File: cholesky.jl

package info (click to toggle)
julia 1.5.3%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 91,132 kB
  • sloc: lisp: 278,486; ansic: 60,186; cpp: 29,801; sh: 2,403; makefile: 1,998; pascal: 1,313; objc: 647; javascript: 516; asm: 226; python: 161; xml: 34
file content (430 lines) | stat: -rw-r--r-- 20,461 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
# This file is a part of Julia. License is MIT: https://julialang.org/license

module TestCholesky

using Test, LinearAlgebra, Random
using LinearAlgebra: BlasComplex, BlasFloat, BlasReal, QRPivoted,
    PosDefException, RankDeficientException, chkfullrank

function unary_ops_tests(a, ca, tol; n=size(a, 1))
    @test inv(ca)*a ≈ Matrix(I, n, n)
    @test a*inv(ca) ≈ Matrix(I, n, n)
    @test abs((det(ca) - det(a))/det(ca)) <= tol # Ad hoc, but statistically verified, revisit
    @test logdet(ca) ≈ logdet(a)
    @test logdet(ca) ≈ log(det(ca))  # logdet is less likely to overflow
    @test isposdef(ca)
    @test_throws ErrorException ca.Z
    @test size(ca) == size(a)
    @test Array(copy(ca)) ≈ a
end

function factor_recreation_tests(a_U, a_L)
    c_U = cholesky(a_U)
    c_L = cholesky(a_L)
    cl  = c_L.U
    ls = c_L.L
    @test Array(c_U) ≈ Array(c_L) ≈ a_U
    @test ls*ls' ≈ a_U
    @test triu(c_U.factors) ≈ c_U.U
    @test tril(c_L.factors) ≈ c_L.L
    @test istriu(cl)
    @test cl'cl ≈ a_U
    @test cl'cl ≈ a_L
end

@testset "core functionality" begin
    n = 10

    # Split n into 2 parts for tests needing two matrices
    n1 = div(n, 2)
    n2 = 2*n1

    Random.seed!(12343)

    areal = randn(n,n)/2
    aimg  = randn(n,n)/2
    a2real = randn(n,n)/2
    a2img  = randn(n,n)/2
    breal = randn(n,2)/2
    bimg  = randn(n,2)/2

    for eltya in (Float32, Float64, ComplexF32, ComplexF64, BigFloat, Int)
        a = eltya == Int ? rand(1:7, n, n) : convert(Matrix{eltya}, eltya <: Complex ? complex.(areal, aimg) : areal)
        a2 = eltya == Int ? rand(1:7, n, n) : convert(Matrix{eltya}, eltya <: Complex ? complex.(a2real, a2img) : a2real)

        ε = εa = eps(abs(float(one(eltya))))

        # Test of symmetric pos. def. strided matrix
        apd  = a'*a
        @inferred cholesky(apd)
        capd  = factorize(apd)
        r     = capd.U
        κ     = cond(apd, 1) #condition number

        unary_ops_tests(apd, capd, ε*κ*n)
        if eltya != Int
            @test Factorization{eltya}(capd) === capd
            if eltya <: Real
                @test Array(Factorization{complex(eltya)}(capd)) ≈ Array(factorize(complex(apd)))
                @test eltype(Factorization{complex(eltya)}(capd)) == complex(eltya)
            end
        end
        @testset "throw for non-square input" begin
            A = rand(eltya, 2, 3)
            @test_throws DimensionMismatch cholesky(A)
            @test_throws DimensionMismatch cholesky!(A)
        end

        #Test error bound on reconstruction of matrix: LAWNS 14, Lemma 2.1

        #these tests were failing on 64-bit linux when inside the inner loop
        #for eltya = ComplexF32 and eltyb = Int. The E[i,j] had NaN32 elements
        #but only with Random.seed!(1234321) set before the loops.
        E = abs.(apd - r'*r)
        for i=1:n, j=1:n
            @test E[i,j] <= (n+1)ε/(1-(n+1)ε)*real(sqrt(apd[i,i]*apd[j,j]))
        end
        E = abs.(apd - Matrix(capd))
        for i=1:n, j=1:n
            @test E[i,j] <= (n+1)ε/(1-(n+1)ε)*real(sqrt(apd[i,i]*apd[j,j]))
        end
        @test LinearAlgebra.issuccess(capd)
        @inferred(logdet(capd))

        apos = apd[1,1]
        @test all(x -> x ≈ √apos, cholesky(apos).factors)

