1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
|
# This file is a part of Julia. License is MIT: https://julialang.org/license
module TestUniformscaling
using Test, LinearAlgebra, Random, SparseArrays
const BASE_TEST_PATH = joinpath(Sys.BINDIR, "..", "share", "julia", "test")
isdefined(Main, :Quaternions) || @eval Main include(joinpath($(BASE_TEST_PATH), "testhelpers", "Quaternions.jl"))
using .Main.Quaternions
Random.seed!(123)
@testset "basic functions" begin
@test I[1,1] == 1 # getindex
@test I[1,2] == 0 # getindex
@test I === I' # transpose
@test ndims(I) == 2
@test one(UniformScaling{Float32}) == UniformScaling(one(Float32))
@test zero(UniformScaling{Float32}) == UniformScaling(zero(Float32))
@test eltype(one(UniformScaling{Float32})) == Float32
@test zero(UniformScaling(rand(ComplexF64))) == zero(UniformScaling{ComplexF64})
@test one(UniformScaling(rand(ComplexF64))) == one(UniformScaling{ComplexF64})
@test eltype(one(UniformScaling(rand(ComplexF64)))) == ComplexF64
@test -one(UniformScaling(2)) == UniformScaling(-1)
@test sparse(3I,4,5) == sparse(1:4, 1:4, 3, 4, 5)
@test sparse(3I,5,4) == sparse(1:4, 1:4, 3, 5, 4)
@test opnorm(UniformScaling(1+im)) ≈ sqrt(2)
end
@testset "sqrt, exp, log, and trigonometric functions" begin
# convert to a dense matrix with random size
M(J) = (N = rand(1:10); Matrix(J, N, N))
# on complex plane
J = UniformScaling(randn(ComplexF64))
for f in ( exp, log,
sqrt,
sin, cos, tan,
asin, acos, atan,
csc, sec, cot,
acsc, asec, acot,
sinh, cosh, tanh,
asinh, acosh, atanh,
csch, sech, coth,
acsch, asech, acoth )
@test f(J) ≈ f(M(J))
end
# on real axis
for (λ, fs) in (
# functions defined for x ∈ ℝ
(()->randn(), (exp,
sin, cos, tan,
csc, sec, cot,
atan, acot,
sinh, cosh, tanh,
csch, sech, coth,
asinh, acsch)),
# functions defined for x ≥ 0
(()->abs(randn()), (log, sqrt)),
# functions defined for -1 ≤ x ≤ 1
(()->2rand()-1, (asin, acos, atanh)),
# functions defined for x ≤ -1 or x ≥ 1
(()->1/(2rand()-1), (acsc, asec, acoth)),
# functions defined for 0 ≤ x ≤ 1
(()->rand(), (asech,)),
# functions defined for x ≥ 1
(()->1/rand(), (acosh,))
)
for f in fs
J = UniformScaling(λ())
@test f(J) ≈ f(M(J))
end
end
end
@testset "conjugation of UniformScaling" begin
@test conj(UniformScaling(1))::UniformScaling{Int} == UniformScaling(1)
@test conj(UniformScaling(1.0))::UniformScaling{Float64} == UniformScaling(1.0)
@test conj(UniformScaling(1+1im))::UniformScaling{Complex{Int}} == UniformScaling(1-1im)
@test conj(UniformScaling(1.0+1.0im))::UniformScaling{Complex{Float64}} == UniformScaling(1.0-1.0im)
end
@testset "isdiag, istriu, istril, issymmetric, ishermitian, isposdef, isapprox" begin
@test isdiag(I)
@test istriu(I)
@test istril(I)
@test issymmetric(I)
@test issymmetric(UniformScaling(complex(1.0,1.0)))
@test ishermitian(I)
@test !ishermitian(UniformScaling(complex(1.0,1.0)))
@test isposdef(UniformScaling(rand()))
@test !isposdef(UniformScaling(-rand()))
@test !isposdef(UniformScaling(randn(ComplexF64)))
@test !isposdef(UniformScaling(NaN))
@test isposdef(I)
@test !isposdef(-I)
@test isposdef(UniformScaling(complex(1.0, 0.0)))
@test !isposdef(UniformScaling(complex(1.0, 1.0)))
@test UniformScaling(4.00000000000001) ≈ UniformScaling(4.0)
@test UniformScaling(4.32) ≈ UniformScaling(4.3) rtol=0.1 atol=0.01
@test UniformScaling(4.32) ≈ 4.3 * [1 0; 0 1] rtol=0.1 atol=0.01
@test UniformScaling(4.32) ≈ 4.3 * [1 0; 0 1] rtol=0.1 atol=0.01 norm=norm
@test 4.3 * [1 0; 0 1] ≈ UniformScaling(4.32) rtol=0.1 atol=0.01
@test [4.3201 0.002;0.001 4.32009] ≈ UniformScaling(4.32) rtol=0.1 atol=0.
