1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
|
# This file is a part of Julia. License is MIT: https://julialang.org/license
# Document NTuple here where we have everything needed for the doc system
"""
NTuple{N, T}
A compact way of representing the type for a tuple of length `N` where all elements are of type `T`.
# Examples
```jldoctest
julia> isa((1, 2, 3, 4, 5, 6), NTuple{6, Int})
true
```
"""
NTuple
## indexing ##
length(@nospecialize t::Tuple) = nfields(t)
firstindex(@nospecialize t::Tuple) = 1
lastindex(@nospecialize t::Tuple) = length(t)
size(@nospecialize(t::Tuple), d::Integer) = (d == 1) ? length(t) : throw(ArgumentError("invalid tuple dimension $d"))
axes(@nospecialize t::Tuple) = (OneTo(length(t)),)
@eval getindex(@nospecialize(t::Tuple), i::Int) = getfield(t, i, $(Expr(:boundscheck)))
@eval getindex(@nospecialize(t::Tuple), i::Real) = getfield(t, convert(Int, i), $(Expr(:boundscheck)))
getindex(t::Tuple, r::AbstractArray{<:Any,1}) = (eltype(t)[t[ri] for ri in r]...,)
getindex(t::Tuple, b::AbstractArray{Bool,1}) = length(b) == length(t) ? getindex(t, findall(b)) : throw(BoundsError(t, b))
getindex(t::Tuple, c::Colon) = t
# returns new tuple; N.B.: becomes no-op if i is out-of-bounds
"""
setindex(c::Tuple, v, i::Integer)
Creates a new tuple similar to `x` with the value at index `i` set to `v`.
Throws a `BoundsError` when out of bounds.
# Examples
```jldoctest
julia> Base.setindex((1, 2, 6), 2, 3) == (1, 2, 2)
true
```
"""
function setindex(x::Tuple, v, i::Integer)
@boundscheck 1 <= i <= length(x) || throw(BoundsError(x, i))
@_inline_meta
_setindex(v, i, x...)
end
function _setindex(v, i::Integer, first, tail...)
@_inline_meta
return (ifelse(i == 1, v, first), _setindex(v, i - 1, tail...)...)
end
_setindex(v, i::Integer) = ()
## iterating ##
function iterate(@nospecialize(t::Tuple), i::Int=1)
@_inline_meta
return (1 <= i <= length(t)) ? (@inbounds t[i], i + 1) : nothing
end
keys(@nospecialize t::Tuple) = OneTo(length(t))
prevind(@nospecialize(t::Tuple), i::Integer) = Int(i)-1
nextind(@nospecialize(t::Tuple), i::Integer) = Int(i)+1
function keys(t::Tuple, t2::Tuple...)
@_inline_meta
OneTo(_maxlength(t, t2...))
end
_maxlength(t::Tuple) = length(t)
function _maxlength(t::Tuple, t2::Tuple, t3::Tuple...)
@_inline_meta
max(length(t), _maxlength(t2, t3...))
end
# this allows partial evaluation of bounded sequences of next() calls on tuples,
# while reducing to plain next() for arbitrary iterables.
indexed_iterate(t::Tuple, i::Int, state=1) = (@_inline_meta; (getfield(t, i), i+1))
indexed_iterate(a::Array, i::Int, state=1) = (@_inline_meta; (a[i], i+1))
function indexed_iterate(I, i)
x = iterate(I)
x === nothing && throw(BoundsError(I, i))
x
end
function indexed_iterate(I, i, state)
x = iterate(I, state)
x === nothing && throw(BoundsError(I, i))
x
end
# Use dispatch to avoid a branch in first
first(::Tuple{}) = throw(ArgumentError("tuple must be non-empty"))
first(t::Tuple) = t[1]
# eltype
eltype(::Type{Tuple{}}) = Bottom
function eltype(t::Type{<:Tuple{Vararg{E}}}) where {E}
if @isdefined(E)
return E
else
# TODO: need to guard against E being miscomputed by subtyping (ref #23017)
# and compute the result manually in this case
return _compute_eltype(t)
end
end
eltype(t::Type{<:Tuple}) = _compute_eltype(t)
function _compute_eltype(t::Type{<:Tuple})
@_pure_meta
t isa Union && return promote_typejoin(eltype(t.a), eltype(t.b))
t´ = unwrap_unionall(t)
r = Union{}
for ti in t´.parameters
r = promote_typejoin(r, rewrap_unionall(unwrapva(ti), t))
end
return r
end
# version of tail that doesn't throw on empty tuples (used in array indexing)
safe_tail(t::Tuple) = tail(t)
safe_tail(t::Tuple{}) = ()
# front (the converse of tail: it skips the last entry)
"""
front(x::Tuple)::Tuple
Return a `Tuple` consisting of all but the last component of `x`.
# Examples
```jldoctest
julia> Base.front((1,2,3))
(1, 2)
julia> Base.front(())
ERROR: ArgumentError: Cannot call front on an empty tuple.
