File: inference.jl

package info (click to toggle)
julia 1.5.3%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 91,132 kB
  • sloc: lisp: 278,486; ansic: 60,186; cpp: 29,801; sh: 2,403; makefile: 1,998; pascal: 1,313; objc: 647; javascript: 516; asm: 226; python: 161; xml: 34
file content (2611 lines) | stat: -rw-r--r-- 92,280 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
# This file is a part of Julia. License is MIT: https://julialang.org/license

# tests for Core.Compiler correctness and precision
import Core.Compiler: Const, Conditional, ⊑
isdispatchelem(@nospecialize x) = !isa(x, Type) || Core.Compiler.isdispatchelem(x)

using Random, Core.IR
using InteractiveUtils: code_llvm

# demonstrate some of the type-size limits
@test Core.Compiler.limit_type_size(Ref{Complex{T} where T}, Ref, Ref, 100, 0) == Ref
@test Core.Compiler.limit_type_size(Ref{Complex{T} where T}, Ref{Complex{T} where T}, Ref, 100, 0) == Ref{Complex{T} where T}

let comparison = Tuple{X, X} where X<:Tuple
    sig = Tuple{X, X} where X<:comparison
    ref = Tuple{X, X} where X
    @test Core.Compiler.limit_type_size(sig, comparison, comparison, 100, 100) == Tuple{Tuple, Tuple}
    @test Core.Compiler.limit_type_size(sig, ref, comparison, 100, 100) == Tuple{Any, Any}
    @test Core.Compiler.limit_type_size(Tuple{sig}, Tuple{ref}, comparison, 100, 100) == Tuple{Tuple{Any, Any}}
    @test Core.Compiler.limit_type_size(sig, ref, Tuple{comparison}, 100,  100) == Tuple{Tuple{X, X} where X<:Tuple, Tuple{X, X} where X<:Tuple}
    @test Core.Compiler.limit_type_size(ref, sig, Union{}, 100, 100) == ref
end

let ref = Tuple{T, Val{T}} where T<:Val
    sig = Tuple{T, Val{T}} where T<:(Val{T} where T<:Val)
    @test Core.Compiler.limit_type_size(sig, ref, Union{}, 100, 100) == Tuple{Val, Val}
    @test Core.Compiler.limit_type_size(ref, sig, Union{}, 100, 100) == ref
end
let ref = Tuple{T, Val{T}} where T<:(Val{T} where T<:(Val{T} where T<:(Val{T} where T<:Val)))
    sig = Tuple{T, Val{T}} where T<:(Val{T} where T<:(Val{T} where T<:(Val{T} where T<:(Val{T} where T<:Val))))
    @test Core.Compiler.limit_type_size(sig, ref, Union{}, 100, 100) == Tuple{Val, Val}
    @test Core.Compiler.limit_type_size(ref, sig, Union{}, 100, 100) == ref
end

let t = Tuple{Ref{T},T,T} where T, c = Tuple{Ref, T, T} where T # #36407
    @test t <: Core.Compiler.limit_type_size(t, c, Union{}, 1, 100)
end

@test Core.Compiler.unionlen(Union{}) == 1
@test Core.Compiler.unionlen(Int8) == 1
@test Core.Compiler.unionlen(Union{Int8, Int16}) == 2
@test Core.Compiler.unionlen(Union{Int8, Int16, Int32, Int64}) == 4
@test Core.Compiler.unionlen(Tuple{Union{Int8, Int16, Int32, Int64}}) == 1
@test Core.Compiler.unionlen(Union{Int8, Int16, Int32, T} where T) == 1

@test Core.Compiler.unioncomplexity(Union{}) == 0
@test Core.Compiler.unioncomplexity(Int8) == 0
@test Core.Compiler.unioncomplexity(Val{Union{Int8, Int16, Int32, Int64}}) == 0
@test Core.Compiler.unioncomplexity(Union{Int8, Int16}) == 1
@test Core.Compiler.unioncomplexity(Union{Int8, Int16, Int32, Int64}) == 3
@test Core.Compiler.unioncomplexity(Tuple{Union{Int8, Int16, Int32, Int64}}) == 3
@test Core.Compiler.unioncomplexity(Union{Int8, Int16, Int32, T} where T) == 3
@test Core.Compiler.unioncomplexity(Tuple{Val{T}, Union{Int8, Int16}, Int8} where T<:Union{Int8, Int16, Int32, Int64}) == 3
@test Core.Compiler.unioncomplexity(Tuple{Vararg{Tuple{Union{Int8, Int16}}}}) == 1
@test Core.Compiler.unioncomplexity(Tuple{Vararg{Symbol}}) == 0
@test Core.Compiler.unioncomplexity(Tuple{Vararg{Union{Symbol, Tuple{Vararg{Symbol}}}}}) == 1
@test Core.Compiler.unioncomplexity(Tuple{Vararg{Union{Symbol, Tuple{Vararg{Union{Symbol, Tuple{Vararg{Symbol}}}}}}}}) == 2
@test Core.Compiler.unioncomplexity(Tuple{Vararg{Union{Symbol, Tuple{Vararg{Union{Symbol, Tuple{Vararg{Union{Symbol, Tuple{Vararg{Symbol}}}}}}}}}}}) == 3


# PR 22120
function tmerge_test(a, b, r, commutative=true)
    @test r == Core.Compiler.tuplemerge(a, b)
    if commutative
        @test r == Core.Compiler.tuplemerge(b, a)
    else
        @test_broken r == Core.Compiler.tuplemerge(b, a)
    end
end
tmerge_test(Tuple{Int}, Tuple{String}, Tuple{Union{Int, String}})
tmerge_test(Tuple{Int}, Tuple{String, String}, Tuple)
tmerge_test(Tuple{Vararg{Int}}, Tuple{String}, Tuple)
tmerge_test(Tuple{Int}, Tuple{Int, Int},
    Tuple{Vararg{Int}})
tmerge_test(Tuple{Integer}, Tuple{Int, Int},
    Tuple{Vararg{Integer}})
tmerge_test(Tuple{}, Tuple{Int, Int},
    Tuple{Vararg{Int}})
tmerge_test(Tuple{}, Tuple{Complex},
    Tuple{Vararg{Complex}})
tmerge_test(Tuple{ComplexF32}, Tuple{ComplexF32, ComplexF64},
    Tuple{Vararg{Complex}})
tmerge_test(Tuple{Vararg{ComplexF32}}, Tuple{Vararg{ComplexF64}},
    Tuple{Vararg{Complex}})
tmerge_test(Tuple{}, Tuple{ComplexF32, Vararg{Union{ComplexF32, ComplexF64}}},
    Tuple{Vararg{Union{ComplexF32, ComplexF64}}})
tmerge_test(Tuple{ComplexF32}, Tuple{ComplexF32, Vararg{Union{ComplexF32, ComplexF64}}},
    Tuple{Vararg{Union{ComplexF32, ComplexF64}}})
tmerge_test(Tuple{ComplexF32, ComplexF32, ComplexF32}, Tuple{ComplexF32, Vararg{Union{ComplexF32, ComplexF64}}},
    Tuple{Vararg{Union{ComplexF32, ComplexF64}}})
tmerge_test(Tuple{}, Tuple{Union{ComplexF64, ComplexF32}, Vararg{Union{ComplexF32, ComplexF64}}},
    Tuple{Vararg{Union{ComplexF32, ComplexF64}}})
tmerge_test(Tuple{ComplexF64, ComplexF64, ComplexF32}, Tuple{Vararg{Union{ComplexF32, ComplexF64}}},
    Tuple{Vararg{Complex}}, false)
tmerge_test(Tuple{}, Tuple{Complex, Vararg{Union{ComplexF32, ComplexF64}}},
    Tuple{Vararg{Complex}})
@test Core.Compiler.tmerge(Tuple{}, Union{Int16, Nothing, Tuple{ComplexF32, ComplexF32}}) ==
    Union{Int16, Nothing, Tuple{Vararg{ComplexF32}}}
@test Core.Compiler.tmerge(Union{Int32, Nothing, Tuple{ComplexF32}}, Union{Int32, Nothing, Tuple{ComplexF32, ComplexF32}}) ==
    Union{Int32, Nothing, Tuple{Vararg{ComplexF32}}}

@test Core.Compiler.tmerge(Base.BitIntegerType, Union{}) === Base.BitIntegerType
@test Core.Compiler.tmerge(Union{}, Base.BitIntegerType) === Base.BitIntegerType

struct SomethingBits
    x::Base.BitIntegerType
end
@test Base.return_types(getproperty, (SomethingBits, Symbol)) == Any[Base.BitIntegerType]

# issue 9770
@noinline x9770() = false
function f9770(x)
    return if x9770()
        g9770(:a, :foo)
    else
        x
    end
end
function g9770(x,y)
   return if isa(y, Symbol)
       f9770(x)
   else
       g9770(:a, :foo)
   end
end
@test g9770(:a, "c") === :a
@test g9770(:b, :c) === :b


