File: uniformscaling.jl

package info (click to toggle)
julia 1.5.3%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 91,132 kB
  • sloc: lisp: 278,486; ansic: 60,186; cpp: 29,801; sh: 2,403; makefile: 1,998; pascal: 1,313; objc: 647; javascript: 516; asm: 226; python: 161; xml: 34
file content (472 lines) | stat: -rw-r--r-- 19,059 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
# This file is a part of Julia. License is MIT: https://julialang.org/license

module TestUniformscaling

using Test, LinearAlgebra, Random, SparseArrays

const BASE_TEST_PATH = joinpath(Sys.BINDIR, "..", "share", "julia", "test")
isdefined(Main, :Quaternions) || @eval Main include(joinpath($(BASE_TEST_PATH), "testhelpers", "Quaternions.jl"))
using .Main.Quaternions

Random.seed!(123)

@testset "basic functions" begin
    @test I[1,1] == 1 # getindex
    @test I[1,2] == 0 # getindex
    @test I === I' # transpose
    @test ndims(I) == 2
    @test one(UniformScaling{Float32}) == UniformScaling(one(Float32))
    @test zero(UniformScaling{Float32}) == UniformScaling(zero(Float32))
    @test eltype(one(UniformScaling{Float32})) == Float32
    @test zero(UniformScaling(rand(ComplexF64))) == zero(UniformScaling{ComplexF64})
    @test one(UniformScaling(rand(ComplexF64))) == one(UniformScaling{ComplexF64})
    @test eltype(one(UniformScaling(rand(ComplexF64)))) == ComplexF64
    @test -one(UniformScaling(2)) == UniformScaling(-1)
    @test sparse(3I,4,5) == sparse(1:4, 1:4, 3, 4, 5)
    @test sparse(3I,5,4) == sparse(1:4, 1:4, 3, 5, 4)
    @test opnorm(UniformScaling(1+im)) ≈ sqrt(2)
end

@testset "sqrt, exp, log, and trigonometric functions" begin
    # convert to a dense matrix with random size
    M(J) = (N = rand(1:10); Matrix(J, N, N))

    # on complex plane
    J = UniformScaling(randn(ComplexF64))
    for f in ( exp,   log,
               sqrt,
               sin,   cos,   tan,
               asin,  acos,  atan,
               csc,   sec,   cot,
               acsc,  asec,  acot,
               sinh,  cosh,  tanh,
               asinh, acosh, atanh,
               csch,  sech,  coth,
               acsch, asech, acoth )
        @test f(J) ≈ f(M(J))
    end

    # on real axis
    for (λ, fs) in (
        # functions defined for x ∈ ℝ
        (()->randn(),           (exp,
                                 sin,   cos,   tan,
                                 csc,   sec,   cot,
                                 atan,  acot,
                                 sinh,  cosh,  tanh,
                                 csch,  sech,  coth,
                                 asinh, acsch)),
        # functions defined for x ≥ 0
        (()->abs(randn()),      (log,   sqrt)),
        # functions defined for -1 ≤ x ≤ 1
        (()->2rand()-1,         (asin,  acos,  atanh)),
        # functions defined for x ≤ -1 or x ≥ 1
        (()->1/(2rand()-1),     (acsc,  asec,  acoth)),
        # functions defined for 0 ≤ x ≤ 1
        (()->rand(),            (asech,)),
        # functions defined for x ≥ 1
        (()->1/rand(),          (acosh,))
    )
        for f in fs
            J = UniformScaling(λ())
            @test f(J) ≈ f(M(J))
        end
    end
end

@testset "conjugation of UniformScaling" begin
    @test conj(UniformScaling(1))::UniformScaling{Int} == UniformScaling(1)
    @test conj(UniformScaling(1.0))::UniformScaling{Float64} == UniformScaling(1.0)
    @test conj(UniformScaling(1+1im))::UniformScaling{Complex{Int}} == UniformScaling(1-1im)
    @test conj(UniformScaling(1.0+1.0im))::UniformScaling{Complex{Float64}} == UniformScaling(1.0-1.0im)
end