        # Test cholesky with Symmetric/Hermitian upper/lower
        apds  = Symmetric(apd)
        apdsL = Symmetric(apd, :L)
        apdh  = Hermitian(apd)
        apdhL = Hermitian(apd, :L)
        if eltya <: Real
            capds = cholesky(apds)
            unary_ops_tests(apds, capds, ε*κ*n)
            if eltya <: BlasReal
                capds = cholesky!(copy(apds))
                unary_ops_tests(apds, capds, ε*κ*n)
            end
            ulstring = sprint((t, s) -> show(t, "text/plain", s), capds.UL)
            @test sprint((t, s) -> show(t, "text/plain", s), capds) == "$(typeof(capds))\nU factor:\n$ulstring"
        else
            capdh = cholesky(apdh)
            unary_ops_tests(apdh, capdh, ε*κ*n)
            capdh = cholesky!(copy(apdh))
            unary_ops_tests(apdh, capdh, ε*κ*n)
            capdh = cholesky!(copy(apd))
            unary_ops_tests(apd, capdh, ε*κ*n)
            ulstring = sprint((t, s) -> show(t, "text/plain", s), capdh.UL)
            @test sprint((t, s) -> show(t, "text/plain", s), capdh) == "$(typeof(capdh))\nU factor:\n$ulstring"
        end

        # test cholesky of 2x2 Strang matrix
        S = Matrix{eltya}(SymTridiagonal([2, 2], [-1]))
        @test Matrix(cholesky(S).U) ≈ [2 -1; 0 sqrt(eltya(3))] / sqrt(eltya(2))

        # test extraction of factor and re-creating original matrix
        if eltya <: Real
            factor_recreation_tests(apds, apdsL)
        else
            factor_recreation_tests(apdh, apdhL)
        end

        #pivoted upper Cholesky
        if eltya != BigFloat
            cpapd = cholesky(apdh, Val(true))
            unary_ops_tests(apdh, cpapd, ε*κ*n)
            @test rank(cpapd) == n
            @test all(diff(diag(real(cpapd.factors))).<=0.) # diagonal should be non-increasing

            @test cpapd.P*cpapd.L*cpapd.U*cpapd.P' ≈ apd
        end

        for eltyb in (Float32, Float64, ComplexF32, ComplexF64, Int)
            b = eltyb == Int ? rand(1:5, n, 2) : convert(Matrix{eltyb}, eltyb <: Complex ? complex.(breal, bimg) : breal)
            εb = eps(abs(float(one(eltyb))))
            ε = max(εa,εb)

            for b in (b, view(b, 1:n, 1)) # Array and SubArray

                # Test error bound on linear solver: LAWNS 14, Theorem 2.1
                # This is a surprisingly loose bound
                x = capd\b
                @test norm(x-apd\b,1)/norm(x,1) <= (3n^2 + n + n^3*ε)*ε/(1-(n+1)*ε)*κ
                @test norm(apd*x-b,1)/norm(b,1) <= (3n^2 + n + n^3*ε)*ε/(1-(n+1)*ε)*κ

                @test norm(a*(capd\(a'*b)) - b,1)/norm(b,1) <= ε*κ*n # Ad hoc, revisit

                if eltya != BigFloat && eltyb != BigFloat
                    lapd = cholesky(apdhL)
                    @test norm(apd * (lapd\b) - b)/norm(b) <= ε*κ*n
                    @test norm(apd * (lapd\b[1:n]) - b[1:n])/norm(b[1:n]) <= ε*κ*n
                end

                if eltya != BigFloat && eltyb != BigFloat # Note! Need to implement pivoted Cholesky decomposition in julia

                    cpapd = cholesky(apdh, Val(true))
                    @test norm(apd * (cpapd\b) - b)/norm(b) <= ε*κ*n # Ad hoc, revisit
                    @test norm(apd * (cpapd\b[1:n]) - b[1:n])/norm(b[1:n]) <= ε*κ*n

                    lpapd = cholesky(apdhL, Val(true))
                    @test norm(apd * (lpapd\b) - b)/norm(b) <= ε*κ*n # Ad hoc, revisit
                    @test norm(apd * (lpapd\b[1:n]) - b[1:n])/norm(b[1:n]) <= ε*κ*n
                end
            end
        end