# issue #1628
mutable struct I1628{X}
    x::X
end
let
    # here the potential problem is that the run-time value of static
    # parameter X in the I1628 constructor is (DataType,DataType),
    # but type inference will track it more accurately as
    # (Type{Integer}, Type{Int}).
    f1628() = I1628((Integer,Int))
    @test isa(f1628(), I1628{Tuple{DataType,DataType}})
end

let
    fT(x::T) where {T} = T
    @test fT(Any) === DataType
    @test fT(Int) === DataType
    @test fT(Type{Any}) === DataType
    @test fT(Type{Int}) === DataType

    ff(x::Type{T}) where {T} = T
    @test ff(Type{Any}) === Type{Any}
    @test ff(Type{Int}) === Type{Int}
    @test ff(Any) === Any
    @test ff(Int) === Int
end


# issue #3182
f3182(::Type{T}) where {T} = 0
f3182(x) = 1
function g3182(t::DataType)
    # tricky thing here is that DataType is a concrete type, and a
    # subtype of Type, but we cannot infer the T in Type{T} just
    # by knowing (at compile time) that the argument is a DataType.
    # however the ::Type{T} method should still match at run time.
    return f3182(t)
end
@test g3182(Complex.body) == 0


# issue #5906

abstract type Outer5906{T} end

struct Inner5906{T}
    a:: T
end

struct Empty5906{T} <: Outer5906{T}
end

struct Hanoi5906{T} <: Outer5906{T}
    a::T
    succ :: Outer5906{Inner5906{T}}
    Hanoi5906{T}(a) where T = new(a, Empty5906{Inner5906{T}}())
end

function f5906(h::Hanoi5906{T}) where T
    if isa(h.succ, Empty5906) return end
    f5906(h.succ)
end

# can cause infinite recursion in type inference via instantiation of
# the type of the `succ` field
@test f5906(Hanoi5906{Int}(1)) === nothing

# issue on the flight from DFW
# (type inference deducing Type{:x} rather than Symbol)
mutable struct FooBarDFW{s}; end
fooDFW(p::Type{FooBarDFW}) = string(p.parameters[1])
fooDFW(p) = string(p.parameters[1])
@test fooDFW(FooBarDFW{:x}) == "x" # not ":x"

# Type inference for tuple parameters
struct fooTuple{s}; end
barTuple1() = fooTuple{(:y,)}()
barTuple2() = fooTuple{tuple(:y)}()

@test Base.return_types(barTuple1,Tuple{})[1] == Base.return_types(barTuple2,Tuple{})[1] == fooTuple{(:y,)}

# issue #6050
@test Core.Compiler.getfield_tfunc(
          Dict{Int64,Tuple{UnitRange{Int64},UnitRange{Int64}}},
          Core.Compiler.Const(:vals)) == Array{Tuple{UnitRange{Int64},UnitRange{Int64}},1}

# issue #12476
function f12476(a)
    (k, v) = a
    return v
end
@inferred f12476(1.0 => 1)


# issue #12551 (make sure these don't throw in inference)
Base.return_types(unsafe_load, (Ptr{nothing},))
Base.return_types(getindex, (Vector{nothing},))


# issue #12636
module MyColors

abstract type Paint{T} end
struct RGB{T<:AbstractFloat} <: Paint{T}
    r::T
    g::T
    b::T
end

myeltype(::Type{Paint{T}}) where {T} = T
myeltype(::Type{P}) where {P<:Paint} = myeltype(supertype(P))
myeltype(::Type{Any}) = Any

end

@test @inferred(MyColors.myeltype(MyColors.RGB{Float32})) == Float32
@test @inferred(MyColors.myeltype(MyColors.RGB)) == Any


# issue #12826
f12826(v::Vector{I}) where {I<:Integer} = v[1]
@test Base.return_types(f12826,Tuple{Array{I,1} where I<:Integer})[1] == Integer


# non-terminating inference, issue #14009
# non-terminating codegen, issue #16201
mutable struct A14009{T}; end
A14009(a::T) where {T} = A14009{T}()
f14009(a) = rand(Bool) ? f14009(A14009(a)) : a
code_typed(f14009, (Int,))
code_llvm(devnull, f14009, (Int,))

mutable struct B14009{T}; end
g14009(a) = g14009(B14009{a})
code_typed(g14009, (Type{Int},))
code_llvm(devnull, f14009, (Int,))


# issue #9232
arithtype9232(::Type{T},::Type{T}) where {T<:Real} = arithtype9232(T)
result_type9232(::Type{T1}, ::Type{T2}) where {T1<:Number,T2<:Number} = arithtype9232(T1, T2)
# this gave a "type too large", but not reliably
@test length(code_typed(result_type9232, Tuple{(Type{x} where x<:Union{Float32,Float64}), Type{T2} where T2<:Number})) == 1


# issue #10878
function g10878(x; kw...); end
invoke_g10878() = invoke(g10878, Tuple{Any}, 1)
code_typed(invoke_g10878, ())
code_llvm(devnull, invoke_g10878, ())


# issue #10930
@test isa(code_typed(promote,(Any,Any,Vararg{Any})), Array)
find_tvar10930(sig::Type{T}) where {T<:Tuple} = 1
function find_tvar10930(arg)
    if arg<:Tuple
        find_tvar10930(arg[random_var_name])
    end
    return 1
end
@test find_tvar10930(Vararg{Int}) === 1


# issue #12474
@generated function f12474(::Any)
    return :(for i in 1
        end)
end
let ast12474 = code_typed(f12474, Tuple{Float64})
    @test isdispatchelem(ast12474[1][2])
end


# pr #15259
struct A15259
    x
    y
end
# check that allocation was ellided
@eval f15259(x,y) = (a = $(Expr(:new, :A15259, :x, :y)); (a.x, a.y, getfield(a,1), getfield(a, 2)))
@test isempty(filter(x -> isa(x,Expr) && x.head === :(=) &&
                          isa(x.args[2], Expr) && x.args[2].head === :new,
                     code_typed(f15259, (Any,Int))[1][1].code))
@test f15259(1,2) == (1,2,1,2)
# check that error cases are still correct
@eval g15259(x,y) = (a = $(Expr(:new, :A15259, :x, :y)); a.z)
@test_throws ErrorException g15259(1,1)
@eval h15259(x,y) = (a = $(Expr(:new, :A15259, :x, :y)); getfield(a, 3))
@test_throws BoundsError h15259(1,1)


# issue #7810
mutable struct Foo7810{T<:AbstractVector}
    v::T
end
bar7810() = [Foo7810([(a,b) for a in 1:2]) for b in 3:4]
@test Base.return_types(bar7810,Tuple{})[1] == Array{Foo7810{Array{Tuple{Int,Int},1}},1}


# issue #11366
f11366(x::Type{Ref{T}}) where {T} = Ref{x}
@test !isconcretetype(Base.return_types(f11366, (Any,))[1])


let f(T) = Type{T}
    @test Base.return_types(f, Tuple{Type{Int}}) == [Type{Type{Int}}]
end

# issue #9222
function SimpleTest9222(pdedata, mu_actual::Vector{T1},
        nu_actual::Vector{T1}, v0::Vector{T1}, epsilon::T1, beta::Vector{T1},
        delta::T1, l::T1, R::T1, s0::T1, show_trace::Bool = true) where T1<:Real
    return 0.0
end
function SimpleTest9222(pdedata, mu_actual::Vector{T1},
        nu_actual::Vector{T1}, v0::Vector{T1}, epsilon::T1, beta::Vector{T1},
        delta::T1, l::T1, R::T1) where T1<:Real
    return SimpleTest9222(pdedata, mu_actual, nu_actual, v0, epsilon,
        beta, delta, l, R, v0[1])
end
function foo9222()
    v0 = rand(10)
    mu_actual = rand(10)
    nu_actual = rand(10)
    SimpleTest9222(0.0, mu_actual, nu_actual, v0, 0.0, [1.0,1.0], 0.5, 5.0, 20.0)
end
@test 0.0 == foo9222()

# branching based on inferrable conditions
let f(x) = isa(x,Int) ? 1 : ""
    @test Base.return_types(f, Tuple{Int}) == [Int]
end

let g() = Int <: Real ? 1 : ""
    @test Base.return_types(g, Tuple{}) == [Int]
end

const NInt{N} = Tuple{Vararg{Int, N}}
const NInt1{N} = Tuple{Int, Vararg{Int, N}}
@test Base.eltype(NInt) === Int
@test Base.eltype(NInt1) === Int
@test Base.eltype(NInt{0}) === Union{}
@test Base.eltype(NInt{1}) === Int
@test Base.eltype(NInt1{0}) === Int
@test Base.eltype(NInt1{1}) === Int
fNInt(x::NInt) = (x...,)
gNInt() = fNInt(x)
@test Base.return_types(gNInt, ()) == Any[NInt]
@test Base.return_types(eltype, (NInt,)) == Any[Union{Type{Int}, Type{Union{}}}] # issue 21763

# issue #17572
function f17572(::Type{Val{A}}) where A
    return Tuple{Int}(Tuple{A}((1,)))
end
# test that inference doesn't error
@test isa(code_typed(f17572, (Type{Val{0}},)), Array)