@testset "isdiag, istriu, istril, issymmetric, ishermitian, isposdef, isapprox" begin
    @test isdiag(I)
    @test istriu(I)
    @test istril(I)
    @test issymmetric(I)
    @test issymmetric(UniformScaling(complex(1.0,1.0)))
    @test ishermitian(I)
    @test !ishermitian(UniformScaling(complex(1.0,1.0)))
    @test isposdef(UniformScaling(rand()))
    @test !isposdef(UniformScaling(-rand()))
    @test !isposdef(UniformScaling(randn(ComplexF64)))
    @test !isposdef(UniformScaling(NaN))
    @test isposdef(I)
    @test !isposdef(-I)
    @test isposdef(UniformScaling(complex(1.0, 0.0)))
    @test !isposdef(UniformScaling(complex(1.0, 1.0)))
    @test UniformScaling(4.00000000000001) ≈ UniformScaling(4.0)
    @test UniformScaling(4.32) ≈ UniformScaling(4.3) rtol=0.1 atol=0.01
    @test UniformScaling(4.32) ≈ 4.3 * [1 0; 0 1] rtol=0.1 atol=0.01
    @test UniformScaling(4.32) ≈ 4.3 * [1 0; 0 1] rtol=0.1 atol=0.01 norm=norm
    @test 4.3 * [1 0; 0 1] ≈ UniformScaling(4.32) rtol=0.1 atol=0.01
    @test [4.3201 0.002;0.001 4.32009] ≈ UniformScaling(4.32) rtol=0.1 atol=0.
    @test UniformScaling(4.32) ≉ fill(4.3,2,2) rtol=0.1 atol=0.01
    @test UniformScaling(4.32) ≈ 4.32 * [1 0; 0 1]
end

@testset "arithmetic with Number" begin
    α = randn()
    @test α + I == α + 1
    @test I + α == α + 1
    @test α - I == α - 1
    @test I - α == 1 - α
    @test α .* UniformScaling(1.0) == UniformScaling(1.0) .* α
    @test UniformScaling(α)./α == UniformScaling(1.0)
    @test α.\UniformScaling(α) == UniformScaling(1.0)
    @test α * UniformScaling(1.0) == UniformScaling(1.0) * α
    @test UniformScaling(α)/α == UniformScaling(1.0)
    @test (2I)^α == (2I).^α == (2^α)I

    β = rand()
    @test (α*I)^2    == UniformScaling(α^2)
    @test (α*I)^(-2) == UniformScaling(α^(-2))
    @test (α*I)^(.5) == UniformScaling(α^(.5))
    @test (α*I)^β    == UniformScaling(α^β)

    @test (α * I) .^ 2 == UniformScaling(α^2)
    @test (α * I) .^ β == UniformScaling(α^β)
end

@testset "tr, det and logdet" begin
    for T in (Int, Float64, ComplexF64, Bool)
        @test tr(UniformScaling(zero(T))) === zero(T)
    end
    @test_throws ArgumentError tr(UniformScaling(1))
    @test det(I) === true
    @test det(1.0I) === 1.0
    @test det(0I) === 0
    @test det(0.0I) === 0.0
    @test logdet(I) == 0
    @test_throws ArgumentError det(2I)
end

@test copy(UniformScaling(one(Float64))) == UniformScaling(one(Float64))
@test sprint(show,MIME"text/plain"(),UniformScaling(one(ComplexF64))) == "LinearAlgebra.UniformScaling{Complex{Float64}}\n(1.0 + 0.0im)*I"
@test sprint(show,MIME"text/plain"(),UniformScaling(one(Float32))) == "LinearAlgebra.UniformScaling{Float32}\n1.0*I"
@test sprint(show,UniformScaling(one(ComplexF64))) == "LinearAlgebra.UniformScaling{Complex{Float64}}(1.0 + 0.0im)"
@test sprint(show,UniformScaling(one(Float32))) == "LinearAlgebra.UniformScaling{Float32}(1.0f0)"