@test UniformScaling(4.32) ≉ fill(4.3,2,2) rtol=0.1 atol=0.01
@test UniformScaling(4.32) ≈ 4.32 * [1 0; 0 1]
end
@testset "arithmetic with Number" begin
α = randn()
@test α + I == α + 1
@test I + α == α + 1
@test α - I == α - 1
@test I - α == 1 - α
@test α .* UniformScaling(1.0) == UniformScaling(1.0) .* α
@test UniformScaling(α)./α == UniformScaling(1.0)
@test α.\UniformScaling(α) == UniformScaling(1.0)
@test α * UniformScaling(1.0) == UniformScaling(1.0) * α
@test UniformScaling(α)/α == UniformScaling(1.0)
@test (2I)^α == (2I).^α == (2^α)I
β = rand()
@test (α*I)^2 == UniformScaling(α^2)
@test (α*I)^(-2) == UniformScaling(α^(-2))
@test (α*I)^(.5) == UniformScaling(α^(.5))
@test (α*I)^β == UniformScaling(α^β)
@test (α * I) .^ 2 == UniformScaling(α^2)
@test (α * I) .^ β == UniformScaling(α^β)
end
@testset "tr, det and logdet" begin
for T in (Int, Float64, ComplexF64, Bool)
@test tr(UniformScaling(zero(T))) === zero(T)
end
@test_throws ArgumentError tr(UniformScaling(1))
@test det(I) === true
@test det(1.0I) === 1.0
@test det(0I) === 0
@test det(0.0I) === 0.0
@test logdet(I) == 0
@test_throws ArgumentError det(2I)
end
@test copy(UniformScaling(one(Float64))) == UniformScaling(one(Float64))
@test sprint(show,MIME"text/plain"(),UniformScaling(one(ComplexF64))) == "LinearAlgebra.UniformScaling{Complex{Float64}}\n(1.0 + 0.0im)*I"
@test sprint(show,MIME"text/plain"(),UniformScaling(one(Float32))) == "LinearAlgebra.UniformScaling{Float32}\n1.0*I"
@test sprint(show,UniformScaling(one(ComplexF64))) == "LinearAlgebra.UniformScaling{Complex{Float64}}(1.0 + 0.0im)"
@test sprint(show,UniformScaling(one(Float32))) == "LinearAlgebra.UniformScaling{Float32}(1.0f0)"
let
λ = complex(randn(),randn())
J = UniformScaling(λ)
@testset "transpose, conj, inv, pinv, cond" begin
@test ndims(J) == 2
@test transpose(J) == J
@test J * [1 0; 0 1] == conj(*(adjoint(J), [1 0; 0 1])) # ctranpose (and A(c)_mul_B)
@test I + I === UniformScaling(2) # +
@test inv(I) == I
@test inv(J) == UniformScaling(inv(λ))
@test pinv(J) == UniformScaling(inv(λ))
@test @inferred(pinv(0.0I)) == 0.0I
@test @inferred(pinv(0I)) == 0.0I
@test @inferred(pinv(false*I)) == 0.0I
@test @inferred(pinv(0im*I)) == 0im*I
@test cond(I) == 1
@test cond(J) == (λ ≠ zero(λ) ? one(real(λ)) : oftype(real(λ), Inf))
end
@testset "real, imag, reim" begin
@test real(J) == UniformScaling(real(λ))
@test imag(J) == UniformScaling(imag(λ))
@test reim(J) == (UniformScaling(real(λ)), UniformScaling(imag(λ)))
end
@testset "copyto!" begin
A = Matrix{Int}(undef, (3,3))
@test copyto!(A, I) == one(A)
B = Matrix{ComplexF64}(undef, (1,2))
@test copyto!(B, J) == [λ zero(λ)]
end
@testset "binary ops with vectors" begin
v = complex.(randn(3), randn(3))
# As shown in #20423@GitHub, vector acts like x1 matrix when participating in linear algebra
@test v * J ≈ v * λ
@test v' * J ≈ v' * λ
@test J * v ≈ λ * v
@test J * v' ≈ λ * v'
@test v / J ≈ v / λ
@test v' / J ≈ v' / λ
@test J \ v ≈ λ \ v
@test J \ v' ≈ λ \ v'
end
@testset "binary ops with matrices" begin