```
"""
function front(t::Tuple)
@_inline_meta
_front(t...)
end
_front() = throw(ArgumentError("Cannot call front on an empty tuple."))
_front(v) = ()
function _front(v, t...)
@_inline_meta
(v, _front(t...)...)
end
## mapping ##
# 1 argument function
map(f, t::Tuple{}) = ()
map(f, t::Tuple{Any,}) = (f(t[1]),)
map(f, t::Tuple{Any, Any}) = (f(t[1]), f(t[2]))
map(f, t::Tuple{Any, Any, Any}) = (f(t[1]), f(t[2]), f(t[3]))
map(f, t::Tuple) = (@_inline_meta; (f(t[1]), map(f,tail(t))...))
# stop inlining after some number of arguments to avoid code blowup
const Any16{N} = Tuple{Any,Any,Any,Any,Any,Any,Any,Any,
Any,Any,Any,Any,Any,Any,Any,Any,Vararg{Any,N}}
const All16{T,N} = Tuple{T,T,T,T,T,T,T,T,
T,T,T,T,T,T,T,T,Vararg{T,N}}
function map(f, t::Any16)
n = length(t)
A = Vector{Any}(undef, n)
for i=1:n
A[i] = f(t[i])
end
(A...,)
end
# 2 argument function
map(f, t::Tuple{}, s::Tuple{}) = ()
map(f, t::Tuple{Any,}, s::Tuple{Any,}) = (f(t[1],s[1]),)
map(f, t::Tuple{Any,Any}, s::Tuple{Any,Any}) = (f(t[1],s[1]), f(t[2],s[2]))
function map(f, t::Tuple, s::Tuple)
@_inline_meta
(f(t[1],s[1]), map(f, tail(t), tail(s))...)
end
function map(f, t::Any16, s::Any16)
n = length(t)
A = Vector{Any}(undef, n)
for i = 1:n
A[i] = f(t[i], s[i])
end
(A...,)
end
# n argument function
heads(ts::Tuple...) = map(t -> t[1], ts)
tails(ts::Tuple...) = map(tail, ts)
map(f, ::Tuple{}...) = ()
function map(f, t1::Tuple, t2::Tuple, ts::Tuple...)
@_inline_meta
(f(heads(t1, t2, ts...)...), map(f, tails(t1, t2, ts...)...)...)
end
function map(f, t1::Any16, t2::Any16, ts::Any16...)
n = length(t1)
A = Vector{Any}(undef, n)
for i = 1:n
A[i] = f(t1[i], t2[i], map(t -> t[i], ts)...)
end
(A...,)
end
_foldl_impl(op, init, itr::Tuple) = afoldl(op, init, itr...)
# type-stable padding
fill_to_length(t::NTuple{N,Any}, val, ::Val{N}) where {N} = t
fill_to_length(t::Tuple{}, val, ::Val{1}) = (val,)
fill_to_length(t::Tuple{Any}, val, ::Val{2}) = (t..., val)
fill_to_length(t::Tuple{}, val, ::Val{2}) = (val, val)
#function fill_to_length(t::Tuple, val, ::Val{N}) where {N}
# @_inline_meta
# return (t..., ntuple(i -> val, N - length(t))...)
#end
# constructing from an iterator
# only define these in Base, to avoid overwriting the constructors
# NOTE: this means this constructor must be avoided in Core.Compiler!
if nameof(@__MODULE__) === :Base
(::Type{T})(x::Tuple) where {T<:Tuple} = convert(T, x) # still use `convert` for tuples
Tuple(x::Ref) = tuple(getindex(x)) # faster than iterator for one element
Tuple(x::Array{T,0}) where {T} = tuple(getindex(x))
(::Type{T})(itr) where {T<:Tuple} = _totuple(T, itr)
_totuple(::Type{Tuple{}}, itr, s...) = ()
function _totuple_err(@nospecialize T)
@_noinline_meta
throw(ArgumentError("too few elements for tuple type $T"))
end
function _totuple(T, itr, s...)
@_inline_meta
y = iterate(itr, s...)
y === nothing && _totuple_err(T)
(convert(tuple_type_head(T), y[1]), _totuple(tuple_type_tail(T), itr, y[2])...)
end
# use iterative algorithm for long tuples
function _totuple(T::Type{All16{E,N}}, itr) where {E,N}
len = N+16
elts = collect(E, Iterators.take(itr,len))
if length(elts) != len
_totuple_err(T)
end
(elts...,)
end
_totuple(::Type{Tuple{Vararg{E}}}, itr, s...) where {E} = (collect(E, Iterators.rest(itr,s...))...,)
_totuple(::Type{Tuple}, itr, s...) = (collect(Iterators.rest(itr,s...))...,)
end
## filter ##
filter(f, xs::Tuple) = afoldl((ys, x) -> f(x) ? (ys..., x) : ys, (), xs...)