        for eltyb in (Float64, ComplexF64)
            Breal = convert(Matrix{BigFloat}, randn(n,n)/2)
            Bimg  = convert(Matrix{BigFloat}, randn(n,n)/2)
            B = (eltya <: Complex || eltyb <: Complex) ? complex.(Breal, Bimg) : Breal
            εb = eps(abs(float(one(eltyb))))
            ε = max(εa,εb)

            for B in (B, view(B, 1:n, 1:n)) # Array and SubArray

                # Test error bound on linear solver: LAWNS 14, Theorem 2.1
                # This is a surprisingly loose bound
                BB = copy(B)
                ldiv!(capd, BB)
                @test norm(apd \ B - BB, 1) / norm(BB, 1) <= (3n^2 + n + n^3*ε)*ε/(1-(n+1)*ε)*κ
                @test norm(apd * BB - B, 1) / norm(B, 1) <= (3n^2 + n + n^3*ε)*ε/(1-(n+1)*ε)*κ
                if eltya != BigFloat
                    cpapd = cholesky(apdh, Val(true))
                    BB = copy(B)
                    ldiv!(cpapd, BB)
                    @test norm(apd \ B - BB, 1) / norm(BB, 1) <= (3n^2 + n + n^3*ε)*ε/(1-(n+1)*ε)*κ
                    @test norm(apd * BB - B, 1) / norm(B, 1) <= (3n^2 + n + n^3*ε)*ε/(1-(n+1)*ε)*κ
                end
            end
        end

        @testset "solve with generic Cholesky" begin
            Breal = convert(Matrix{BigFloat}, randn(n,n)/2)
            Bimg  = convert(Matrix{BigFloat}, randn(n,n)/2)
            B = eltya <: Complex ? complex.(Breal, Bimg) : Breal
            εb = eps(abs(float(one(eltype(B)))))
            ε = max(εa,εb)

            for B in (B, view(B, 1:n, 1:n)) # Array and SubArray

                # Test error bound on linear solver: LAWNS 14, Theorem 2.1
                # This is a surprisingly loose bound
                cpapd = cholesky(eltya <: Complex ? apdh : apds)
                BB = copy(B)
                rdiv!(BB, cpapd)
                @test norm(B / apd - BB, 1) / norm(BB, 1) <= (3n^2 + n + n^3*ε)*ε/(1-(n+1)*ε)*κ
                @test norm(BB * apd - B, 1) / norm(B, 1) <= (3n^2 + n + n^3*ε)*ε/(1-(n+1)*ε)*κ
                cpapd = cholesky(eltya <: Complex ? apdhL : apdsL)
                BB = copy(B)
                rdiv!(BB, cpapd)
                @test norm(B / apd - BB, 1) / norm(BB, 1) <= (3n^2 + n + n^3*ε)*ε/(1-(n+1)*ε)*κ
                @test norm(BB * apd - B, 1) / norm(B, 1) <= (3n^2 + n + n^3*ε)*ε/(1-(n+1)*ε)*κ
                if eltya != BigFloat
                    cpapd = cholesky(eltya <: Complex ? apdh : apds, Val(true))
                    BB = copy(B)
                    rdiv!(BB, cpapd)
                    @test norm(B / apd - BB, 1) / norm(BB, 1) <= (3n^2 + n + n^3*ε)*ε/(1-(n+1)*ε)*κ
                    @test norm(BB * apd - B, 1) / norm(B, 1) <= (3n^2 + n + n^3*ε)*ε/(1-(n+1)*ε)*κ
                    cpapd = cholesky(eltya <: Complex ? apdhL : apdsL, Val(true))
                    BB = copy(B)
                    rdiv!(BB, cpapd)
                    @test norm(B / apd - BB, 1) / norm(BB, 1) <= (3n^2 + n + n^3*ε)*ε/(1-(n+1)*ε)*κ
                    @test norm(BB * apd - B, 1) / norm(B, 1) <= (3n^2 + n + n^3*ε)*ε/(1-(n+1)*ε)*κ
                end
            end
        end
        if eltya <: BlasFloat
            @testset "generic cholesky!" begin
                if eltya <: Complex
                    A = complex.(randn(5,5), randn(5,5))
                else
                    A = randn(5,5)
                end
                A = convert(Matrix{eltya}, A'A)
                @test Matrix(cholesky(A).L) ≈ Matrix(invoke(LinearAlgebra._chol!, Tuple{AbstractMatrix, Type{LowerTriangular}}, copy(A), LowerTriangular)[1])
                @test Matrix(cholesky(A).U) ≈ Matrix(invoke(LinearAlgebra._chol!, Tuple{AbstractMatrix, Type{UpperTriangular}}, copy(A), UpperTriangular)[1])
            end
        end
    end
end

