1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
|
# This file is a part of Julia. License is MIT: https://julialang.org/license
module TestStructuredBroadcast
using Test, LinearAlgebra
@testset "broadcast[!] over combinations of scalars, structured matrices, and dense vectors/matrices" begin
N = 10
s = rand()
fV = rand(N)
fA = rand(N, N)
Z = copy(fA)
D = Diagonal(rand(N))
B = Bidiagonal(rand(N), rand(N - 1), :U)
T = Tridiagonal(rand(N - 1), rand(N), rand(N - 1))
U = UpperTriangular(rand(N,N))
L = LowerTriangular(rand(N,N))
M = Matrix(rand(N,N))
structuredarrays = (D, B, T, U, L, M)
fstructuredarrays = map(Array, structuredarrays)
for (X, fX) in zip(structuredarrays, fstructuredarrays)
@test (Q = broadcast(sin, X); typeof(Q) == typeof(X) && Q == broadcast(sin, fX))
@test broadcast!(sin, Z, X) == broadcast(sin, fX)
@test (Q = broadcast(cos, X); Q isa Matrix && Q == broadcast(cos, fX))
@test broadcast!(cos, Z, X) == broadcast(cos, fX)
@test (Q = broadcast(*, s, X); typeof(Q) == typeof(X) && Q == broadcast(*, s, fX))
@test broadcast!(*, Z, s, X) == broadcast(*, s, fX)
@test (Q = broadcast(+, fV, fA, X); Q isa Matrix && Q == broadcast(+, fV, fA, fX))
@test broadcast!(+, Z, fV, fA, X) == broadcast(+, fV, fA, fX)
@test (Q = broadcast(*, s, fV, fA, X); Q isa Matrix && Q == broadcast(*, s, fV, fA, fX))
@test broadcast!(*, Z, s, fV, fA, X) == broadcast(*, s, fV, fA, fX)
@test X .* 2.0 == X .* (2.0,) == fX .* 2.0
@test X .* 2.0 isa typeof(X)
@test X .* (2.0,) isa typeof(X)
@test isequal(X .* Inf, fX .* Inf)
two = 2
@test X .^ 2 == X .^ (2,) == fX .^ 2 == X .^ two
@test X .^ 2 isa typeof(X)
@test X .^ (2,) isa typeof(X)
@test X .^ two isa typeof(X)
@test X .^ 0 == fX .^ 0
@test X .^ -1 == fX .^ -1
for (Y, fY) in zip(structuredarrays, fstructuredarrays)
@test broadcast(+, X, Y) == broadcast(+, fX, fY)
@test broadcast!(+, Z, X, Y) == broadcast(+, fX, fY)
@test broadcast(*, X, Y) == broadcast(*, fX, fY)
@test broadcast!(*, Z, X, Y) == broadcast(*, fX, fY)
end
end
diagonals = (D, B, T)
fdiagonals = map(Array, diagonals)
for (X, fX) in zip(diagonals, fdiagonals)
for (Y, fY) in zip(diagonals, fdiagonals)
@test broadcast(+, X, Y)::Union{Diagonal,Bidiagonal,Tridiagonal} == broadcast(+, fX, fY)
@test broadcast!(+, Z, X, Y) == broadcast(+, fX, fY)
@test broadcast(*, X, Y)::Union{Diagonal,Bidiagonal,Tridiagonal} == broadcast(*, fX, fY)
@test broadcast!(*, Z, X, Y) == broadcast(*, fX, fY)
end
end
end
@testset "broadcast! where the destination is a structured matrix" begin
N = 5
A = rand(N, N)
sA = A + copy(A')
D = Diagonal(rand(N))
Bu = Bidiagonal(rand(N), rand(N - 1), :U)
Bl = Bidiagonal(rand(N), rand(N - 1), :L)
T = Tridiagonal(rand(N - 1), rand(N), rand(N - 1))
◣ = LowerTriangular(rand(N,N))