# use Array for long tuples
filter(f, t::Any16) = Tuple(filter(f, collect(t)))
## comparison ##
isequal(t1::Tuple, t2::Tuple) = (length(t1) == length(t2)) && _isequal(t1, t2)
_isequal(t1::Tuple{}, t2::Tuple{}) = true
_isequal(t1::Tuple{Any}, t2::Tuple{Any}) = isequal(t1[1], t2[1])
_isequal(t1::Tuple, t2::Tuple) = isequal(t1[1], t2[1]) && _isequal(tail(t1), tail(t2))
function _isequal(t1::Any16, t2::Any16)
for i = 1:length(t1)
if !isequal(t1[i], t2[i])
return false
end
end
return true
end
==(t1::Tuple, t2::Tuple) = (length(t1) == length(t2)) && _eq(t1, t2)
_eq(t1::Tuple{}, t2::Tuple{}) = true
_eq_missing(t1::Tuple{}, t2::Tuple{}) = missing
function _eq(t1::Tuple, t2::Tuple)
eq = t1[1] == t2[1]
if eq === false
return false
elseif ismissing(eq)
return _eq_missing(tail(t1), tail(t2))
else
return _eq(tail(t1), tail(t2))
end
end
function _eq_missing(t1::Tuple, t2::Tuple)
eq = t1[1] == t2[1]
if eq === false
return false
else
return _eq_missing(tail(t1), tail(t2))
end
end
function _eq(t1::Any16, t2::Any16)
anymissing = false
for i = 1:length(t1)
eq = (t1[i] == t2[i])
if ismissing(eq)
anymissing = true
elseif !eq
return false
end
end
return anymissing ? missing : true
end
const tuplehash_seed = UInt === UInt64 ? 0x77cfa1eef01bca90 : 0xf01bca90
hash(::Tuple{}, h::UInt) = h + tuplehash_seed
hash(t::Tuple, h::UInt) = hash(t[1], hash(tail(t), h))
function hash(t::Any16, h::UInt)
out = h + tuplehash_seed
for i = length(t):-1:1
out = hash(t[i], out)
end
return out
end
<(::Tuple{}, ::Tuple{}) = false
<(::Tuple{}, ::Tuple) = true
<(::Tuple, ::Tuple{}) = false
function <(t1::Tuple, t2::Tuple)
a, b = t1[1], t2[1]
eq = (a == b)
if ismissing(eq)
return missing
elseif !eq
return a < b
end
return tail(t1) < tail(t2)
end
function <(t1::Any16, t2::Any16)
n1, n2 = length(t1), length(t2)
for i = 1:min(n1, n2)
a, b = t1[i], t2[i]
eq = (a == b)
if ismissing(eq)
return missing
elseif !eq
return a < b
end
end
return n1 < n2
end
isless(::Tuple{}, ::Tuple{}) = false
isless(::Tuple{}, ::Tuple) = true
isless(::Tuple, ::Tuple{}) = false
"""
isless(t1::Tuple, t2::Tuple)
Returns true when t1 is less than t2 in lexicographic order.
"""
function isless(t1::Tuple, t2::Tuple)
a, b = t1[1], t2[1]
isless(a, b) || (isequal(a, b) && isless(tail(t1), tail(t2)))
end
function isless(t1::Any16, t2::Any16)
n1, n2 = length(t1), length(t2)
for i = 1:min(n1, n2)
a, b = t1[i], t2[i]
if !isequal(a, b)
return isless(a, b)
end
end
return n1 < n2
end
## functions ##
isempty(x::Tuple{}) = true
isempty(@nospecialize x::Tuple) = false
revargs() = ()
revargs(x, r...) = (revargs(r...)..., x)
reverse(t::Tuple) = revargs(t...)
## specialized reduction ##
# TODO: these definitions cannot yet be combined, since +(x...)
# where x might be any tuple matches too many methods.
# TODO: this is inconsistent with the regular sum in cases where the arguments
# require size promotion to system size.
sum(x::Tuple{Any, Vararg{Any}}) = +(x...)
# NOTE: should remove, but often used on array sizes
# TODO: this is inconsistent with the regular prod in cases where the arguments
# require size promotion to system size.
prod(x::Tuple{}) = 1
prod(x::Tuple{Any, Vararg{Any}}) = *(x...)
all(x::Tuple{}) = true
all(x::Tuple{Bool}) = x[1]
all(x::Tuple{Bool, Bool}) = x[1]&x[2]
all(x::Tuple{Bool, Bool, Bool}) = x[1]&x[2]&x[3]
# use generic reductions for the rest
any(x::Tuple{}) = false
any(x::Tuple{Bool}) = x[1]
any(x::Tuple{Bool, Bool}) = x[1]|x[2]
any(x::Tuple{Bool, Bool, Bool}) = x[1]|x[2]|x[3]
# equivalent to any(f, t), to be used only in bootstrap
_tuple_any(f::Function, t::Tuple) = _tuple_any(f, false, t...)
function _tuple_any(f::Function, tf::Bool, a, b...)
@_inline_meta
_tuple_any(f, tf | f(a), b...)
end
_tuple_any(f::Function, tf::Bool) = tf
"""
empty(x::Tuple)
Returns an empty tuple, `()`.
"""
empty(@nospecialize x::Tuple) = ()
|