# === with singleton constants
let f(x) = (x===nothing) ? 1 : 1.0
    @test Base.return_types(f, (Nothing,)) == Any[Int]
end

# issue #16530
mutable struct Foo16530a{dim}
    c::Vector{NTuple{dim, Float64}}
    d::Vector
end
mutable struct Foo16530b{dim}
    c::Vector{NTuple{dim, Float64}}
end
f16530a() = fieldtype(Foo16530a, :c)
f16530a(c) = fieldtype(Foo16530a, c)
f16530b() = fieldtype(Foo16530b, :c)
f16530b(c) = fieldtype(Foo16530b, c)

let T = Vector{Tuple{Vararg{Float64,dim}}} where dim
    @test f16530a() == T
    @test f16530a(:c) == T
    @test Base.return_types(f16530a, ()) == Any[Type{T}]
    @test Base.return_types(f16530b, ()) == Any[Type{T}]
    @test Base.return_types(f16530b, (Symbol,)) == Any[Type{T}]
end
@test f16530a(:d) == Vector

let T1 = Tuple{Int, Float64},
    T2 = Tuple{Int, Float32},
    T = Tuple{T1, T2}

    global f18037
    f18037() = fieldtype(T, 1)
    f18037(i) = fieldtype(T, i)

    @test f18037() === T1
    @test f18037(1) === T1
    @test f18037(2) === T2

    @test Base.return_types(f18037, ()) == Any[Type{T1}]
    @test Base.return_types(f18037, (Int,)) == Any[Union{Type{T1},Type{T2}}]
end

# issue #18015
mutable struct Triple18015
    a::Int
    b::Int
    c::Int
end
a18015(tri) = tri.a
b18015(tri) = tri.b
c18015(tri) = tri.c
setabc18015!(tri, a, b, c) = (tri.a = a; tri.b = b; tri.c = c)
let tri = Triple18015(1, 2, 3)
    setabc18015!(tri, b18015(tri), c18015(tri), a18015(tri))
    @test tri.a === 2 && tri.b === 3 && tri.c === 1
end

# issue #18222
f18222(::Union{T, Int}) where {T<:AbstractFloat} = false
f18222(x) = true
g18222(x) = f18222(x)
@test f18222(1) == g18222(1) == false
@test f18222(1.0) == g18222(1.0) == false

# issue #18399
# TODO: this test is rather brittle
mutable struct TSlow18399{T}
    x::T
end
function hvcat18399(as)
    cb = ri->as[ri]
    g = Base.Generator(cb, 1)
    return g.f(1)
end
function cat_t18399(X...)
    for i = 2:1
        X[i]
        d->i
    end
end
C18399 = TSlow18399{Int}(1)
GB18399 = TSlow18399{Int}(1)
function test18399(C)
    B = GB18399::Union{TSlow18399{Int},TSlow18399{Any}}
    cat_t18399()
    cat_t18399(B, B, B)
    hvcat18399((C,))
    return hvcat18399(((2, 3),))
end
@test test18399(C18399) == (2, 3)

# issue #18450
f18450() = ifelse(true, Tuple{Vararg{Int}}, Tuple{Vararg})
@test f18450() == Tuple{Vararg{Int}}

# issue #18569
@test !Core.Compiler.isconstType(Type{Tuple})

# ensure pure attribute applies correctly to all signatures of fpure
Base.@pure function fpure(a=rand(); b=rand())
    # use the `rand` function since it is known to be `@inline`
    # but would be too big to inline
    return a + b + rand()
end
gpure() = fpure()
gpure(x::Irrational) = fpure(x)
@test which(fpure, ()).pure
@test which(fpure, (typeof(pi),)).pure
@test !which(gpure, ()).pure
@test !which(gpure, (typeof(pi),)).pure
@test code_typed(gpure, ())[1][1].pure
@test code_typed(gpure, (typeof(π),))[1][1].pure
@test gpure() == gpure() == gpure()
@test gpure(π) == gpure(π) == gpure(π)

# Make sure @pure works for functions using the new syntax
Base.@pure (fpure2(x::T) where T) = T
@test which(fpure2, (Int64,)).pure

# issue #10880
function cat10880(a, b)
    Tuple{a.parameters..., b.parameters...}
end
@inferred cat10880(Tuple{Int8,Int16}, Tuple{Int32})

# issue #19348
function is_typed_expr(e::Expr)
    if e.head === :call ||
       e.head === :invoke ||
       e.head === :new ||
       e.head === :copyast ||
       e.head === :inert
        return true
    end
    return false
end
is_typed_expr(@nospecialize other) = false
test_inferred_static(@nospecialize(other)) = true
test_inferred_static(slot::TypedSlot) = @test isdispatchelem(slot.typ)
function test_inferred_static(expr::Expr)
    for a in expr.args
        test_inferred_static(a)
    end
end
function test_inferred_static(arrow::Pair, all_ssa)
    code, rt = arrow
    @test isdispatchelem(rt)
    @test code.inferred
    for i = 1:length(code.code)
        e = code.code[i]
        test_inferred_static(e)
        if all_ssa && is_typed_expr(e)
            @test isdispatchelem(code.ssavaluetypes[i])
        end
    end
end

function f18679()
    local a
    for i = 1:2
        if i == 1
            a = ((),)
        else
            return a[1]
        end
    end
    error()
end
g18679(x::Tuple) = ()
g18679() = g18679(any_undef_global::Union{Int, Tuple{}})
function h18679()
    for i = 1:2
        local a
        if i == 1
            a = ((),)
        else
            @isdefined(a) && return "BAD"
        end
    end
end

function g19348(x)
    a, b = x
    g = 1
    g = 2
    c = Base.indexed_iterate(x, g, g)
    return a + b + c[1]
end

for (codetype, all_ssa) in Any[
        (code_typed(f18679, ())[1], true),
        (code_typed(g18679, ())[1], false),
        (code_typed(h18679, ())[1], true),
        (code_typed(g19348, (typeof((1, 2.0)),))[1], true)]
    code = codetype[1]
    local notconst(@nospecialize(other)) = true
    notconst(slot::TypedSlot) = @test isa(slot.typ, Type)
    function notconst(expr::Expr)
        for a in expr.args
            notconst(a)
        end
    end
    local i
    for i = 1:length(code.code)
        e = code.code[i]
        notconst(e)
        typ = code.ssavaluetypes[i]
        typ isa Core.Compiler.MaybeUndef && (typ = typ.typ)
        @test isa(typ, Type) || isa(typ, Const) || isa(typ, Conditional) || typ
    end
    test_inferred_static(codetype, all_ssa)
end
@test f18679() === ()
@test_throws UndefVarError(:any_undef_global) g18679()
@test h18679() === nothing


# issue #5575: inference with abstract types on a reasonably complex method tree
zeros5575(::Type{T}, dims::Tuple{Vararg{Any,N}}) where {T,N} = Array{T,N}(undef, dims)
zeros5575(dims::Tuple) = zeros5575(Float64, dims)
zeros5575(::Type{T}, dims...) where {T} = zeros5575(T, dims)
zeros5575(a::AbstractArray) = zeros5575(a, Float64)
zeros5575(a::AbstractArray, ::Type{T}) where {T} = zeros5575(a, T, size(a))
zeros5575(a::AbstractArray, ::Type{T}, dims::Tuple) where {T} = zeros5575(T, dims)
zeros5575(a::AbstractArray, ::Type{T}, dims...) where {T} = zeros5575(T, dims)
zeros5575(dims...) = zeros5575(dims)
f5575() = zeros5575(Type[Float64][1], 1)
@test Base.return_types(f5575, ())[1] == Vector

g5575() = zeros(Type[Float64][1], 1)
@test Base.return_types(g5575, ())[1] == Vector


# make sure Tuple{unknown} handles the possibility that `unknown` is a Vararg
function maybe_vararg_tuple_1()
    x = Any[Vararg{Int}][1]
    Tuple{x}
end
@test Type{Tuple{Vararg{Int}}} <: Base.return_types(maybe_vararg_tuple_1, ())[1]
function maybe_vararg_tuple_2()
    x = Type[Vararg{Int}][1]
    Tuple{x}
end
@test Type{Tuple{Vararg{Int}}} <: Base.return_types(maybe_vararg_tuple_2, ())[1]