◥ = UpperTriangular(rand(N,N))
M = Matrix(rand(N,N))
@test broadcast!(sin, copy(D), D) == Diagonal(sin.(D))
@test broadcast!(sin, copy(Bu), Bu) == Bidiagonal(sin.(Bu), :U)
@test broadcast!(sin, copy(Bl), Bl) == Bidiagonal(sin.(Bl), :L)
@test broadcast!(sin, copy(T), T) == Tridiagonal(sin.(T))
@test broadcast!(sin, copy(◣), ◣) == LowerTriangular(sin.(◣))
@test broadcast!(sin, copy(◥), ◥) == UpperTriangular(sin.(◥))
@test broadcast!(sin, copy(M), M) == Matrix(sin.(M))
@test broadcast!(*, copy(D), D, A) == Diagonal(broadcast(*, D, A))
@test broadcast!(*, copy(Bu), Bu, A) == Bidiagonal(broadcast(*, Bu, A), :U)
@test broadcast!(*, copy(Bl), Bl, A) == Bidiagonal(broadcast(*, Bl, A), :L)
@test broadcast!(*, copy(T), T, A) == Tridiagonal(broadcast(*, T, A))
@test broadcast!(*, copy(◣), ◣, A) == LowerTriangular(broadcast(*, ◣, A))
@test broadcast!(*, copy(◥), ◥, A) == UpperTriangular(broadcast(*, ◥, A))
@test broadcast!(*, copy(M), M, A) == Matrix(broadcast(*, M, A))
@test_throws ArgumentError broadcast!(cos, copy(D), D) == Diagonal(sin.(D))
@test_throws ArgumentError broadcast!(cos, copy(Bu), Bu) == Bidiagonal(sin.(Bu), :U)
@test_throws ArgumentError broadcast!(cos, copy(Bl), Bl) == Bidiagonal(sin.(Bl), :L)
@test_throws ArgumentError broadcast!(cos, copy(T), T) == Tridiagonal(sin.(T))
@test_throws ArgumentError broadcast!(cos, copy(◣), ◣) == LowerTriangular(sin.(◣))
@test_throws ArgumentError broadcast!(cos, copy(◥), ◥) == UpperTriangular(sin.(◥))
@test_throws ArgumentError broadcast!(+, copy(D), D, A) == Diagonal(broadcast(*, D, A))
@test_throws ArgumentError broadcast!(+, copy(Bu), Bu, A) == Bidiagonal(broadcast(*, Bu, A), :U)
@test_throws ArgumentError broadcast!(+, copy(Bl), Bl, A) == Bidiagonal(broadcast(*, Bl, A), :L)
@test_throws ArgumentError broadcast!(+, copy(T), T, A) == Tridiagonal(broadcast(*, T, A))
@test_throws ArgumentError broadcast!(+, copy(◣), ◣, A) == LowerTriangular(broadcast(*, ◣, A))
@test_throws ArgumentError broadcast!(+, copy(◥), ◥, A) == UpperTriangular(broadcast(*, ◥, A))
end
@testset "map[!] over combinations of structured matrices" begin
N = 10
fA = rand(N, N)
Z = copy(fA)
D = Diagonal(rand(N))
B = Bidiagonal(rand(N), rand(N - 1), :U)
T = Tridiagonal(rand(N - 1), rand(N), rand(N - 1))
U = UpperTriangular(rand(N,N))
L = LowerTriangular(rand(N,N))
M = Matrix(rand(N,N))
structuredarrays = (M, D, B, T, U, L)
fstructuredarrays = map(Array, structuredarrays)
for (X, fX) in zip(structuredarrays, fstructuredarrays)
@test (Q = map(sin, X); typeof(Q) == typeof(X) && Q == map(sin, fX))
@test map!(sin, Z, X) == map(sin, fX)
@test (Q = map(cos, X); Q isa Matrix && Q == map(cos, fX))
@test map!(cos, Z, X) == map(cos, fX)
@test (Q = map(+, fA, X); Q isa Matrix && Q == map(+, fA, fX))