@testset "behavior for non-positive definite matrices" for T in (Float64, ComplexF64)
    A = T[1 2; 2 1]
    B = T[1 2; 0 1]
    # check = (true|false)
    for M in (A, Hermitian(A), B)
        @test_throws PosDefException cholesky(M)
        @test_throws PosDefException cholesky!(copy(M))
        @test_throws PosDefException cholesky(M; check = true)
        @test_throws PosDefException cholesky!(copy(M); check = true)
        @test !LinearAlgebra.issuccess(cholesky(M; check = false))
        @test !LinearAlgebra.issuccess(cholesky!(copy(M); check = false))
    end
    for M in (A, Hermitian(A), B)
        @test_throws RankDeficientException cholesky(M, Val(true))
        @test_throws RankDeficientException cholesky!(copy(M), Val(true))
        @test_throws RankDeficientException cholesky(M, Val(true); check = true)
        @test_throws RankDeficientException cholesky!(copy(M), Val(true); check = true)
        C = cholesky(M, Val(true); check = false)
        @test_throws RankDeficientException chkfullrank(C)
        C = cholesky!(copy(M), Val(true); check = false)
        @test_throws RankDeficientException chkfullrank(C)
    end
    @test !isposdef(A)
    str = sprint((io, x) -> show(io, "text/plain", x), cholesky(A; check = false))
end

@testset "Cholesky factor of Matrix with non-commutative elements, here 2x2-matrices" begin
    X = Matrix{Float64}[0.1*rand(2,2) for i in 1:3, j = 1:3]
    L = Matrix(LinearAlgebra._chol!(X*X', LowerTriangular)[1])
    U = Matrix(LinearAlgebra._chol!(X*X', UpperTriangular)[1])
    XX = Matrix(X*X')

    @test sum(sum(norm, L*L' - XX)) < eps()
    @test sum(sum(norm, U'*U - XX)) < eps()
end


@testset "cholesky up- and downdates" begin
    A = complex.(randn(10,5), randn(10, 5))
    v = complex.(randn(5), randn(5))
    for uplo in (:U, :L)
        AcA = A'*A
        BcB = AcA + v*v'
        BcB = (BcB + BcB')/2
        F = cholesky(Hermitian(AcA, uplo))
        G = cholesky(Hermitian(BcB, uplo))
        @test Base.getproperty(LinearAlgebra.lowrankupdate(F, v), uplo) ≈ Base.getproperty(G, uplo)
        @test_throws DimensionMismatch LinearAlgebra.lowrankupdate(F, Vector{eltype(v)}(undef,length(v)+1))
        @test Base.getproperty(LinearAlgebra.lowrankdowndate(G, v), uplo) ≈ Base.getproperty(F, uplo)
        @test_throws DimensionMismatch LinearAlgebra.lowrankdowndate(G, Vector{eltype(v)}(undef,length(v)+1))
    end
end

