1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
|
# This file is a part of Julia. License is MIT: https://julialang.org/license
using SuiteSparse.SPQR
using SuiteSparse.CHOLMOD
using LinearAlgebra: rmul!, lmul!, Adjoint, Transpose
@testset "Sparse QR" begin
m, n = 100, 10
nn = 100
@test size(qr(sprandn(m, n, 0.1)).Q) == (m, m)
@testset "element type of A: $eltyA" for eltyA in (Float64, Complex{Float64})
if eltyA <: Real
A = sparse([1:n; rand(1:m, nn - n)], [1:n; rand(1:n, nn - n)], randn(nn), m, n)
else
A = sparse([1:n; rand(1:m, nn - n)], [1:n; rand(1:n, nn - n)], complex.(randn(nn), randn(nn)), m, n)
end
F = qr(A)
@test size(F) == (m,n)
@test size(F, 1) == m
@test size(F, 2) == n
@test size(F, 3) == 1
@test_throws ArgumentError size(F, 0)
@testset "getindex" begin
@test istriu(F.R)
@test isperm(F.pcol)
@test isperm(F.prow)
@test_throws ErrorException F.T
end
@testset "apply Q" begin
Q = F.Q
Imm = Matrix{Float64}(I, m, m)
@test Q' * (Q*Imm) ≈ Imm
@test (Imm*Q) * Q' ≈ Imm
# test that Q'Pl*A*Pr = R
R0 = Q'*Array(A[F.prow, F.pcol])
@test R0[1:n, :] ≈ F.R
@test norm(R0[n + 1:end, :], 1) < 1e-12
offsizeA = Matrix{Float64}(I, m+1, m+1)
@test_throws DimensionMismatch lmul!(Q, offsizeA)
@test_throws DimensionMismatch lmul!(adjoint(Q), offsizeA)
@test_throws DimensionMismatch rmul!(offsizeA, Q)
@test_throws DimensionMismatch rmul!(offsizeA, adjoint(Q))
end
@testset "element type of B: $eltyB" for eltyB in (Int, Float64, Complex{Float64})
if eltyB == Int
B = rand(1:10, m, 2)
elseif eltyB <: Real
B = randn(m, 2)
else
B = complex.(randn(m, 2), randn(m, 2))
end
@inferred A\B
@test A\B[:,1] ≈ Array(A)\B[:,1]
@test A\B ≈ Array(A)\B
@test_throws DimensionMismatch A\B[1:m-1,:]
C, x = A[1:9, :], fill(eltyB(1), 9)
@test C*(C\x) ≈ x # Underdetermined system
end
# Make sure that conversion to Sparse doesn't use SuiteSparse's symmetric flag
@test qr(SparseMatrixCSC{eltyA}(I, 5, 5)) \ fill(eltyA(1), 5) == fill(1, 5)
end
@testset "basic solution of rank deficient ls" begin
A = sprandn(m, 5, 0.9)*sprandn(5, n, 0.9)
b = randn(m)
xs = A\b
xd = Array(A)\b
# check that basic solution has more zeros
@test count(!iszero, xs) < count(!iszero, xd)
@test A*xs ≈ A*xd
end
@testset "Issue 26367" begin
A = sparse([0.0 1 0 0; 0 0 0 0])
@test Matrix(qr(A).Q) == Matrix(qr(Matrix(A)).Q) == Matrix(I, 2, 2)
end
@testset "Issue 26368" begin
A = sparse([0.0 1 0 0; 0 0 0 0])
F = qr(A)
@test F.Q*F.R == A[F.prow,F.pcol]
end
@testset "select ordering overdetermined" begin
A = sparse([1:n; rand(1:m, nn - n)], [1:n; rand(1:n, nn - n)], randn(nn), m, n)
b = randn(m)
xref = Array(A) \ b
for ordering ∈ SuiteSparse.SPQR.ORDERINGS
QR = qr(A, ordering=ordering)
x = QR \ b
@test x ≈ xref
end
@test_throws ErrorException qr(A, ordering=Int32(10))
end
@testset "select ordering underdetermined" begin
A = sparse([1:n; rand(1:n, nn - n)], [1:n; rand(1:m, nn - n)], randn(nn), n, m)
b = A * ones(m)
for ordering ∈ SuiteSparse.SPQR.ORDERINGS
QR = qr(A, ordering=ordering)
x = QR \ b
# x ≂̸ Array(A) \ b; LAPACK returns a min-norm x while SPQR returns a basic x
@test A * x ≈ b
end
@test_throws ErrorException qr(A, ordering=Int32(10))
end
@testset "propertynames of QRSparse" begin
A = sparse([0.0 1 0 0; 0 0 0 0])
F = qr(A)
@test propertynames(F) == (:R, :Q, :prow, :pcol)
@test propertynames(F, true) == (:R, :Q, :prow, :pcol, :factors, :τ, :cpiv, :rpivinv)
end
@testset "rank" begin
S = sprandn(10, 5, 1.0)*sprandn(5, 10, 1.0)
@test rank(qr(S)) == 5
@test rank(S) == 5
@test all(iszero, (rank(qr(spzeros(10, i))) for i in 1:10))
@test all(iszero, (rank(spzeros(10, i)) for i in 1:10))
end
end
|