# inference of `fieldtype`
mutable struct UndefField__
    x::Union{}
end
f_infer_undef_field() = fieldtype(UndefField__, :x)
@test Base.return_types(f_infer_undef_field, ()) == Any[Type{Union{}}]
@test f_infer_undef_field() === Union{}

mutable struct HasAbstractlyTypedField
    x::Union{Int,String}
end
f_infer_abstract_fieldtype() = fieldtype(HasAbstractlyTypedField, :x)
@test Base.return_types(f_infer_abstract_fieldtype, ()) == Any[Type{Union{Int,String}}]
let fieldtype_tfunc = Core.Compiler.fieldtype_tfunc,
    fieldtype_nothrow = Core.Compiler.fieldtype_nothrow
    @test fieldtype_tfunc(Union{}, :x) == Union{}
    @test fieldtype_tfunc(Union{Type{Int32}, Int32}, Const(:x)) == Union{}
    @test fieldtype_tfunc(Union{Type{Base.RefValue{T}}, Type{Int32}} where {T<:Array}, Const(:x)) == Type{<:Array}
    @test fieldtype_tfunc(Union{Type{Base.RefValue{T}}, Type{Int32}} where {T<:Real}, Const(:x)) == Type{<:Real}
    @test fieldtype_tfunc(Union{Type{Base.RefValue{<:Array}}, Type{Int32}}, Const(:x)) == Type{Array}
    @test fieldtype_tfunc(Union{Type{Base.RefValue{<:Real}}, Type{Int32}}, Const(:x)) == Const(Real)
    @test fieldtype_tfunc(Const(Union{Base.RefValue{<:Real}, Type{Int32}}), Const(:x)) == Type
    @test fieldtype_tfunc(Type{Union{Base.RefValue{T}, Type{Int32}}} where {T<:Real}, Const(:x)) == Type
    @test fieldtype_tfunc(Type{<:Tuple}, Const(1)) == Type
    @test fieldtype_tfunc(Type{<:Tuple}, Any) == Type
    @test fieldtype_nothrow(Type{Base.RefValue{<:Real}}, Const(:x))
    @test !fieldtype_nothrow(Type{Union{}}, Const(:x))
    @test !fieldtype_nothrow(Union{Type{Base.RefValue{T}}, Int32} where {T<:Real}, Const(:x))
    @test !fieldtype_nothrow(Union{Type{Base.RefValue{<:Real}}, Int32}, Const(:x))
    @test fieldtype_nothrow(Const(Union{Base.RefValue{<:Real}, Int32}), Const(:x))
    @test !fieldtype_nothrow(Type{Union{Base.RefValue{T}, Int32}} where {T<:Real}, Const(:x)) # improvable?
    @test fieldtype_nothrow(Union{Type{Base.RefValue{T}}, Type{Base.RefValue{Any}}} where {T<:Real}, Const(:x))
    @test fieldtype_nothrow(Union{Type{Base.RefValue{<:Real}}, Type{Base.RefValue{Any}}}, Const(:x))
    @test fieldtype_nothrow(Const(Union{Base.RefValue{<:Real}, Base.RefValue{Any}}), Const(:x))
    @test fieldtype_nothrow(Type{Union{Base.RefValue{T}, Base.RefValue{Any}}} where {T<:Real}, Const(:x))
end

# issue #11480
@noinline f11480(x,y) = x
let A = Ref
    function h11480(x::A{A{A{A{A{A{A{A{A{Int}}}}}}}}}) # enough for type_too_complex
        y :: Tuple{Vararg{typeof(x)}} = (x,) # apply_type(Vararg, too_complex) => TypeVar(_,Vararg)
        f(y[1], # fool getfield logic : Tuple{_<:Vararg}[1] => Vararg
          1) # make it crash by construction of the signature Tuple{Vararg,Int}
    end
    @test !Base.isvarargtype(Base.return_types(h11480, (Any,))[1])
end

# Issue 19641
foo19641() = let a = 1.0
    Core.Compiler.return_type(x -> x + a, Tuple{Float64})
end
@inferred foo19641()

test_fast_eq(a, b) = @fastmath a == b
test_fast_ne(a, b) = @fastmath a != b
test_fast_lt(a, b) = @fastmath a < b
test_fast_le(a, b) = @fastmath a <= b
@inferred test_fast_eq(1f0, 1f0)
@inferred test_fast_ne(1f0, 1f0)
@inferred test_fast_lt(1f0, 1f0)
@inferred test_fast_le(1f0, 1f0)
@inferred test_fast_eq(1.0, 1.0)
@inferred test_fast_ne(1.0, 1.0)
@inferred test_fast_lt(1.0, 1.0)
@inferred test_fast_le(1.0, 1.0)

abstract type AbstractMyType18457{T,F,G} end
struct MyType18457{T,F,G}<:AbstractMyType18457{T,F,G} end
tpara18457(::Type{AbstractMyType18457{I}}) where {I} = I
tpara18457(::Type{A}) where {A<:AbstractMyType18457} = tpara18457(supertype(A))
@test tpara18457(MyType18457{true}) === true

@testset "type inference error #19322" begin
    Y_19322 = reshape(round.(Int, abs.(randn(5*1000))) .+ 1, 1000, 5)

    function FOO_19322(Y::AbstractMatrix; frac::Float64=0.3, nbins::Int=100, n_sims::Int=100)
        num_iters, num_chains = size(Y)
        start_iters = unique([1; map(s->round(Int64, exp10(s)), range(log(10,100),
                                                                      stop=log(10,num_iters/2),
                                                                      length=nbins-1))])
        result = zeros(Float64, 10, length(start_iters) * num_chains)
        j=1
        for c in 1:num_chains
            for st in 1:length(start_iters)
                n = length(start_iters[st]:num_iters)
                idx1 = start_iters[st]:round(Int64, start_iters[st] + frac * n - 1)
                idx2 = round(Int64, num_iters - frac * n + 1):num_iters
                y1 = Y[idx1,c]
                y2 = Y[idx2,c]
                n_min = min(length(y1), length(y2))
                X = [y1[1:n_min] y2[(end - n_min + 1):end]]
            end
        end
    end

    @test_nowarn FOO_19322(Y_19322)
end

randT_inferred_union() = rand(Bool) ? rand(Bool) ? 1 : 2.0 : nothing
function f_inferred_union()
    b = randT_inferred_union()
    if !(nothing !== b) === true
        return f_inferred_union_nothing(b)
    elseif (isa(b, Float64) === true) !== false
        return f_inferred_union_float(b)
    else
        return f_inferred_union_int(b)
    end
end
f_inferred_union_nothing(::Nothing) = 1
f_inferred_union_nothing(::Any) = "broken"
f_inferred_union_float(::Float64) = 2
f_inferred_union_float(::Any) = "broken"
f_inferred_union_int(::Int) = 3
f_inferred_union_int(::Any) = "broken"
@test @inferred(f_inferred_union()) in (1, 2, 3)

# issue #11015
mutable struct AT11015
    f::Union{Bool,Function}
end

g11015(::Type{S}, ::S) where {S} = 1
f11015(a::AT11015) = g11015(Base.fieldtype(typeof(a), :f), true)
g11015(::Type{Bool}, ::Bool) = 2.0
@test Int <: Base.return_types(f11015, (AT11015,))[1]
@test f11015(AT11015(true)) === 1

# better inference of apply (#20343)
f20343(::String, ::Int) = 1
f20343(::Int, ::String, ::Int, ::Int) = 1
f20343(::Int, ::Int, ::String, ::Int, ::Int, ::Int) = 1
f20343(::Union{Int,String}...) = Int8(1)
f20343(::Any...) = "no"
function g20343()
    n = rand(1:3)
    i = ntuple(i->n==i ? "" : 0, 2n)::Union{Tuple{String,Int},Tuple{Int,String,Int,Int},Tuple{Int,Int,String,Int,Int,Int}}
    f20343(i...)
end
@test Base.return_types(g20343, ()) == [Int]
function h20343()
    n = rand(1:3)
    i = ntuple(i->n==i ? "" : 0, 3)::Union{Tuple{String,Int,Int},Tuple{Int,String,Int},Tuple{Int,Int,String}}
    f20343(i..., i...)
end
@test Base.return_types(h20343, ()) == [Union{Int8, Int}]
function i20343()
    f20343([1,2,3]..., 4)
end
@test Base.return_types(i20343, ()) == [Int8]
struct Foo20518 <: AbstractVector{Int}; end # issue #20518; inference assumed AbstractArrays
Base.getindex(::Foo20518, ::Int) = "oops"      # not to lie about their element type
Base.axes(::Foo20518) = (Base.OneTo(4),)
foo20518(xs::Any...) = -1
foo20518(xs::Int...) = [0]
bar20518(xs) = sum(foo20518(xs...))
@test bar20518(Foo20518()) == -1
f19957(::Int) = Int8(1)            # issue #19957, inference failure when splatting a number
f19957(::Int...) = Int16(1)
f19957(::Any...) = "no"
g19957(x) = f19957(x...)
@test Base.return_types(g19957, (Int,)) == Any[Int8]

# Inference for some type-level computation
fUnionAll(::Type{T}) where {T} = Type{S} where S <: T
@inferred fUnionAll(Real) == Type{T} where T <: Real
@inferred fUnionAll(Rational{T} where T <: AbstractFloat) == Type{T} where T<:(Rational{S} where S <: AbstractFloat)

fComplicatedUnionAll(::Type{T}) where {T} = Type{Tuple{S,rand() >= 0.5 ? Int : Float64}} where S <: T
let pub = Base.parameter_upper_bound, x = fComplicatedUnionAll(Real)
    @test pub(pub(x, 1), 1) == Real
    @test pub(pub(x, 1), 2) == Int || pub(pub(x, 1), 2) == Float64
end

# issue #20733
# run this test in a separate process to avoid interfering with `getindex`
let def = "Base.getindex(t::NTuple{3,NTuple{2,Int}}, i::Int, j::Int, k::Int) = (t[1][i], t[2][j], t[3][k])"
    @test read(`$(Base.julia_cmd()) --startup-file=no -E "$def;test(t) = t[2,1,2];test(((3,4), (5,6), (7,8)))"`, String) ==
        "(4, 5, 8)\n"
end