let
    λ = complex(randn(),randn())
    J = UniformScaling(λ)
    @testset "transpose, conj, inv, pinv, cond" begin
        @test ndims(J) == 2
        @test transpose(J) == J
        @test J * [1 0; 0 1] == conj(*(adjoint(J), [1 0; 0 1])) # ctranpose (and A(c)_mul_B)
        @test I + I === UniformScaling(2) # +
        @test inv(I) == I
        @test inv(J) == UniformScaling(inv(λ))
        @test pinv(J) == UniformScaling(inv(λ))
        @test @inferred(pinv(0.0I)) == 0.0I
        @test @inferred(pinv(0I)) == 0.0I
        @test @inferred(pinv(false*I)) == 0.0I
        @test @inferred(pinv(0im*I)) == 0im*I
        @test cond(I) == 1
        @test cond(J) == (λ ≠ zero(λ) ? one(real(λ)) : oftype(real(λ), Inf))
    end

    @testset "real, imag, reim" begin
        @test real(J) == UniformScaling(real(λ))
        @test imag(J) == UniformScaling(imag(λ))
        @test reim(J) == (UniformScaling(real(λ)), UniformScaling(imag(λ)))
    end

    @testset "copyto!" begin
        A = Matrix{Int}(undef, (3,3))
        @test copyto!(A, I) == one(A)
        B = Matrix{ComplexF64}(undef, (1,2))
        @test copyto!(B, J) == [λ zero(λ)]
    end

    @testset "binary ops with vectors" begin
        v = complex.(randn(3), randn(3))
        # As shown in #20423@GitHub, vector acts like x1 matrix when participating in linear algebra
        @test v  * J ≈ v  * λ
        @test v' * J ≈ v' * λ
        @test J * v  ≈ λ * v
        @test J * v' ≈ λ * v'
        @test v  / J ≈ v  / λ
        @test v' / J ≈ v' / λ
        @test J \ v  ≈ λ \ v
        @test J \ v' ≈ λ \ v'
    end

    @testset "binary ops with matrices" begin
        B = bitrand(2, 2)
        @test B + I == B + Matrix(I, size(B))
        @test I + B == B + Matrix(I, size(B))
        AA = randn(2, 2)
        for SS in (sprandn(3,3, 0.5), sparse(Int(1)I, 3, 3))
            for (A, S) in ((AA, SS), (view(AA, 1:2, 1:2), view(SS, 1:3, 1:3)))
                I22 = Matrix(I, size(A))
                @test @inferred(A + I) == A + I22
                @test @inferred(I + A) == A + I22
                @test @inferred(I - I) === UniformScaling(0)
                @test @inferred(B - I) == B - I22
                @test @inferred(I - B) == I22 - B
                @test @inferred(A - I) == A - I22
                @test @inferred(I - A) == I22 - A
                @test @inferred(I*J) === UniformScaling(λ)
                @test @inferred(B*J) == B*λ
                @test @inferred(J*B) == B*λ
                @test @inferred(I*A) !== A # Don't alias
                @test @inferred(I*S) !== S # Don't alias
                @test @inferred(A*I) !== A # Don't alias
                @test @inferred(S*I) !== S # Don't alias

                @test @inferred(S*J) == S*λ
                @test @inferred(J*S) == S*λ
                @test @inferred(A*J) == A*λ
                @test @inferred(J*A) == A*λ
                @test @inferred(J*fill(1, 3)) == fill(λ, 3)
                @test @inferred(λ*J) === UniformScaling(λ*J.λ)
                @test @inferred(J*λ) === UniformScaling(λ*J.λ)
                @test @inferred(J/I) === J
                @test @inferred(I/A) == inv(A)
                @test @inferred(A/I) == A
                @test @inferred(I/λ) === UniformScaling(1/λ)
                @test @inferred(I\J) === J