B = bitrand(2, 2)
@test B + I == B + Matrix(I, size(B))
@test I + B == B + Matrix(I, size(B))
AA = randn(2, 2)
for SS in (sprandn(3,3, 0.5), sparse(Int(1)I, 3, 3))
for (A, S) in ((AA, SS), (view(AA, 1:2, 1:2), view(SS, 1:3, 1:3)))
I22 = Matrix(I, size(A))
@test @inferred(A + I) == A + I22
@test @inferred(I + A) == A + I22
@test @inferred(I - I) === UniformScaling(0)
@test @inferred(B - I) == B - I22
@test @inferred(I - B) == I22 - B
@test @inferred(A - I) == A - I22
@test @inferred(I - A) == I22 - A
@test @inferred(I*J) === UniformScaling(λ)
@test @inferred(B*J) == B*λ
@test @inferred(J*B) == B*λ
@test @inferred(I*A) !== A # Don't alias
@test @inferred(I*S) !== S # Don't alias
@test @inferred(A*I) !== A # Don't alias
@test @inferred(S*I) !== S # Don't alias
@test @inferred(S*J) == S*λ
@test @inferred(J*S) == S*λ
@test @inferred(A*J) == A*λ
@test @inferred(J*A) == A*λ
@test @inferred(J*fill(1, 3)) == fill(λ, 3)
@test @inferred(λ*J) === UniformScaling(λ*J.λ)
@test @inferred(J*λ) === UniformScaling(λ*J.λ)
@test @inferred(J/I) === J
@test @inferred(I/A) == inv(A)
@test @inferred(A/I) == A
@test @inferred(I/λ) === UniformScaling(1/λ)
@test @inferred(I\J) === J
if isa(A, Array)
T = LowerTriangular(randn(3,3))
else
T = LowerTriangular(view(randn(3,3), 1:3, 1:3))
end
@test @inferred(T + J) == Array(T) + J
@test @inferred(J + T) == J + Array(T)
@test @inferred(T - J) == Array(T) - J
@test @inferred(J - T) == J - Array(T)
@test @inferred(T\I) == inv(T)
if isa(A, Array)
T = LinearAlgebra.UnitLowerTriangular(randn(3,3))
else
T = LinearAlgebra.UnitLowerTriangular(view(randn(3,3), 1:3, 1:3))
end
@test @inferred(T + J) == Array(T) + J
@test @inferred(J + T) == J + Array(T)
@test @inferred(T - J) == Array(T) - J
@test @inferred(J - T) == J - Array(T)
@test @inferred(T\I) == inv(T)
if isa(A, Array)
T = UpperTriangular(randn(3,3))
else
T = UpperTriangular(view(randn(3,3), 1:3, 1:3))
end
@test @inferred(T + J) == Array(T) + J
@test @inferred(J + T) == J + Array(T)
@test @inferred(T - J) == Array(T) - J
@test @inferred(J - T) == J - Array(T)
@test @inferred(T\I) == inv(T)
if isa(A, Array)
T = LinearAlgebra.UnitUpperTriangular(randn(3,3))
else
T = LinearAlgebra.UnitUpperTriangular(view(randn(3,3), 1:3, 1:3))
end
@test @inferred(T + J) == Array(T) + J
@test @inferred(J + T) == J + Array(T)
@test @inferred(T - J) == Array(T) - J
@test @inferred(J - T) == J - Array(T)
@test @inferred(T\I) == inv(T)
for elty in (Float64, ComplexF64)
if isa(A, Array)
T = Hermitian(randn(elty, 3,3))
else
T = Hermitian(view(randn(elty, 3,3), 1:3, 1:3))
end
@test @inferred(T + J) == Array(T) + J
@test @inferred(J + T) == J + Array(T)
@test @inferred(T - J) == Array(T) - J
@test @inferred(J - T) == J - Array(T)
end
@test @inferred(I\A) == A
@test @inferred(A\I) == inv(A)
@test @inferred(λ\I) === UniformScaling(1/λ)
end
end
end
end
@testset "hcat and vcat" begin
@test_throws ArgumentError hcat(I)
@test_throws ArgumentError [I I]
@test_throws ArgumentError vcat(I)