# issue #20267
mutable struct T20267{T}
    inds::Vector{T}
end
# infinite type growth via lower bounds (formed by intersection)
f20267(x::T20267{T}, y::T) where (T) = f20267(Any[1][1], x.inds)
@test Base.return_types(f20267, (Any, Any)) == Any[Union{}]

# issue #20704
f20704(::Int) = 1
Base.@pure b20704(@nospecialize(x)) = f20704(x)
@test b20704(42) === 1
@test_throws MethodError b20704(42.0)

bb20704() = b20704(Any[1.0][1])
@test_throws MethodError bb20704()

v20704() = Val{b20704(Any[1.0][1])}
@test_throws MethodError v20704()
@test Base.return_types(v20704, ()) == Any[Type{Val{1}}]

Base.@pure g20704(::Int) = 1
h20704(@nospecialize(x)) = g20704(x)
@test g20704(1) === 1
@test_throws MethodError h20704(1.2)

Base.@pure c20704() = (f20704(1.0); 1)
d20704() = c20704()
@test_throws MethodError d20704()

Base.@pure function a20704(x)
    rand()
    42
end
aa20704(x) = x(nothing)
@test code_typed(aa20704, (typeof(a20704),))[1][1].pure

#issue #21065, elision of _apply when splatted expression is not effect_free
function f21065(x,y)
    println("x=$x, y=$y")
    return x, y
end
g21065(x,y) = +(f21065(x,y)...)
function test_no_apply(expr::Expr)
    return all(test_no_apply, expr.args)
end
function test_no_apply(ref::GlobalRef)
    return ref.mod != Core || ref.name !== :_apply
end
test_no_apply(::Any) = true
@test all(test_no_apply, code_typed(g21065, Tuple{Int,Int})[1].first.code)

# issue #20033
# check return_type_tfunc for calls where no method matches
bcast_eltype_20033(f, A) = Core.Compiler.return_type(f, Tuple{eltype(A)})
err20033(x::Float64...) = prod(x)
@test bcast_eltype_20033(err20033, [1]) === Union{}
@test Base.return_types(bcast_eltype_20033, (typeof(err20033), Vector{Int},)) == Any[Type{Union{}}]
# return_type on builtins
@test Core.Compiler.return_type(tuple, Tuple{Int,Int8,Int}) === Tuple{Int,Int8,Int}

# issue #21088
@test Core.Compiler.return_type(typeof, Tuple{Int}) == Type{Int}

# Inference of constant svecs
@eval fsvecinf() = $(QuoteNode(Core.svec(Tuple{Int,Int}, Int)))[1]
@test Core.Compiler.return_type(fsvecinf, Tuple{}) == Type{Tuple{Int,Int}}

# nfields tfunc on `DataType`
let f = ()->Val{nfields(DataType[Int][1])}
    @test f() == Val{length(DataType.types)}
end

# inference on invalid getfield call
@eval _getfield_with_string_() = getfield($(1=>2), "")
@test Base.return_types(_getfield_with_string_, ()) == Any[Union{}]

# inference AST of a constant return value
f21175() = 902221
@test code_typed(f21175, ())[1].second === Int
# call again, so that the AST is built on-demand
let e = code_typed(f21175, ())[1].first.code[1]::Expr
    @test e.head === :return
    @test e.args[1] ∈ (902221, Core.QuoteNode(902221))
end

# issue #10207
mutable struct T10207{A, B}
    a::A
    b::B
end
@test code_typed(T10207, (Int,Any))[1].second == T10207{Int,T} where T

# issue #21410
f21410(::V, ::Pair{V,E}) where {V, E} = E
@test code_typed(f21410, Tuple{Ref, Pair{Ref{T},Ref{T}} where T<:Number})[1].second ==
    Type{E} where E <: (Ref{T} where T<:Number)

# issue #21369
function inf_error_21369(arg)
    if arg
        # invalid instantiation, causing throw during inference
        Complex{String}
    end
end
function break_21369()
    try
        error("uhoh")
    catch
        eval(:(inf_error_21369(false)))
        bt = catch_backtrace()
        i = 1
        local fr
        while true
            fr = Base.StackTraces.lookup(bt[i])[end]
            if !fr.from_c && fr.func !== :error
                break
            end
            i += 1
        end
        @test fr.func === :break_21369
        rethrow()
    end
end
@test_throws ErrorException break_21369()  # not TypeError

# issue #17003
abstract type AArray_17003{T,N} end
AVector_17003{T} = AArray_17003{T,1}

struct Nable_17003{T}
end

struct NArray_17003{T,N} <: AArray_17003{Nable_17003{T},N}
end

NArray_17003(::Array{T,N}) where {T,N} = NArray_17003{T,N}()

gl_17003 = [1, 2, 3]

f2_17003(item::AVector_17003) = nothing
f2_17003(::Any) = f2_17003(NArray_17003(gl_17003))

@test f2_17003(1) == nothing

# issue #20847
function segfaultfunction_20847(A::Vector{NTuple{N, T}}) where {N, T}
    B = reshape(reinterpret(T, A), (N, length(A)))
    return nothing
end

tuplevec_20847 = Tuple{Float64, Float64}[(0.0,0.0), (1.0,0.0)]

for A in (1,)
    @test segfaultfunction_20847(tuplevec_20847) == nothing
end

# Issue #20902, check that this doesn't error.
@generated function test_20902()
    quote
        10 + 11
    end
end
@test length(code_typed(test_20902, (), optimize = false)) == 1
@test length(code_typed(test_20902, (), optimize = false)) == 1

# normalization of arguments with constant Types as parameters
g21771(T) = T
f21771(::Val{U}) where {U} = Tuple{g21771(U)}
@test @inferred(f21771(Val{Int}())) === Tuple{Int}
@test @inferred(f21771(Val{Union{}}())) === Tuple{Union{}}
@test @inferred(f21771(Val{Integer}())) === Tuple{Integer}

# PR #28284, check that constants propagate through calls to new
struct t28284
  x::Int
end
f28284() = Val(t28284(1))
@inferred f28284()

# ...even if we have a non-bitstype
struct NonBitstype
    a::NTuple{N, Int} where N
    b::NTuple{N, Int} where N
end
function fNonBitsTypeConstants()
    val = NonBitstype((1,2),(3,4))
    Val((val.a[1],val.b[2]))
end
@test @inferred(fNonBitsTypeConstants()) === Val((1,4))

# missing method should be inferred as Union{}, ref https://github.com/JuliaLang/julia/issues/20033#issuecomment-282228948
@test Base.return_types(f -> f(1), (typeof((x::String) -> x),)) == Any[Union{}]

# issue #21653
# ensure that we don't try to resolve cycles using uncached edges
# but which also means we should still be storing the inference result from inferring the cycle
f21653() = f21653()
@test code_typed(f21653, Tuple{}, optimize=false)[1] isa Pair{CodeInfo, typeof(Union{})}
let meth = which(f21653, ())
    tt = Tuple{typeof(f21653)}
    mi = ccall(:jl_specializations_lookup, Any, (Any, Any), meth, tt)::Core.MethodInstance
    @test mi.cache.rettype === Union{}
end

# issue #22290
f22290() = return 3
for i in 1:3
    ir = sprint(io -> code_llvm(io, f22290, Tuple{}))
    @test occursin("julia_f22290", ir)
end

# constant inference of isdefined
let f(x) = isdefined(x, 2) ? 1 : ""
    @test Base.return_types(f, (Tuple{Int,Int},)) == Any[Int]
    @test Base.return_types(f, (Tuple{Int,},)) == Any[String]
end
let f(x) = isdefined(x, :re) ? 1 : ""
    @test Base.return_types(f, (ComplexF32,)) == Any[Int]
    @test Base.return_types(f, (Complex,)) == Any[Int]
end
let f(x) = isdefined(x, :NonExistentField) ? 1 : ""
    @test Base.return_types(f, (ComplexF32,)) == Any[String]
    @test Union{Int,String} <: Base.return_types(f, (AbstractArray,))[1]
end
import Core.Compiler: isdefined_tfunc
@test isdefined_tfunc(ComplexF32, Const(())) === Union{}
@test isdefined_tfunc(ComplexF32, Const(1)) === Const(true)
@test isdefined_tfunc(ComplexF32, Const(2)) === Const(true)
@test isdefined_tfunc(ComplexF32, Const(3)) === Const(false)
@test isdefined_tfunc(ComplexF32, Const(0)) === Const(false)
mutable struct SometimesDefined
    x
    function SometimesDefined()
        v = new()
        if rand(Bool)
            v.x = 0
        end
        return v
    end
end
@test isdefined_tfunc(SometimesDefined, Const(:x)) == Bool
@test isdefined_tfunc(SometimesDefined, Const(:y)) === Const(false)
@test isdefined_tfunc(Const(Base), Const(:length)) === Const(true)
@test isdefined_tfunc(Const(Base), Symbol) == Bool
@test isdefined_tfunc(Const(Base), Const(:NotCurrentlyDefinedButWhoKnows)) == Bool
@test isdefined_tfunc(Core.SimpleVector, Const(1)) === Const(false)
@test Const(false) ⊑ isdefined_tfunc(Const(:x), Symbol)
@test Const(false) ⊑ isdefined_tfunc(Const(:x), Const(:y))
@test isdefined_tfunc(Vector{Int}, Const(1)) == Const(false)
@test isdefined_tfunc(Vector{Any}, Const(1)) == Const(false)
@test isdefined_tfunc(Module, Any, Any) === Union{}
@test isdefined_tfunc(Module, Int) === Union{}
@test isdefined_tfunc(Tuple{Any,Vararg{Any}}, Const(0)) === Const(false)
@test isdefined_tfunc(Tuple{Any,Vararg{Any}}, Const(1)) === Const(true)
@test isdefined_tfunc(Tuple{Any,Vararg{Any}}, Const(2)) === Bool
@test isdefined_tfunc(Tuple{Any,Vararg{Any}}, Const(3)) === Bool