@testset "issue #13243, unexpected nans in complex cholesky" begin
    apd = [5.8525753f0 + 0.0f0im -0.79540455f0 + 0.7066077f0im 0.98274714f0 + 1.3824869f0im 2.619998f0 + 1.8532984f0im -1.8306153f0 - 1.2336911f0im 0.32275113f0 + 0.015575029f0im 2.1968813f0 + 1.0640624f0im 0.27894387f0 + 0.97911835f0im 3.0476584f0 + 0.18548489f0im 0.3842994f0 + 0.7050991f0im
        -0.79540455f0 - 0.7066077f0im 8.313246f0 + 0.0f0im -1.8076122f0 - 0.8882447f0im 0.47806996f0 + 0.48494184f0im 0.5096429f0 - 0.5395974f0im -0.7285097f0 - 0.10360408f0im -1.1760061f0 - 2.7146957f0im -0.4271084f0 + 0.042899966f0im -1.7228563f0 + 2.8335886f0im 1.8942566f0 + 0.6389735f0im
        0.98274714f0 - 1.3824869f0im -1.8076122f0 + 0.8882447f0im 9.367975f0 + 0.0f0im -0.1838578f0 + 0.6468568f0im -1.8338387f0 + 0.7064959f0im 0.041852742f0 - 0.6556877f0im 2.5673025f0 + 1.9732997f0im -1.1148382f0 - 0.15693812f0im 2.4704504f0 - 1.0389464f0im 1.0858271f0 - 1.298006f0im
        2.619998f0 - 1.8532984f0im 0.47806996f0 - 0.48494184f0im -0.1838578f0 - 0.6468568f0im 3.1117508f0 + 0.0f0im -1.956626f0 + 0.22825956f0im 0.07081801f0 - 0.31801307f0im 0.3698375f0 - 0.5400855f0im 0.80686307f0 + 1.5315914f0im 1.5649154f0 - 1.6229297f0im -0.112077385f0 + 1.2014246f0im
        -1.8306153f0 + 1.2336911f0im 0.5096429f0 + 0.5395974f0im -1.8338387f0 - 0.7064959f0im -1.956626f0 - 0.22825956f0im 3.6439795f0 + 0.0f0im -0.2594722f0 + 0.48786148f0im -0.47636223f0 - 0.27821827f0im -0.61608654f0 - 2.01858f0im -2.7767487f0 + 1.7693765f0im 0.048102796f0 - 0.9741874f0im
        0.32275113f0 - 0.015575029f0im -0.7285097f0 + 0.10360408f0im 0.041852742f0 + 0.6556877f0im 0.07081801f0 + 0.31801307f0im -0.2594722f0 - 0.48786148f0im 3.624376f0 + 0.0f0im -1.6697118f0 + 0.4017511f0im -1.4397877f0 - 0.7550918f0im -0.31456697f0 - 1.0403451f0im -0.31978557f0 + 0.13701046f0im
        2.1968813f0 - 1.0640624f0im -1.1760061f0 + 2.7146957f0im 2.5673025f0 - 1.9732997f0im 0.3698375f0 + 0.5400855f0im -0.47636223f0 + 0.27821827f0im -1.6697118f0 - 0.4017511f0im 6.8273163f0 + 0.0f0im -0.10051322f0 + 0.24303961f0im 1.4415971f0 + 0.29750675f0im 1.221786f0 - 0.85654986f0im
        0.27894387f0 - 0.97911835f0im -0.4271084f0 - 0.042899966f0im -1.1148382f0 + 0.15693812f0im 0.80686307f0 - 1.5315914f0im -0.61608654f0 + 2.01858f0im -1.4397877f0 + 0.7550918f0im -0.10051322f0 - 0.24303961f0im 3.4057708f0 + 0.0f0im -0.5856801f0 - 1.0203559f0im 0.7103452f0 + 0.8422135f0im
        3.0476584f0 - 0.18548489f0im -1.7228563f0 - 2.8335886f0im 2.4704504f0 + 1.0389464f0im 1.5649154f0 + 1.6229297f0im -2.7767487f0 - 1.7693765f0im -0.31456697f0 + 1.0403451f0im 1.4415971f0 - 0.29750675f0im -0.5856801f0 + 1.0203559f0im 7.005772f0 + 0.0f0im -0.9617417f0 - 1.2486815f0im
        0.3842994f0 - 0.7050991f0im 1.8942566f0 - 0.6389735f0im 1.0858271f0 + 1.298006f0im -0.112077385f0 - 1.2014246f0im 0.048102796f0 + 0.9741874f0im -0.31978557f0 - 0.13701046f0im 1.221786f0 + 0.85654986f0im 0.7103452f0 - 0.8422135f0im -0.9617417f0 + 1.2486815f0im 3.4629636f0 + 0.0f0im]
    b = [-0.905011814118756 + 0.2847570854574069im -0.7122162951294634 - 0.630289556702497im
        -0.7620356655676837 + 0.15533508334193666im 0.39947219167701153 - 0.4576746001199889im
        -0.21782716937787788 - 0.9222220085490986im -0.727775859267237 + 0.50638268521728im
        -1.0509472322215125 + 0.5022165705328413im -0.7264975746431271 + 0.31670415674097235im
        -0.6650468984506477 - 0.5000967284800251im -0.023682508769195098 + 0.18093440285319276im
        -0.20604111555491242 + 0.10570814584017311im 0.562377322638969 - 0.2578030745663871im
        -0.3451346708401685 + 1.076948486041297im 0.9870834574024372 - 0.2825689605519449im
        0.25336108035924787 + 0.975317836492159im 0.0628393808469436 - 0.1253397353973715im
        0.11192755545114 - 0.1603741874112385im 0.8439562576196216 + 1.0850814110398734im
        -1.0568488936791578 - 0.06025820467086475im 0.12696236014017806 - 0.09853584666755086im]
    cholesky(Hermitian(apd, :L), Val(true)) \ b
    r = factorize(apd).U
    E = abs.(apd - r'*r)
    ε = eps(abs(float(one(ComplexF32))))
    n = 10
    for i=1:n, j=1:n
        @test E[i,j] <= (n+1)ε/(1-(n+1)ε)*real(sqrt(apd[i,i]*apd[j,j]))
    end
end