@test_throws ArgumentError [I; I]
@test_throws ArgumentError [I I; I]
for T in (Matrix, SparseMatrixCSC)
A = T(rand(3,4))
B = T(rand(3,3))
C = T(rand(0,3))
D = T(rand(2,0))
@test (hcat(A, 2I))::T == hcat(A, Matrix(2I, 3, 3))
@test (vcat(A, 2I))::T == vcat(A, Matrix(2I, 4, 4))
@test (hcat(C, 2I))::T == C
@test (vcat(D, 2I))::T == D
@test (hcat(I, 3I, A, 2I))::T == hcat(Matrix(I, 3, 3), Matrix(3I, 3, 3), A, Matrix(2I, 3, 3))
@test (vcat(I, 3I, A, 2I))::T == vcat(Matrix(I, 4, 4), Matrix(3I, 4, 4), A, Matrix(2I, 4, 4))
@test (hvcat((2,1,2), B, 2I, I, 3I, 4I))::T ==
hvcat((2,1,2), B, Matrix(2I, 3, 3), Matrix(I, 6, 6), Matrix(3I, 3, 3), Matrix(4I, 3, 3))
@test hvcat((3,1), C, C, I, 3I)::T == hvcat((2,1), C, C, Matrix(3I, 6,6))
@test hvcat((2,2,2), I, 2I, 3I, 4I, C, C)::T ==
hvcat((2,2,2), Matrix(I, 3, 3), Matrix(2I, 3,3 ), Matrix(3I, 3,3), Matrix(4I, 3,3), C, C)
@test hvcat((2,2,4), C, C, I, 2I, 3I, 4I, 5I, D)::T ==
hvcat((2,2,4), C, C, Matrix(I, 3, 3), Matrix(2I,3,3),
Matrix(3I, 2, 2), Matrix(4I, 2, 2), Matrix(5I,2,2), D)
@test (hvcat((2,3,2), B, 2I, C, C, I, 3I, 4I))::T ==
hvcat((2,2,2), B, Matrix(2I, 3, 3), C, C, Matrix(3I, 3, 3), Matrix(4I, 3, 3))
@test hvcat((3,2,1), C, C, I, B ,3I, 2I)::T ==
hvcat((2,2,1), C, C, B, Matrix(3I,3,3), Matrix(2I,6,6))
end
end
@testset "Matrix/Array construction from UniformScaling" begin
I2_33 = [2 0 0; 0 2 0; 0 0 2]
I2_34 = [2 0 0 0; 0 2 0 0; 0 0 2 0]
I2_43 = [2 0 0; 0 2 0; 0 0 2; 0 0 0]
for ArrType in (Matrix, Array)
@test ArrType(2I, 3, 3)::Matrix{Int} == I2_33
@test ArrType(2I, 3, 4)::Matrix{Int} == I2_34
@test ArrType(2I, 4, 3)::Matrix{Int} == I2_43
@test ArrType(2.0I, 3, 3)::Matrix{Float64} == I2_33
@test ArrType{Real}(2I, 3, 3)::Matrix{Real} == I2_33
@test ArrType{Float64}(2I, 3, 3)::Matrix{Float64} == I2_33
end
end
@testset "Diagonal construction from UniformScaling" begin
@test Diagonal(2I, 3)::Diagonal{Int} == Matrix(2I, 3, 3)
@test Diagonal(2.0I, 3)::Diagonal{Float64} == Matrix(2I, 3, 3)
@test Diagonal{Real}(2I, 3)::Diagonal{Real} == Matrix(2I, 3, 3)
@test Diagonal{Float64}(2I, 3)::Diagonal{Float64} == Matrix(2I, 3, 3)
end
@testset "equality comparison of matrices with UniformScaling" begin
# AbstractMatrix methods
diagI = Diagonal(fill(1, 3))
rdiagI = view(diagI, 1:2, 1:3)
bidiag = Bidiagonal(fill(2, 3), fill(2, 2), :U)
@test diagI == I == diagI # test isone(I) path / equality
@test 2diagI != I != 2diagI # test isone(I) path / inequality
@test 0diagI == 0I == 0diagI # test iszero(I) path / equality
@test 2diagI != 0I != 2diagI # test iszero(I) path / inequality
@test 2diagI == 2I == 2diagI # test generic path / equality
@test 0diagI != 2I != 0diagI # test generic path / inequality on diag
@test bidiag != 2I != bidiag # test generic path / inequality off diag
@test rdiagI != I != rdiagI # test square matrix check
# StridedMatrix specialization
denseI = [1 0 0; 0 1 0; 0 0 1]
rdenseI = [1 0 0 0; 0 1 0 0; 0 0 1 0]
alltwos = fill(2, (3, 3))
@test denseI == I == denseI # test isone(I) path / equality