@noinline map3_22347(f, t::Tuple{}) = ()
@noinline map3_22347(f, t::Tuple) = (f(t[1]), map3_22347(f, Base.tail(t))...)
# issue #22347
let niter = 0
    map3_22347((1, 2, 3, 4)) do y
        niter += 1
        nothing
    end
    @test niter == 4
end

# issue #22875

typeargs = (Type{Int},)
@test Base.Core.Compiler.return_type((args...) -> one(args...), typeargs) === Int

typeargs = (Type{Int},Type{Int},Type{Int},Type{Int},Type{Int},Type{Int})
@test Base.Core.Compiler.return_type(promote_type, typeargs) === Type{Int}

# demonstrate that inference must converge
# while doing constant propagation
Base.@pure plus1(x) = x + 1
f21933(x::Val{T}) where {T} = f(Val(plus1(T)))
code_typed(f21933, (Val{1},))
Base.return_types(f21933, (Val{1},))

function count_specializations(method::Method)
    specs = method.specializations
    n = count(i -> isassigned(specs, i), 1:length(specs))
    return n
end

# demonstrate that inference can complete without waiting for MAX_TYPE_DEPTH
copy_dims_out(out) = ()
copy_dims_out(out, dim::Int, tail...) =  copy_dims_out((out..., dim), tail...)
copy_dims_out(out, dim::Colon, tail...) = copy_dims_out((out..., dim), tail...)
@test Base.return_types(copy_dims_out, (Tuple{}, Vararg{Union{Int,Colon}})) == Any[Tuple{}, Tuple{}, Tuple{}]
@test all(m -> 4 < count_specializations(m) < 15, methods(copy_dims_out)) # currently about 5

copy_dims_pair(out) = ()
copy_dims_pair(out, dim::Int, tail...) =  copy_dims_pair(out => dim, tail...)
copy_dims_pair(out, dim::Colon, tail...) = copy_dims_pair(out => dim, tail...)
@test Base.return_types(copy_dims_pair, (Tuple{}, Vararg{Union{Int,Colon}})) == Any[Tuple{}, Tuple{}, Tuple{}]
@test all(m -> 5 < count_specializations(m) < 15, methods(copy_dims_pair)) # currently about 7

@test isdefined_tfunc(typeof(NamedTuple()), Const(0)) === Const(false)
@test isdefined_tfunc(typeof(NamedTuple()), Const(1)) === Const(false)
@test isdefined_tfunc(typeof((a=1,b=2)), Const(:a)) === Const(true)
@test isdefined_tfunc(typeof((a=1,b=2)), Const(:b)) === Const(true)
@test isdefined_tfunc(typeof((a=1,b=2)), Const(:c)) === Const(false)
@test isdefined_tfunc(typeof((a=1,b=2)), Const(0)) === Const(false)
@test isdefined_tfunc(typeof((a=1,b=2)), Const(1)) === Const(true)
@test isdefined_tfunc(typeof((a=1,b=2)), Const(2)) === Const(true)
@test isdefined_tfunc(typeof((a=1,b=2)), Const(3)) === Const(false)
@test isdefined_tfunc(NamedTuple, Const(1)) == Bool
@test isdefined_tfunc(NamedTuple, Symbol) == Bool
@test Const(false) ⊑ isdefined_tfunc(NamedTuple{(:x,:y)}, Const(:z))
@test Const(true) ⊑ isdefined_tfunc(NamedTuple{(:x,:y)}, Const(1))
@test Const(false) ⊑ isdefined_tfunc(NamedTuple{(:x,:y)}, Const(3))
@test Const(true) ⊑ isdefined_tfunc(NamedTuple{(:x,:y)}, Const(:y))

# splatting an ::Any should still allow inference to use types of parameters preceding it
f22364(::Int, ::Any...) = 0
f22364(::String, ::Any...) = 0.0
g22364(x) = f22364(x, Any[[]][1]...)
@test @inferred(g22364(1)) === 0
@test @inferred(g22364("1")) === 0.0

function get_linfo(@nospecialize(f), @nospecialize(t))
    if isa(f, Core.Builtin)
        throw(ArgumentError("argument is not a generic function"))
    end
    # get the MethodInstance for the method match
    meth = which(f, t)
    t = Base.to_tuple_type(t)
    ft = isa(f, Type) ? Type{f} : typeof(f)
    tt = Tuple{ft, t.parameters...}
    precompile(tt) # does inference (calls jl_type_infer) on this signature
    (ti, env) = ccall(:jl_type_intersection_with_env, Ref{Core.SimpleVector}, (Any, Any), tt, meth.sig)
    return ccall(:jl_specializations_get_linfo, Ref{Core.MethodInstance},
                 (Any, Any, Any), meth, tt, env)
end

function test_const_return(@nospecialize(f), @nospecialize(t), @nospecialize(val))
    linfo = Core.Compiler.inf_for_methodinstance(get_linfo(f, t), Core.Compiler.get_world_counter())::Core.CodeInstance
    # If coverage is not enabled, make the check strict by requiring constant ABI
    # Otherwise, check the typed AST to make sure we return a constant.
    if Base.JLOptions().code_coverage == 0
        @test Core.Compiler.invoke_api(linfo) == 2
    end
    if Core.Compiler.invoke_api(linfo) == 2
        @test linfo.rettype_const == val
        return
    end
    ct = code_typed(f, t)
    @test length(ct) == 1
    ast = first(ct[1])
    ret_found = false
    for ex in ast.code::Vector{Any}
        if isa(ex, LineNumberNode)
            continue
        elseif isa(ex, Expr)
            if Core.Compiler.is_meta_expr_head(ex.head)
                continue
            elseif ex.head === :return
                # multiple returns
                @test !ret_found
                ret_found = true
                ret = ex.args[1]
                # return value mismatch
                @test ret === val || (isa(ret, QuoteNode) && (ret::QuoteNode).value === val)
                continue
            end
        end
        @test false || "Side effect expressions found $ex"
        return
    end
end

function find_call(code::Core.CodeInfo, @nospecialize(func), narg)
    for ex in code.code
        Meta.isexpr(ex, :(=)) && (ex = ex.args[2])
        isa(ex, Expr) || continue
        if ex.head === :call && length(ex.args) == narg
            farg = ex.args[1]
            if isa(farg, GlobalRef)
                if isdefined(farg.mod, farg.name) && isconst(farg.mod, farg.name)
                    farg = typeof(getfield(farg.mod, farg.name))
                end
            elseif isa(farg, Core.SSAValue)
                farg = Core.Compiler.widenconst(code.ssavaluetypes[farg.id])
            else
                farg = typeof(farg)
            end
            if farg === typeof(func)
                return true
            end
        end
    end
    return false
end

test_const_return(()->1, Tuple{}, 1)
test_const_return(()->sizeof(Int), Tuple{}, sizeof(Int))
test_const_return(()->sizeof(1), Tuple{}, sizeof(Int))
test_const_return(()->sizeof(DataType), Tuple{}, sizeof(DataType))
test_const_return(()->sizeof(1 < 2), Tuple{}, 1)
test_const_return(()->fieldtype(Dict{Int64,Nothing}, :age), Tuple{}, UInt)
test_const_return(@eval(()->Core.sizeof($(Array{Int,0}(undef)))), Tuple{}, sizeof(Int))
test_const_return(@eval(()->Core.sizeof($(Matrix{Float32}(undef, 2, 2)))), Tuple{}, 4 * 2 * 2)

