFR.MPFRRoundingMode=MPFR.ROUNDING_MODE[]; precision=precision(BigFloat))
c = BigFloat(;precision=precision)
ccall(($(string("mpfr_const_", def)), :libmpfr),
Cint, (Ref{BigFloat}, MPFR.MPFRRoundingMode), c, r)
return c
end
end : quote
function Base.BigFloat(::Irrational{$qsym}; precision=precision(BigFloat))
setprecision(BigFloat, precision) do
$(esc(def))
end
end
end
quote
const $esym = Irrational{$qsym}()
$bigconvert
Base.Float64(::Irrational{$qsym}) = $val
Base.Float32(::Irrational{$qsym}) = $(Float32(val))
@assert isa(big($esym), BigFloat)
@assert Float64($esym) == Float64(big($esym))
@assert Float32($esym) == Float32(big($esym))
end
end
big(x::AbstractIrrational) = BigFloat(x)
big(::Type{<:AbstractIrrational}) = BigFloat
# align along = for nice Array printing
function alignment(io::IO, x::AbstractIrrational)
m = match(r"^(.*?)(=.*)$", sprint(show, x, context=io, sizehint=0))
m === nothing ? (length(sprint(show, x, context=io, sizehint=0)), 0) :
(length(m.captures[1]), length(m.captures[2]))
end
# inv
inv(x::AbstractIrrational) = 1/x
|