                if isa(A, Array)
                    T = LowerTriangular(randn(3,3))
                else
                    T = LowerTriangular(view(randn(3,3), 1:3, 1:3))
                end
                @test @inferred(T + J) == Array(T) + J
                @test @inferred(J + T) == J + Array(T)
                @test @inferred(T - J) == Array(T) - J
                @test @inferred(J - T) == J - Array(T)
                @test @inferred(T\I) == inv(T)

                if isa(A, Array)
                    T = LinearAlgebra.UnitLowerTriangular(randn(3,3))
                else
                    T = LinearAlgebra.UnitLowerTriangular(view(randn(3,3), 1:3, 1:3))
                end
                @test @inferred(T + J) == Array(T) + J
                @test @inferred(J + T) == J + Array(T)
                @test @inferred(T - J) == Array(T) - J
                @test @inferred(J - T) == J - Array(T)
                @test @inferred(T\I) == inv(T)

                if isa(A, Array)
                    T = UpperTriangular(randn(3,3))
                else
                    T = UpperTriangular(view(randn(3,3), 1:3, 1:3))
                end
                @test @inferred(T + J) == Array(T) + J
                @test @inferred(J + T) == J + Array(T)
                @test @inferred(T - J) == Array(T) - J
                @test @inferred(J - T) == J - Array(T)
                @test @inferred(T\I) == inv(T)

                if isa(A, Array)
                    T = LinearAlgebra.UnitUpperTriangular(randn(3,3))
                else
                    T = LinearAlgebra.UnitUpperTriangular(view(randn(3,3), 1:3, 1:3))
                end
                @test @inferred(T + J) == Array(T) + J
                @test @inferred(J + T) == J + Array(T)
                @test @inferred(T - J) == Array(T) - J
                @test @inferred(J - T) == J - Array(T)
                @test @inferred(T\I) == inv(T)

                for elty in (Float64, ComplexF64)
                    if isa(A, Array)
                        T = Hermitian(randn(elty, 3,3))
                    else
                        T = Hermitian(view(randn(elty, 3,3), 1:3, 1:3))
                    end
                    @test @inferred(T + J) == Array(T) + J
                    @test @inferred(J + T) == J + Array(T)
                    @test @inferred(T - J) == Array(T) - J
                    @test @inferred(J - T) == J - Array(T)
                end

                @test @inferred(I\A) == A
                @test @inferred(A\I) == inv(A)
                @test @inferred(λ\I) === UniformScaling(1/λ)
            end
        end
    end
end

@testset "hcat and vcat" begin
    @test_throws ArgumentError hcat(I)
    @test_throws ArgumentError [I I]
    @test_throws ArgumentError vcat(I)
    @test_throws ArgumentError [I; I]
    @test_throws ArgumentError [I I; I]
    for T in (Matrix, SparseMatrixCSC)
        A = T(rand(3,4))
        B = T(rand(3,3))
        C = T(rand(0,3))
        D = T(rand(2,0))
        @test (hcat(A, 2I))::T == hcat(A, Matrix(2I, 3, 3))
        @test (vcat(A, 2I))::T == vcat(A, Matrix(2I, 4, 4))
        @test (hcat(C, 2I))::T == C
        @test (vcat(D, 2I))::T == D
        @test (hcat(I, 3I, A, 2I))::T == hcat(Matrix(I, 3, 3), Matrix(3I, 3, 3), A, Matrix(2I, 3, 3))
        @test (vcat(I, 3I, A, 2I))::T == vcat(Matrix(I, 4, 4), Matrix(3I, 4, 4), A, Matrix(2I, 4, 4))
        @test (hvcat((2,1,2), B, 2I, I, 3I, 4I))::T ==
            hvcat((2,1,2), B, Matrix(2I, 3, 3), Matrix(I, 6, 6), Matrix(3I, 3, 3), Matrix(4I, 3, 3))
        @test hvcat((3,1), C, C, I, 3I)::T == hvcat((2,1), C, C, Matrix(3I, 6,6))
        @test hvcat((2,2,2), I, 2I, 3I, 4I, C, C)::T ==
            hvcat((2,2,2), Matrix(I, 3, 3), Matrix(2I, 3,3 ), Matrix(3I, 3,3), Matrix(4I, 3,3), C, C)
        @test hvcat((2,2,4), C, C, I, 2I, 3I, 4I, 5I, D)::T ==
            hvcat((2,2,4), C, C, Matrix(I, 3, 3), Matrix(2I,3,3),
                Matrix(3I, 2, 2), Matrix(4I, 2, 2), Matrix(5I,2,2), D)
        @test (hvcat((2,3,2), B, 2I, C, C, I, 3I, 4I))::T ==
            hvcat((2,2,2), B, Matrix(2I, 3, 3), C, C, Matrix(3I, 3, 3), Matrix(4I, 3, 3))
        @test hvcat((3,2,1), C, C, I, B ,3I, 2I)::T ==
            hvcat((2,2,1), C, C, B, Matrix(3I,3,3), Matrix(2I,6,6))
    end
end