# Make sure Core.sizeof with a ::DataType as inferred input type is inferred but not constant.
function sizeof_typeref(typeref)
    return Core.sizeof(typeref[])
end
@test @inferred(sizeof_typeref(Ref{DataType}(Int))) == sizeof(Int)
@test find_call(first(code_typed(sizeof_typeref, (Ref{DataType},))[1]), Core.sizeof, 2)
# Constant `Vector` can be resized and shouldn't be optimized to a constant.
const constvec = [1, 2, 3]
@eval function sizeof_constvec()
    return Core.sizeof($constvec)
end
@test @inferred(sizeof_constvec()) == sizeof(Int) * 3
@test find_call(first(code_typed(sizeof_constvec, ())[1]), Core.sizeof, 2)
push!(constvec, 10)
@test @inferred(sizeof_constvec()) == sizeof(Int) * 4

test_const_return((x)->isdefined(x, :re), Tuple{ComplexF64}, true)
isdefined_f3(x) = isdefined(x, 3)
@test @inferred(isdefined_f3(())) == false
@test find_call(first(code_typed(isdefined_f3, Tuple{Tuple{Vararg{Int}}})[1]), isdefined, 3)

let isa_tfunc = Core.Compiler.isa_tfunc
    @test isa_tfunc(Array, Const(AbstractArray)) === Const(true)
    @test isa_tfunc(Array, Type{AbstractArray}) === Const(true)
    @test isa_tfunc(Array, Type{AbstractArray{Int}}) == Bool
    @test isa_tfunc(Array{Real}, Type{AbstractArray{Int}}) === Const(false)
    @test isa_tfunc(Array{Real, 2}, Const(AbstractArray{Real, 2})) === Const(true)
    @test isa_tfunc(Array{Real, 2}, Const(AbstractArray{Int, 2})) === Const(false)
    @test isa_tfunc(DataType, Int) === Union{}
    @test isa_tfunc(DataType, Const(Type{Int})) === Bool
    @test isa_tfunc(DataType, Const(Type{Array})) === Bool
    @test isa_tfunc(UnionAll, Const(Type{Int})) === Bool # could be improved
    @test isa_tfunc(UnionAll, Const(Type{Array})) === Bool
    @test isa_tfunc(Union, Const(Union{Float32, Float64})) === Bool
    @test isa_tfunc(Union, Type{Union}) === Const(true)
    @test isa_tfunc(typeof(Union{}), Const(Int)) === Const(false)
    @test isa_tfunc(typeof(Union{}), Const(Union{})) === Const(false)
    @test isa_tfunc(typeof(Union{}), typeof(Union{})) === Const(false)
    @test isa_tfunc(typeof(Union{}), Union{}) === Union{} # any result is ok
    @test isa_tfunc(typeof(Union{}), Type{typeof(Union{})}) === Const(true)
    @test isa_tfunc(typeof(Union{}), Const(typeof(Union{}))) === Const(true)
    let c = Conditional(Core.SlotNumber(0), Const(Union{}), Const(Union{}))
        @test isa_tfunc(c, Const(Bool)) === Const(true)
        @test isa_tfunc(c, Type{Bool}) === Const(true)
        @test isa_tfunc(c, Const(Real)) === Const(true)
        @test isa_tfunc(c, Type{Real}) === Const(true)
        @test isa_tfunc(c, Const(Signed)) === Const(false)
        @test isa_tfunc(c, Type{Complex}) === Const(false)
        @test isa_tfunc(c, Type{Complex{T}} where T) === Const(false)
    end
    @test isa_tfunc(Val{1}, Type{Val{T}} where T) === Bool
    @test isa_tfunc(Val{1}, DataType) === Bool
    @test isa_tfunc(Any, Const(Any)) === Const(true)
    @test isa_tfunc(Any, Union{}) === Union{} # any result is ok
    @test isa_tfunc(Any, Type{Union{}}) === Const(false)
    @test isa_tfunc(Union{Int64, Float64}, Type{Real}) === Const(true)
    @test isa_tfunc(Union{Int64, Float64}, Type{Integer}) === Bool
    @test isa_tfunc(Union{Int64, Float64}, Type{AbstractArray}) === Const(false)
end

let subtype_tfunc = Core.Compiler.subtype_tfunc
    @test subtype_tfunc(Type{<:Array}, Const(AbstractArray)) === Const(true)
    @test subtype_tfunc(Type{<:Array}, Type{AbstractArray}) === Const(true)
    @test subtype_tfunc(Type{<:Array}, Type{AbstractArray{Int}}) == Bool
    @test subtype_tfunc(Type{<:Array{Real}}, Type{AbstractArray{Int}}) === Const(false)
    @test subtype_tfunc(Type{<:Array{Real, 2}}, Const(AbstractArray{Real, 2})) === Const(true)
    @test subtype_tfunc(Type{Array{Real, 2}}, Const(AbstractArray{Int, 2})) === Const(false)
    @test subtype_tfunc(DataType, Int) === Bool
    @test subtype_tfunc(DataType, Const(Type{Int})) === Bool
    @test subtype_tfunc(DataType, Const(Type{Array})) === Bool
    @test subtype_tfunc(UnionAll, Const(Type{Int})) === Bool
    @test subtype_tfunc(UnionAll, Const(Type{Array})) === Bool
    @test subtype_tfunc(Union, Const(Union{Float32, Float64})) === Bool
    @test subtype_tfunc(Union, Type{Union}) === Bool
    @test subtype_tfunc(Union{}, Const(Int)) === Const(true) # any result is ok
    @test subtype_tfunc(Union{}, Const(Union{})) === Const(true) # any result is ok
    @test subtype_tfunc(Union{}, typeof(Union{})) === Const(true) # any result is ok
    @test subtype_tfunc(Union{}, Union{}) === Const(true) # any result is ok
    @test subtype_tfunc(Union{}, Type{typeof(Union{})}) === Const(true) # any result is ok
    @test subtype_tfunc(Union{}, Const(typeof(Union{}))) === Const(true) # any result is ok
    @test subtype_tfunc(typeof(Union{}), Const(typeof(Union{}))) === Const(true) # Union{} <: typeof(Union{})
    @test subtype_tfunc(typeof(Union{}), Const(Int)) === Const(true) # Union{} <: Int
    @test subtype_tfunc(typeof(Union{}), Const(Union{})) === Const(true) # Union{} <: Union{}
    @test subtype_tfunc(typeof(Union{}), Type{typeof(Union{})}) === Const(true) # Union{} <: Union{}
    @test subtype_tfunc(typeof(Union{}), Type{typeof(Union{})}) === Const(true) # Union{} <: typeof(Union{})
    @test subtype_tfunc(typeof(Union{}), Type{Union{}}) === Const(true) # Union{} <: Union{}
    @test subtype_tfunc(Type{Union{}}, typeof(Union{})) === Const(true) # Union{} <: Union{}
    @test subtype_tfunc(Type{Union{}}, Const(typeof(Union{}))) === Const(true) # Union{} <: typeof(Union{})
    @test subtype_tfunc(Type{Union{}}, Const(Int)) === Const(true) # Union{} <: typeof(Union{})
    @test subtype_tfunc(Type{Union{}}, Any) === Const(true) # Union{} <: Any
    @test subtype_tfunc(Type{Union{}}, Union{Type{Int64}, Type{Float64}}) === Const(true)
    @test subtype_tfunc(Type{Union{}}, Union{Type{T}, Type{Float64}} where T) === Const(true)
    let c = Conditional(Core.SlotNumber(0), Const(Union{}), Const(Union{}))
        @test subtype_tfunc(c, Const(Bool)) === Const(true) # any result is ok
    end
    @test subtype_tfunc(Type{Val{1}}, Type{Val{T}} where T) === Bool
    @test subtype_tfunc(Type{Val{1}}, DataType) === Bool
    @test subtype_tfunc(Type, Type{Val{T}} where T) === Bool
    @test subtype_tfunc(Type{Val{T}} where T, Type) === Bool
    @test subtype_tfunc(Any, Const(Any)) === Const(true)
    @test subtype_tfunc(Type{Any}, Const(Any)) === Const(true)
    @test subtype_tfunc(Any, Union{}) === Bool # any result is ok
    @test subtype_tfunc(Type{Any}, Union{}) === Const(false) # any result is ok
    @test subtype_tfunc(Type, Union{}) === Bool # any result is ok
    @test subtype_tfunc(Type, Type{Union{}}) === Bool
    @test subtype_tfunc(Union{Type{Int64}, Type{Float64}}, Type{Real}) === Const(true)
    @test subtype_tfunc(Union{Type{Int64}, Type{Float64}}, Type{Integer}) === Bool
    @test subtype_tfunc(Union{Type{Int64}, Type{Float64}}, Type{AbstractArray}) === Const(false)
end

