File: hessenberg.jl

package info (click to toggle)
julia 1.5.3%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 91,132 kB
  • sloc: lisp: 278,486; ansic: 60,186; cpp: 29,801; sh: 2,403; makefile: 1,998; pascal: 1,313; objc: 647; javascript: 516; asm: 226; python: 161; xml: 34
file content (136 lines) | stat: -rw-r--r-- 5,128 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
# This file is a part of Julia. License is MIT: https://julialang.org/license

module TestHessenberg

using Test, LinearAlgebra, Random

# for tuple tests below
≅(x,y) = all(p -> p[1] ≈ p[2], zip(x,y))

let n = 10
    Random.seed!(1234321)

    Areal  = randn(n,n)/2
    Aimg   = randn(n,n)/2
    b_ = randn(n)
    B_ = randn(n,3)

    # UpperHessenberg methods not covered by the tests below
    @testset "UpperHessenberg" begin
        A = Areal
        H = UpperHessenberg(A)
        AH = triu(A,-1)
        @test UpperHessenberg(H) === H
        @test parent(H) === A
        @test Matrix(H) == Array(H) == H == AH
        @test real(H) == real(AH)
        @test real(UpperHessenberg{ComplexF64}(A)) == H
        @test real(UpperHessenberg{ComplexF64}(H)) == H
        sim = similar(H, ComplexF64)
        @test sim isa UpperHessenberg{ComplexF64}
        @test size(sim) == size(H)
        for x in (2,2+3im)
            @test x*H == H*x == x*AH
            for op in (+,-)
                @test op(H,x*I) == op(AH,x*I) == op(op(x*I,H))
                @test op(H,x*I)*x == op(AH,x*I)*x == x*op(H,x*I)
            end
        end
        @test [H[i,j] for i=1:size(H,1), j=1:size(H,2)] == triu(A,-1)
        H1 = LinearAlgebra.fillstored!(copy(H), 1)
        @test H1 == triu(fill(1, n,n), -1)
        @test tril(H1.data,-2) == tril(H.data,-2)
        A2, H2 = copy(A), copy(H)
        A2[1:4,3]=H2[1:4,3]=1:4
        H2[5,3]=0
        @test H2 == triu(A2,-1)
        @test_throws ArgumentError H[5,3]=1
        Hc = UpperHessenberg(Areal + im .* Aimg)
        AHc = triu(Areal + im .* Aimg,-1)
        @test real(Hc) == real(AHc)
        @test imag(Hc) == imag(AHc)
        @test Array(copy(adjoint(Hc))) == adjoint(Array(Hc))
        @test Array(copy(transpose(Hc))) == transpose(Array(Hc))
        @test rmul!(copy(Hc), 2.0) == lmul!(2.0, copy(Hc))
        H = UpperHessenberg(Areal)
        @test Array(Hc + H) == Array(Hc) + Array(H)
        @test Array(Hc - H) == Array(Hc) - Array(H)
    end

    @testset for eltya in (Float32, Float64, ComplexF32, ComplexF64, Int), herm in (false, true)
        A_ = eltya == Int ?
                rand(1:7, n, n) :
                convert(Matrix{eltya}, eltya <: Complex ?
                    complex.(Areal, Aimg) :
                    Areal)
        A = herm ? Hermitian(A_ + A_') : A_

        H = hessenberg(A)
        @test Hessenberg(H) === H
        eltyh = eltype(H)
        @test size(H.Q, 1) == size(A, 1)
        @test size(H.Q, 2) == size(A, 2)
        @test size(H.Q) == size(A)
        @test size(H) == size(A)
        @test_throws ErrorException H.Z
        @test convert(Array, H) ≈ A
        @test (H.Q * H.H) * H.Q' ≈ A ≈ (Matrix(H.Q) * Matrix(H.H)) * Matrix(H.Q)'
        @test (H.Q' *A) * H.Q ≈ H.H
        #getindex for HessenbergQ
        @test H.Q[1,1] ≈ Array(H.Q)[1,1]

        # REPL show
        hessstring = sprint((t, s) -> show(t, "text/plain", s), H)
        qstring = sprint((t, s) -> show(t, "text/plain", s), H.Q)
        hstring = sprint((t, s) -> show(t, "text/plain", s), H.H)
        @test hessstring == "$(summary(H))\nQ factor:\n$qstring\nH factor:\n$hstring"

        #iterate
        q,h = H
        @test q == H.Q
        @test h == H.H

        @test convert(Array, 2 * H) ≈ 2 * A ≈ convert(Array, H * 2)
        @test convert(Array, H + 2I) ≈ A + 2I ≈ convert(Array, 2I + H)
        @test convert(Array, H + (2+4im)I) ≈ A + (2+4im)I ≈ convert(Array, (2+4im)I + H)
        @test convert(Array, H - 2I) ≈ A - 2I ≈ -convert(Array, 2I - H)
        @test convert(Array, -H) == -convert(Array, H)
        @test convert(Array, 2*(H + (2+4im)I)) ≈ 2A + (4+8im)I

        b = convert(Vector{eltype(H)}, b_)
        B = convert(Matrix{eltype(H)}, B_)
        @test H \ b ≈ A \ b ≈ H \ complex(b)
        @test H \ B ≈ A \ B ≈ H \ complex(B)
        @test (H - I) \ B ≈ (A - I) \ B
        @test (H - (3+4im)I) \ B ≈ (A - (3+4im)I) \ B
        @test b' / H ≈ b' / A ≈ complex.(b') / H
        @test B' / H ≈ B' / A ≈ complex(B') / H
        @test B' / (H - I) ≈ B' / (A - I)
        @test B' / (H - (3+4im)I) ≈ B' / (A - (3+4im)I)
        @test (H - (3+4im)I)' \ B ≈ (A - (3+4im)I)' \ B
        @test B' / (H - (3+4im)I)' ≈ B' / (A - (3+4im)I)'

        for shift in (0,1,3+4im)
            @test det(H + shift*I) ≈ det(A + shift*I)
            @test logabsdet(H + shift*I) ≅ logabsdet(A + shift*I)
        end

        HM = Matrix(h)
        @test dot(b, h, b) ≈ dot(h'b, b) ≈ dot(b, HM, b) ≈ dot(HM'b, b)
        c = b .+ 1
        @test dot(b, h, c) ≈ dot(h'b, c) ≈ dot(b, HM, c) ≈ dot(HM'b, c)
    end
end

# check logdet on a matrix that has a positive determinant
let A = [0.5 0.1 0.9 0.4; 0.9 0.7 0.5 0.4; 0.3 0.4 0.9 0.0; 0.4 0.0 0.0 0.5]
    @test logdet(hessenberg(A)) ≈ logdet(A) ≈ -3.5065578973199822
end

@testset "Base.propertynames" begin
    F =  hessenberg([4. 9. 7.; 4. 4. 1.; 4. 3. 2.])
    @test Base.propertynames(F) == (:Q, :H, :μ)
    @test Base.propertynames(F, true) == (:Q, :H, :μ, :τ, :factors, :uplo)
end

end # module TestHessenberg