@test 2denseI != I != 2denseI # test isone(I) path / inequality
@test 0denseI == 0I == 0denseI # test iszero(I) path / equality
@test 2denseI != 0I != 2denseI # test iszero(I) path / inequality
@test 2denseI == 2I == 2denseI # test generic path / equality
@test 0denseI != 2I != 0denseI # test generic path / inequality on diag
@test alltwos != 2I != alltwos # test generic path / inequality off diag
@test rdenseI != I != rdenseI # test square matrix check
end
@testset "operations involving I should preserve eltype" begin
@test isa(Int8(1) + I, Int8)
@test isa(Float16(1) + I, Float16)
@test eltype(Int8(1)I) == Int8
@test eltype(Float16(1)I) == Float16
@test eltype(fill(Int8(1), 2, 2)I) == Int8
@test eltype(fill(Float16(1), 2, 2)I) == Float16
@test eltype(fill(Int8(1), 2, 2) + I) == Int8
@test eltype(fill(Float16(1), 2, 2) + I) == Float16
end
@testset "test that UniformScaling is applied correctly for matrices of matrices" begin
LL = Bidiagonal(fill(0*I, 3), fill(1*I, 2), :L)
@test (I - LL')\[[0], [0], [1]] == (I - LL)'\[[0], [0], [1]] == fill([1], 3)
end
# Ensure broadcasting of I is an error (could be made to work in the future)
@testset "broadcasting of I (#23197)" begin
@test_throws MethodError I .+ 1
@test_throws MethodError I .+ [1 1; 1 1]
end
@testset "in-place mul! and div! methods" begin
J = randn()*I
A = randn(4, 3)
C = similar(A)
target_mul = J * A
target_div = A / J
@test mul!(C, J, A) == target_mul
@test mul!(C, A, J) == target_mul
@test lmul!(J, copyto!(C, A)) == target_mul
@test rmul!(copyto!(C, A), J) == target_mul
@test ldiv!(J, copyto!(C, A)) == target_div
@test ldiv!(C, J, A) == target_div
@test rdiv!(copyto!(C, A), J) == target_div
A = randn(4, 3)
C = randn!(similar(A))
alpha = randn()
beta = randn()
target = J * A * alpha + C * beta
@test mul!(copy(C), J, A, alpha, beta) ≈ target
@test mul!(copy(C), A, J, alpha, beta) ≈ target
end
@testset "Construct Diagonal from UniformScaling" begin
@test size(I(3)) === (3,3)
@test I(3) isa Diagonal
@test I(3) == [1 0 0; 0 1 0; 0 0 1]
end
@testset "generalized dot" begin
x = rand(-10:10, 3)
y = rand(-10:10, 3)
λ = rand(-10:10)
J = UniformScaling(λ)
@test dot(x, J, y) == λ*dot(x, y)
λ = Quaternion(0.44567, 0.755871, 0.882548, 0.423612)
x, y = Quaternion(rand(4)...), Quaternion(rand(4)...)
@test dot([x], λ*I, [y]) ≈ dot(x, λ, y) ≈ dot(x, λ*y)
end
@testset "Factorization solutions" begin
J = complex(randn(),randn()) * I
qrp = A -> qr(A, Val(true))
# thin matrices
X = randn(3,2)
Z = pinv(X)
for fac in (qr,qrp,svd)
F = fac(X)
@test @inferred(F \ I) ≈ Z
@test @inferred(F \ J) ≈ Z * J
end
# square matrices
X = randn(3,3)
X = X'X + rand()I # make positive definite for cholesky
Z = pinv(X)
for fac in (bunchkaufman,cholesky,lu,qr,qrp,svd)
F = fac(X)
@test @inferred(F \ I) ≈ Z
@test @inferred(F \ J) ≈ Z * J
end
# fat matrices - only rank-revealing variants
X = randn(2,3)
Z = pinv(X)
for fac in (qrp,svd)
F = fac(X)
@test @inferred(F \ I) ≈ Z
@test @inferred(F \ J) ≈ Z * J
end
end
end # module TestUniformscaling
|