1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
|
# This file is a part of Julia. License is MIT: https://julialang.org/license
module TestHessenberg
using Test, LinearAlgebra, Random
# for tuple tests below
≅(x,y) = all(p -> p[1] ≈ p[2], zip(x,y))
let n = 10
Random.seed!(1234321)
Areal = randn(n,n)/2
Aimg = randn(n,n)/2
b_ = randn(n)
B_ = randn(n,3)
# UpperHessenberg methods not covered by the tests below
@testset "UpperHessenberg" begin
A = Areal
H = UpperHessenberg(A)
AH = triu(A,-1)
@test UpperHessenberg(H) === H
@test parent(H) === A
@test Matrix(H) == Array(H) == H == AH
@test real(H) == real(AH)
@test real(UpperHessenberg{ComplexF64}(A)) == H
@test real(UpperHessenberg{ComplexF64}(H)) == H
sim = similar(H, ComplexF64)
@test sim isa UpperHessenberg{ComplexF64}
@test size(sim) == size(H)
for x in (2,2+3im)
@test x*H == H*x == x*AH
for op in (+,-)
@test op(H,x*I) == op(AH,x*I) == op(op(x*I,H))
@test op(H,x*I)*x == op(AH,x*I)*x == x*op(H,x*I)
end
end
@test [H[i,j] for i=1:size(H,1), j=1:size(H,2)] == triu(A,-1)
H1 = LinearAlgebra.fillstored!(copy(H), 1)
@test H1 == triu(fill(1, n,n), -1)
@test tril(H1.data,-2) == tril(H.data,-2)
A2, H2 = copy(A), copy(H)
A2[1:4,3]=H2[1:4,3]=1:4
H2[5,3]=0
@test H2 == triu(A2,-1)
@test_throws ArgumentError H[5,3]=1
Hc = UpperHessenberg(Areal + im .* Aimg)
AHc = triu(Areal + im .* Aimg,-1)
@test real(Hc) == real(AHc)
@test imag(Hc) == imag(AHc)
@test Array(copy(adjoint(Hc))) == adjoint(Array(Hc))
@test Array(copy(transpose(Hc))) == transpose(Array(Hc))
@test rmul!(copy(Hc), 2.0) == lmul!(2.0, copy(Hc))
H = UpperHessenberg(Areal)
@test Array(Hc + H) == Array(Hc) + Array(H)
@test Array(Hc - H) == Array(Hc) - Array(H)
end
@testset for eltya in (Float32, Float64, ComplexF32, ComplexF64, Int), herm in (false, true)
A_ = eltya == Int ?
rand(1:7, n, n) :
convert(Matrix{eltya}, eltya <: Complex ?
complex.(Areal, Aimg) :
Areal)
A = herm ? Hermitian(A_ + A_') : A_
H = hessenberg(A)
@test Hessenberg(H) === H
eltyh = eltype(H)
@test size(H.Q, 1) == size(A, 1)
@test size(H.Q, 2) == size(A, 2)
@test size(H.Q) == size(A)
@test size(H) == size(A)
@test_throws ErrorException H.Z
@test convert(Array, H) ≈ A
@test (H.Q * H.H) * H.Q' ≈ A ≈ (Matrix(H.Q) * Matrix(H.H)) * Matrix(H.Q)'
@test (H.Q' *A) * H.Q ≈ H.H
#getindex for HessenbergQ
@test H.Q[1,1] ≈ Array(H.Q)[1,1]
# REPL show
hessstring = sprint((t, s) -> show(t, "text/plain", s), H)
qstring = sprint((t, s) -> show(t, "text/plain", s), H.Q)
hstring = sprint((t, s) -> show(t, "text/plain", s), H.H)
@test hessstring == "$(summary(H))\nQ factor:\n$qstring\nH factor:\n$hstring"
#iterate
q,h = H
@test q == H.Q
@test h == H.H
@test convert(Array, 2 * H) ≈ 2 * A ≈ convert(Array, H * 2)
@test convert(Array, H + 2I) ≈ A + 2I ≈ convert(Array, 2I + H)
@test convert(Array, H + (2+4im)I) ≈ A + (2+4im)I ≈ convert(Array, (2+4im)I + H)
@test convert(Array, H - 2I) ≈ A - 2I ≈ -convert(Array, 2I - H)
@test convert(Array, -H) == -convert(Array, H)
@test convert(Array, 2*(H + (2+4im)I)) ≈ 2A + (4+8im)I
b = convert(Vector{eltype(H)}, b_)
B = convert(Matrix{eltype(H)}, B_)
@test H \ b ≈ A \ b ≈ H \ complex(b)
@test H \ B ≈ A \ B ≈ H \ complex(B)
@test (H - I) \ B ≈ (A - I) \ B
@test (H - (3+4im)I) \ B ≈ (A - (3+4im)I) \ B
@test b' / H ≈ b' / A ≈ complex.(b') / H
@test B' / H ≈ B' / A ≈ complex(B') / H
@test B' / (H - I) ≈ B' / (A - I)
@test B' / (H - (3+4im)I) ≈ B' / (A - (3+4im)I)
@test (H - (3+4im)I)' \ B ≈ (A - (3+4im)I)' \ B
@test B' / (H - (3+4im)I)' ≈ B' / (A - (3+4im)I)'
for shift in (0,1,3+4im)
@test det(H + shift*I) ≈ det(A + shift*I)
@test logabsdet(H + shift*I) ≅ logabsdet(A + shift*I)
end
HM = Matrix(h)
@test dot(b, h, b) ≈ dot(h'b, b) ≈ dot(b, HM, b) ≈ dot(HM'b, b)
c = b .+ 1
@test dot(b, h, c) ≈ dot(h'b, c) ≈ dot(b, HM, c) ≈ dot(HM'b, c)
end
end
# check logdet on a matrix that has a positive determinant
let A = [0.5 0.1 0.9 0.4; 0.9 0.7 0.5 0.4; 0.3 0.4 0.9 0.0; 0.4 0.0 0.0 0.5]
@test logdet(hessenberg(A)) ≈ logdet(A) ≈ -3.5065578973199822
end
@testset "Base.propertynames" begin
F = hessenberg([4. 9. 7.; 4. 4. 1.; 4. 3. 2.])
@test Base.propertynames(F) == (:Q, :H, :μ)
@test Base.propertynames(F, true) == (:Q, :H, :μ, :τ, :factors, :uplo)
end
end # module TestHessenberg
|