@testset "fail for non-BLAS element types" begin
    @test_throws ArgumentError cholesky!(Hermitian(rand(Float16, 5,5)), Val(true))
end

@testset "cholesky Diagonal" begin
    # real
    d = abs.(randn(3)) .+ 0.1
    D = Diagonal(d)
    CD = cholesky(D)
    CM = cholesky(Matrix(D))
    @test CD isa Cholesky{Float64}
    @test CD.U ≈ Diagonal(.√d) ≈ CM.U
    @test D ≈ CD.L * CD.U
    @test CD.info == 0

    # real, failing
    @test_throws PosDefException cholesky(Diagonal([1.0, -2.0]))
    Dnpd = cholesky(Diagonal([1.0, -2.0]); check = false)
    @test Dnpd.info == 2

    # complex
    D = complex(D)
    CD = cholesky(D)
    CM = cholesky(Matrix(D))
    @test CD isa Cholesky{Complex{Float64}}
    @test CD.U ≈ Diagonal(.√d) ≈ CM.U
    @test D ≈ CD.L * CD.U
    @test CD.info == 0

    # complex, failing
    D[2, 2] = 0.0 + 0im
    @test_throws PosDefException cholesky(D)
    Dnpd = cholesky(D; check = false)
    @test Dnpd.info == 2

    # InexactError for Int
    @test_throws InexactError cholesky!(Diagonal([2, 1]))
end

@testset "constructor with non-BlasInt arguments" begin

    x = rand(5,5)
    chol = cholesky(x'x)

    factors, uplo, info = chol.factors, chol.uplo, chol.info

    @test Cholesky(factors, uplo, Int32(info)) == chol
    @test Cholesky(factors, uplo, Int64(info)) == chol

    cholp = cholesky(x'x, Val(true))

    factors, uplo, piv, rank, tol, info =
        cholp.factors, cholp.uplo, cholp.piv, cholp.rank, cholp.tol, cholp.info

    @test CholeskyPivoted(factors, uplo, Vector{Int32}(piv), rank, tol, info) == cholp
    @test CholeskyPivoted(factors, uplo, Vector{Int64}(piv), rank, tol, info) == cholp

    @test CholeskyPivoted(factors, uplo, piv, Int32(rank), tol, info) == cholp
    @test CholeskyPivoted(factors, uplo, piv, Int64(rank), tol, info) == cholp

    @test CholeskyPivoted(factors, uplo, piv, rank, tol, Int32(info)) == cholp
    @test CholeskyPivoted(factors, uplo, piv, rank, tol, Int64(info)) == cholp

end

@testset "issue #33704, casting low-rank CholeskyPivoted to Matrix" begin
    A = randn(1,8)
    B = A'A
    C = cholesky(B, Val(true), check=false)
    @test B ≈ Matrix(C)
end

@testset "CholeskyPivoted and Factorization" begin
    A = randn(8,8)
    B = A'A
    C = cholesky(B, Val(true), check=false)
    @test CholeskyPivoted{eltype(C)}(C) === C
    @test Factorization{eltype(C)}(C) === C
    @test Array(CholeskyPivoted{complex(eltype(C))}(C)) ≈ Array(cholesky(complex(B), Val(true), check=false))
    @test Array(Factorization{complex(eltype(C))}(C)) ≈ Array(cholesky(complex(B), Val(true), check=false))
    @test eltype(Factorization{complex(eltype(C))}(C)) == complex(eltype(C))
end

@testset "REPL printing of CholeskyPivoted" begin
    A = randn(8,8)
    B = A'A
    C = cholesky(B, Val(true), check=false)
    cholstring = sprint((t, s) -> show(t, "text/plain", s), C)
    rankstring = "$(C.uplo) factor with rank $(rank(C)):"
    factorstring = sprint((t, s) -> show(t, "text/plain", s), C.uplo == 'U' ? C.U : C.L)
    permstring   = sprint((t, s) -> show(t, "text/plain", s), C.p)
    @test cholstring == "$(summary(C))\n$rankstring\n$factorstring\npermutation:\n$permstring"
end

end # module TestCholesky