@testset "Matrix/Array construction from UniformScaling" begin
    I2_33 = [2 0 0; 0 2 0; 0 0 2]
    I2_34 = [2 0 0 0; 0 2 0 0; 0 0 2 0]
    I2_43 = [2 0 0; 0 2 0; 0 0 2; 0 0 0]
    for ArrType in (Matrix, Array)
        @test ArrType(2I, 3, 3)::Matrix{Int} == I2_33
        @test ArrType(2I, 3, 4)::Matrix{Int} == I2_34
        @test ArrType(2I, 4, 3)::Matrix{Int} == I2_43
        @test ArrType(2.0I, 3, 3)::Matrix{Float64} == I2_33
        @test ArrType{Real}(2I, 3, 3)::Matrix{Real} == I2_33
        @test ArrType{Float64}(2I, 3, 3)::Matrix{Float64} == I2_33
    end
end

@testset "Diagonal construction from UniformScaling" begin
    @test Diagonal(2I, 3)::Diagonal{Int} == Matrix(2I, 3, 3)
    @test Diagonal(2.0I, 3)::Diagonal{Float64} == Matrix(2I, 3, 3)
    @test Diagonal{Real}(2I, 3)::Diagonal{Real} == Matrix(2I, 3, 3)
    @test Diagonal{Float64}(2I, 3)::Diagonal{Float64} == Matrix(2I, 3, 3)
end

@testset "equality comparison of matrices with UniformScaling" begin
    # AbstractMatrix methods
    diagI = Diagonal(fill(1, 3))
    rdiagI = view(diagI, 1:2, 1:3)
    bidiag = Bidiagonal(fill(2, 3), fill(2, 2), :U)
    @test diagI  ==  I == diagI  # test isone(I) path / equality
    @test 2diagI !=  I != 2diagI # test isone(I) path / inequality
    @test 0diagI == 0I == 0diagI # test iszero(I) path / equality
    @test 2diagI != 0I != 2diagI # test iszero(I) path / inequality
    @test 2diagI == 2I == 2diagI # test generic path / equality
    @test 0diagI != 2I != 0diagI # test generic path / inequality on diag
    @test bidiag != 2I != bidiag # test generic path / inequality off diag
    @test rdiagI !=  I != rdiagI # test square matrix check
    # StridedMatrix specialization
    denseI = [1 0 0; 0 1 0; 0 0 1]
    rdenseI = [1 0 0 0; 0 1 0 0; 0 0 1 0]
    alltwos = fill(2, (3, 3))
    @test denseI  ==  I == denseI  # test isone(I) path / equality
    @test 2denseI !=  I != 2denseI # test isone(I) path / inequality
    @test 0denseI == 0I == 0denseI # test iszero(I) path / equality
    @test 2denseI != 0I != 2denseI # test iszero(I) path / inequality
    @test 2denseI == 2I == 2denseI # test generic path / equality
    @test 0denseI != 2I != 0denseI # test generic path / inequality on diag
    @test alltwos != 2I != alltwos # test generic path / inequality off diag
    @test rdenseI !=  I != rdenseI # test square matrix check
end

