1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
|
# This file is a part of Julia. License is MIT: https://julialang.org/license
module TestAddmul
using Base: rtoldefault
using Test
using LinearAlgebra
using LinearAlgebra: AbstractTriangular
using SparseArrays
using Random
_rand(::Type{T}) where {T <: AbstractFloat} = T(randn())
_rand(::Type{T}) where {F, T <: Complex{F}} = T(_rand(F), _rand(F))
_rand(::Type{T}) where {T <: Integer} =
T(rand(max(typemin(T), -10):min(typemax(T), 10)))
_rand(::Type{BigInt}) = BigInt(_rand(Int))
function _rand(A::Type{<:Array}, shape)
T = eltype(A)
data = T[_rand(T) for _ in 1:prod(shape)]
return copy(reshape(data, shape))
end
constructor_of(::Type{T}) where T = getfield(parentmodule(T), nameof(T))
function _rand(A::Type{<: AbstractArray}, shape)
data = _rand(Array{eltype(A)}, shape)
T = constructor_of(A)
if A <: Union{Bidiagonal, Hermitian, Symmetric}
return T(data, rand([:U, :L]))
# Maybe test with both :U and :L?
end
return T(data)
end
_rand(A::Type{<: SymTridiagonal{T}}, shape) where {T} =
SymTridiagonal(_rand(Symmetric{T}, shape))
const FloatOrC = Union{AbstractFloat, Complex{<: AbstractFloat}}
const IntegerOrC = Union{Integer, Complex{<: Integer}}
const LTri = Union{LowerTriangular, UnitLowerTriangular, Diagonal}
const UTri = Union{UpperTriangular, UnitUpperTriangular, Diagonal}
needsquare(::Type{<:Matrix}) = false
needsquare(::Type) = true
testdata = []
sizecandidates = 1:4
floattypes = [
Float64, Float32, ComplexF64, ComplexF32, # BlasFloat
BigFloat,
]
inttypes = [
Int,
BigInt,
]
# `Bool` can be added to `inttypes` but it's hard to handle
# `InexactError` bug that is mentioned in:
# https://github.com/JuliaLang/julia/issues/30094#issuecomment-440175887
alleltypes = [floattypes; inttypes]
celtypes = [Float64, ComplexF64, BigFloat, Int]
mattypes = [
Matrix,
Bidiagonal,
Diagonal,
Hermitian,
LowerTriangular,
SymTridiagonal,
Symmetric,
Tridiagonal,
UnitLowerTriangular,
UnitUpperTriangular,
UpperTriangular,
]
isnanfillable(::AbstractArray) = false
isnanfillable(::Array{<:AbstractFloat}) = true
isnanfillable(A::AbstractArray{<:AbstractFloat}) = parent(A) isa Array
"""
Sample `n` elements from `S` on average but make sure at least one
element is sampled.
"""
function sample(S, n::Real)
length(S) <= n && return S
xs = randsubseq(S, n / length(S))
return length(xs) > 0 ? xs : rand(S, 1) # sample at least one
end
function inputeltypes(celt, alleltypes = alleltypes)
# Skip if destination type is "too small"
celt <: Bool && return []
filter(alleltypes) do aelt
celt <: Real && aelt <: Complex && return false
!(celt <: BigFloat) && aelt <: BigFloat && return false
!(celt <: BigInt) && aelt <: BigInt && return false
celt <: IntegerOrC && aelt <: FloatOrC && return false
if celt <: IntegerOrC && !(celt <: BigInt)
typemin(celt) > typemin(aelt) && return false
typemax(celt) < typemax(aelt) && return false
end
return true
end
end
# Note: using `randsubseq` instead of `rand` to avoid repetition.
function inputmattypes(cmat, mattypes = mattypes)
# Skip if destination type is "too small"
cmat <: Union{Bidiagonal, Tridiagonal, SymTridiagonal,
UnitLowerTriangular, UnitUpperTriangular,
Hermitian, Symmetric} && return []
filter(mattypes) do amat
cmat <: Diagonal && (amat <: Diagonal || return false)
cmat <: LowerTriangular && (amat <: LTri || return false)
cmat <: UpperTriangular && (amat <: UTri || return false)
return true
end
end
n_samples = 1.5
# n_samples = Inf # to try all combinations
for cmat in mattypes,
amat in sample(inputmattypes(cmat), n_samples),
bmat in sample(inputmattypes(cmat), n_samples),
celt in celtypes,
aelt in sample(inputeltypes(celt), n_samples),
belt in sample(inputeltypes(celt), n_samples)
push!(testdata, (cmat{celt}, amat{aelt}, bmat{belt}))
end
@testset "mul!(::$TC, ::$TA, ::$TB, α, β)" for (TC, TA, TB) in testdata
if needsquare(TA)
na1 = na2 = rand(sizecandidates)
else
na1, na2 = rand(sizecandidates, 2)
end
if needsquare(TB)
nb2 = na2
elseif needsquare(TC)
nb2 = na1
else
nb2 = rand(sizecandidates)
end
asize = (na1, na2)
bsize = (na2, nb2)
csize = (na1, nb2)
@testset for α in Any[true, eltype(TC)(1), _rand(eltype(TC))],
β in Any[false, eltype(TC)(0), _rand(eltype(TC))]
C = _rand(TC, csize)
A = _rand(TA, asize)
B = _rand(TB, bsize)
# This is similar to how `isapprox` choose `rtol` (when
# `atol=0`) but consider all number types involved:
rtol = max(rtoldefault.(real.(eltype.((C, A, B))))...,
rtoldefault.(real.(typeof.((α, β))))...)
Cc = copy(C)
Ac = Matrix(A)
Bc = Matrix(B)
returned_mat = mul!(C, A, B, α, β)
@test returned_mat === C
@test collect(returned_mat) ≈ α * Ac * Bc + β * Cc rtol=rtol
y = C[:, 1]
x = B[:, 1]
yc = Vector(y)
xc = Vector(x)
returned_vec = mul!(y, A, x, α, β)
@test returned_vec === y
@test collect(returned_vec) ≈ α * Ac * xc + β * yc rtol=rtol
if TC <: Matrix
@testset "adjoint and transpose" begin
@testset for fa in [identity, adjoint, transpose],
fb in [identity, adjoint, transpose]
fa === fb === identity && continue
Af = fa === identity ? A : fa(_rand(TA, reverse(asize)))
Bf = fb === identity ? B : fb(_rand(TB, reverse(bsize)))
Ac = collect(Af)
Bc = collect(Bf)
Cc = collect(C)
returned_mat = mul!(C, Af, Bf, α, β)
@test returned_mat === C
@test collect(returned_mat) ≈ α * Ac * Bc + β * Cc rtol=rtol
end
end
end
if isnanfillable(C)
@testset "β = 0 ignores C .= NaN" begin
parent(C) .= NaN
Ac = Matrix(A)
Bc = Matrix(B)
returned_mat = mul!(C, A, B, α, zero(eltype(C)))
@test returned_mat === C
@test collect(returned_mat) ≈ α * Ac * Bc rtol=rtol
end
end
if isnanfillable(A)
@testset "α = 0 ignores A .= NaN" begin
parent(A) .= NaN
Cc = copy(C)
returned_mat = mul!(C, A, B, zero(eltype(A)), β)
@test returned_mat === C
@test collect(returned_mat) ≈ β * Cc rtol=rtol
end
end
end
end
end # module
|