@test map!(+, Z, fA, X) == map(+, fA, fX)
for (Y, fY) in zip(structuredarrays, fstructuredarrays)
@test map(+, X, Y) == map(+, fX, fY)
@test map!(+, Z, X, Y) == map(+, fX, fY)
@test map(*, X, Y) == map(*, fX, fY)
@test map!(*, Z, X, Y) == map(*, fX, fY)
@test map(+, X, fA, Y) == map(+, fX, fA, fY)
@test map!(+, Z, X, fA, Y) == map(+, fX, fA, fY)
end
end
diagonals = (D, B, T)
fdiagonals = map(Array, diagonals)
for (X, fX) in zip(diagonals, fdiagonals)
for (Y, fY) in zip(diagonals, fdiagonals)
@test map(+, X, Y)::Union{Diagonal,Bidiagonal,Tridiagonal} == broadcast(+, fX, fY)
@test map!(+, Z, X, Y) == broadcast(+, fX, fY)
@test map(*, X, Y)::Union{Diagonal,Bidiagonal,Tridiagonal} == broadcast(*, fX, fY)
@test map!(*, Z, X, Y) == broadcast(*, fX, fY)
end
end
end
@testset "Issue #33397" begin
N = 5
U = UpperTriangular(rand(N, N))
L = LowerTriangular(rand(N, N))
UnitU = UnitUpperTriangular(rand(N, N))
UnitL = UnitLowerTriangular(rand(N, N))
D = Diagonal(rand(N))
@test U .+ L .+ D == U + L + D
@test L .+ U .+ D == L + U + D
@test UnitU .+ UnitL .+ D == UnitU + UnitL + D
@test UnitL .+ UnitU .+ D == UnitL + UnitU + D
@test U .+ UnitL .+ D == U + UnitL + D
@test L .+ UnitU .+ D == L + UnitU + D
@test L .+ U .+ L .+ U == L + U + L + U
@test U .+ L .+ U .+ L == U + L + U + L
@test L .+ UnitL .+ UnitU .+ U .+ D == L + UnitL + UnitU + U + D
@test L .+ U .+ D .+ D .+ D .+ D == L + U + D + D + D + D
end
@testset "Broadcast Returned Types" begin
# Issue 35245
N = 3
dV = rand(N)
evu = rand(N-1)
evl = rand(N-1)
Bu = Bidiagonal(dV, evu, :U)
Bl = Bidiagonal(dV, evl, :L)
T = Tridiagonal(evl, dV * 2, evu)
@test typeof(Bu .+ Bl) <: Tridiagonal
@test typeof(Bl .+ Bu) <: Tridiagonal
@test typeof(Bu .+ Bu) <: Bidiagonal
@test typeof(Bl .+ Bl) <: Bidiagonal
@test Bu .+ Bl == T
@test Bl .+ Bu == T
@test Bu .+ Bu == Bidiagonal(dV * 2, evu * 2, :U)
@test Bl .+ Bl == Bidiagonal(dV * 2, evl * 2, :L)
@test typeof(Bu .* Bl) <: Tridiagonal
@test typeof(Bl .* Bu) <: Tridiagonal
@test typeof(Bu .* Bu) <: Bidiagonal
@test typeof(Bl .* Bl) <: Bidiagonal
@test Bu .* Bl == Tridiagonal(zeros(N-1), dV .* dV, zeros(N-1))
@test Bl .* Bu == Tridiagonal(zeros(N-1), dV .* dV, zeros(N-1))
@test Bu .* Bu == Bidiagonal(dV .* dV, evu .* evu, :U)
@test Bl .* Bl == Bidiagonal(dV .* dV, evl .* evl, :L)
Bu2 = Bu .* 2
@test typeof(Bu2) <: Bidiagonal && Bu2.uplo == 'U'
Bu2 = 2 .* Bu
@test typeof(Bu2) <: Bidiagonal && Bu2.uplo == 'U'
Bl2 = Bl .* 2
@test typeof(Bl2) <: Bidiagonal && Bl2.uplo == 'L'
Bu2 = 2 .* Bl
@test typeof(Bl2) <: Bidiagonal && Bl2.uplo == 'L'
# Example of Nested Brodacasts
tmp = (1 .* 2) .* (Bidiagonal(1:3, 1:2, 'U') .* (3 .* 4)) .* (5 .* Bidiagonal(1:3, 1:2, 'L'))
@test typeof(tmp) <: Tridiagonal
end
end
|