@testset "operations involving I should preserve eltype" begin
    @test isa(Int8(1) + I, Int8)
    @test isa(Float16(1) + I, Float16)
    @test eltype(Int8(1)I) == Int8
    @test eltype(Float16(1)I) == Float16
    @test eltype(fill(Int8(1), 2, 2)I) == Int8
    @test eltype(fill(Float16(1), 2, 2)I) == Float16
    @test eltype(fill(Int8(1), 2, 2) + I) == Int8
    @test eltype(fill(Float16(1), 2, 2) + I) == Float16
end

@testset "test that UniformScaling is applied correctly for matrices of matrices" begin
    LL = Bidiagonal(fill(0*I, 3), fill(1*I, 2), :L)
    @test (I - LL')\[[0], [0], [1]] == (I - LL)'\[[0], [0], [1]] == fill([1], 3)
end

# Ensure broadcasting of I is an error (could be made to work in the future)
@testset "broadcasting of I (#23197)" begin
    @test_throws MethodError I .+ 1
    @test_throws MethodError I .+ [1 1; 1 1]
end

@testset "in-place mul! and div! methods" begin
    J = randn()*I
    A = randn(4, 3)
    C = similar(A)
    target_mul = J * A
    target_div = A / J
    @test mul!(C, J, A) == target_mul
    @test mul!(C, A, J) == target_mul
    @test lmul!(J, copyto!(C, A)) == target_mul
    @test rmul!(copyto!(C, A), J) == target_mul
    @test ldiv!(J, copyto!(C, A)) == target_div
    @test ldiv!(C, J, A) == target_div
    @test rdiv!(copyto!(C, A), J) == target_div

    A = randn(4, 3)
    C = randn!(similar(A))
    alpha = randn()
    beta = randn()
    target = J * A * alpha + C * beta
    @test mul!(copy(C), J, A, alpha, beta) ≈ target
    @test mul!(copy(C), A, J, alpha, beta) ≈ target
end

@testset "Construct Diagonal from UniformScaling" begin
    @test size(I(3)) === (3,3)
    @test I(3) isa Diagonal
    @test I(3) == [1 0 0; 0 1 0; 0 0 1]
end

@testset "generalized dot" begin
    x = rand(-10:10, 3)
    y = rand(-10:10, 3)
    λ = rand(-10:10)
    J = UniformScaling(λ)
    @test dot(x, J, y) == λ*dot(x, y)
    λ = Quaternion(0.44567, 0.755871, 0.882548, 0.423612)
    x, y = Quaternion(rand(4)...), Quaternion(rand(4)...)
    @test dot([x], λ*I, [y]) ≈ dot(x, λ, y) ≈ dot(x, λ*y)
end

@testset "Factorization solutions" begin
    J = complex(randn(),randn()) * I
    qrp = A -> qr(A, Val(true))

    # thin matrices
    X = randn(3,2)
    Z = pinv(X)
    for fac in (qr,qrp,svd)
        F = fac(X)
        @test @inferred(F \ I) ≈ Z
        @test @inferred(F \ J) ≈ Z * J
    end

    # square matrices
    X = randn(3,3)
    X = X'X + rand()I # make positive definite for cholesky
    Z = pinv(X)
    for fac in (bunchkaufman,cholesky,lu,qr,qrp,svd)
        F = fac(X)
        @test @inferred(F \ I) ≈ Z
        @test @inferred(F \ J) ≈ Z * J
    end

    # fat matrices - only rank-revealing variants
    X = randn(2,3)
    Z = pinv(X)
    for fac in (qrp,svd)
        F = fac(X)
        @test @inferred(F \ I) ≈ Z
        @test @inferred(F \ J) ≈ Z * J
    end
end

end # module TestUniformscaling