let egal_tfunc
    function egal_tfunc(a, b)
        r = Core.Compiler.egal_tfunc(a, b)
        @test r === Core.Compiler.egal_tfunc(b, a)
        return r
    end
    @test egal_tfunc(Const(12345.12345), Const(12344.12345 + 1)) == Const(true)
    @test egal_tfunc(Array, Const(Array)) === Const(false)
    @test egal_tfunc(Array, Type{Array}) === Const(false)
    @test egal_tfunc(Int, Int) == Bool
    @test egal_tfunc(Array, Array) == Bool
    @test egal_tfunc(Array, AbstractArray{Int}) == Bool
    @test egal_tfunc(Array{Real}, AbstractArray{Int}) === Const(false)
    @test egal_tfunc(Array{Real, 2}, AbstractArray{Real, 2}) === Bool
    @test egal_tfunc(Array{Real, 2}, AbstractArray{Int, 2}) === Const(false)
    @test egal_tfunc(DataType, Int) === Const(false)
    @test egal_tfunc(DataType, Const(Int)) === Bool
    @test egal_tfunc(DataType, Const(Array)) === Const(false)
    @test egal_tfunc(UnionAll, Const(Int)) === Const(false)
    @test egal_tfunc(UnionAll, Const(Array)) === Bool
    @test egal_tfunc(Union, Const(Union{Float32, Float64})) === Bool
    @test egal_tfunc(Const(Union{Float32, Float64}), Const(Union{Float32, Float64})) === Const(true)
    @test egal_tfunc(Type{Union{Float32, Float64}}, Type{Union{Float32, Float64}}) === Bool
    @test egal_tfunc(typeof(Union{}), typeof(Union{})) === Bool # could be improved
    @test egal_tfunc(Const(typeof(Union{})), Const(typeof(Union{}))) === Const(true)
    let c = Conditional(Core.SlotNumber(0), Const(Union{}), Const(Union{}))
        @test egal_tfunc(c, Const(Bool)) === Const(false)
        @test egal_tfunc(c, Type{Bool}) === Const(false)
        @test egal_tfunc(c, Const(Real)) === Const(false)
        @test egal_tfunc(c, Type{Real}) === Const(false)
        @test egal_tfunc(c, Const(Signed)) === Const(false)
        @test egal_tfunc(c, Type{Complex}) === Const(false)
        @test egal_tfunc(c, Type{Complex{T}} where T) === Const(false)
        @test egal_tfunc(c, Bool) === Bool
        @test egal_tfunc(c, Any) === Bool
    end
    let c = Conditional(Core.SlotNumber(0), Union{}, Const(Union{})) # === Const(false)
        @test egal_tfunc(c, Const(false)) === Conditional(c.var, c.elsetype, Union{})
        @test egal_tfunc(c, Const(true)) === Conditional(c.var, Union{}, c.elsetype)
        @test egal_tfunc(c, Const(nothing)) === Const(false)
        @test egal_tfunc(c, Int) === Const(false)
        @test egal_tfunc(c, Bool) === Bool
        @test egal_tfunc(c, Any) === Bool
    end
    let c = Conditional(Core.SlotNumber(0), Const(Union{}), Union{}) # === Const(true)
        @test egal_tfunc(c, Const(false)) === Conditional(c.var, Union{}, c.vtype)
        @test egal_tfunc(c, Const(true)) === Conditional(c.var, c.vtype, Union{})
        @test egal_tfunc(c, Const(nothing)) === Const(false)
        @test egal_tfunc(c, Int) === Const(false)
        @test egal_tfunc(c, Bool) === Bool
        @test egal_tfunc(c, Any) === Bool
    end
    @test egal_tfunc(Type{Val{1}}, Type{Val{T}} where T) === Bool
    @test egal_tfunc(Type{Val{1}}, DataType) === Bool
    @test egal_tfunc(Const(Any), Const(Any)) === Const(true)
    @test egal_tfunc(Any, Union{}) === Const(false) # any result is ok
    @test egal_tfunc(Type{Any}, Type{Union{}}) === Const(false)
    @test egal_tfunc(Union{Int64, Float64}, Real) === Bool
    @test egal_tfunc(Union{Int64, Float64}, Integer) === Bool
    @test egal_tfunc(Union{Int64, Float64}, AbstractArray) === Const(false)
end

using Core.Compiler: PartialStruct, nfields_tfunc, sizeof_tfunc, sizeof_nothrow
@test sizeof_tfunc(Const(Ptr)) === sizeof_tfunc(Union{Ptr, Int, Type{Ptr{Int8}}, Type{Int}}) === Const(Sys.WORD_SIZE ÷ 8)
@test sizeof_tfunc(Type{Ptr}) === Const(sizeof(Ptr))
@test sizeof_nothrow(Union{Ptr, Int, Type{Ptr{Int8}}, Type{Int}})
@test sizeof_nothrow(Const(Ptr))
@test sizeof_nothrow(Type{Ptr})
@test sizeof_nothrow(Type{Union{Ptr{Int}, Int}})
@test !sizeof_nothrow(Const(Tuple))
@test !sizeof_nothrow(Type{Vector{Int}})
@test !sizeof_nothrow(Type{Union{Int, String}})
@test sizeof_nothrow(String)
@test !sizeof_nothrow(Type{String})
@test sizeof_tfunc(Type{Union{Int64, Int32}}) == Const(Core.sizeof(Union{Int64, Int32}))
let PT = PartialStruct(Tuple{Int64,UInt64}, Any[Const(10, false), UInt64])
    @test sizeof_tfunc(PT) === Const(16)
    @test nfields_tfunc(PT) === Const(2)
    @test sizeof_nothrow(PT)
end

using Core.Compiler: typeof_tfunc
@test typeof_tfunc(Tuple{Vararg{Int}}) == Type{Tuple{Vararg{Int,N}}} where N
@test typeof_tfunc(Tuple{Any}) == Type{<:Tuple{Any}}
@test typeof_tfunc(Type{Array}) === DataType
@test typeof_tfunc(Type{<:Array}) === DataType
@test typeof_tfunc(Array{Int}) == Type{Array{Int,N}} where N
@test typeof_tfunc(AbstractArray{Int}) == Type{<:AbstractArray{Int,N}} where N
@test typeof_tfunc(Union{<:T, <:Real} where T<:Complex) == Union{Type{Complex{T}} where T<:Real, Type{<:Real}}

f_typeof_tfunc(x) = typeof(x)
@test Base.return_types(f_typeof_tfunc, (Union{<:T, Int} where T<:Complex,)) == Any[Union{Type{Int}, Type{Complex{T}} where T<:Real}]

function f23024(::Type{T}, ::Int) where T
    1 + 1
end
v23024 = 0
g23024(TT::Tuple{DataType}) = f23024(TT[1], v23024)
@test Base.return_types(f23024, (DataType, Any)) == Any[Int]
@test Base.return_types(g23024, (Tuple{DataType},)) == Any[Int]
@test g23024((UInt8,)) === 2

@test !Core.Compiler.isconstType(Type{typeof(Union{})}) # could be Core.TypeofBottom or Type{Union{}} at runtime
@test Base.return_types(supertype, (Type{typeof(Union{})},)) == Any[Any]

# issue #23685
struct Node23685{T}
end
@inline function update23685!(::Node23685{T}) where T
    convert(Node23685{T}, Node23685{Float64}())
end
h23685 = Node23685{Float64}()
f23685() = update23685!(h23685)
@test f23685() === h23685

let c(::Type{T}, x) where {T<:Array} = T,
    f() = c(Vector{Any[Int][1]}, [1])
    @test f() === Vector{Int}
end

# issue #13183
_false13183 = false
gg13183(x::X...) where {X} = (_false13183 ? gg13183(x, x) : 0)
@test gg13183(5) == 0

# test the external OptimizationState constructor
let linfo = get_linfo(Base.convert, Tuple{Type{Int64}, Int32}),
    world = UInt(23) # some small-numbered world that should be valid
    opt = Core.Compiler.OptimizationState(linfo, Core.Compiler.Params(world))
    # make sure the state of the properties look reasonable
    @test opt.src !== linfo.def.source
    @test length(opt.src.slotflags) == linfo.def.nargs <= length(opt.src.slotnames)
    @test opt.src.ssavaluetypes isa Vector{Any}
    @test !opt.src.inferred
    @test opt.mod === Base
    @test opt.max_valid === Core.Compiler.get_world_counter()
    @test opt.min_valid === Core.Compiler.min_world(opt.src) === UInt(1)
    @test opt.nargs == 3
end

# approximate static parameters due to unions
let T1 = Array{Float64}, T2 = Array{_1,2} where _1
    inference_test_copy(a::T) where {T<:Array} = ccall(:jl_array_copy, Ref{T}, (Any,), a)
    rt = Base.return_types(inference_test_copy, (Union{T1,T2},))[1]
    @test rt >: T1 && rt >: T2

    el(x::T) where {T} = eltype(T)
    rt = Base.return_types(el, (Union{T1,Array{Float32,2}},))[1]
    @test rt >: Union{Type{Float64}, Type{Float32}}

    g(x::Ref{T}) where {T} = T
    rt = Base.return_types(g, (Union{Ref{Array{Float64}}, Ref{Array{Float32}}},))[1]
    @test rt >: Union{Type{Array{Float64}}, Type{Array{Float32}}}
end

# Demonstrate IPO constant propagation (#24362)
f_constant(x) = convert(Int, x)
g_test_constant() = (f_constant(3) == 3 && f_constant(4) == 4 ? true : "BAD")
@test @inferred g_test_constant()

f_pure_add() = (1 + 1 == 2) ? true : "FAIL"
@test @inferred f_pure_add()

# inference of `T.mutable`
@test Core.Compiler.getfield_tfunc(Const(Int), Const(:mutable)) == Const(false)
@test Core.Compiler.getfield_tfunc(Const(Vector{Int}), Const(:mutable)) == Const(true)
@test Core.Compiler.getfield_tfunc(DataType, Const(:mutable)) == Bool

# getfield on abstract named tuples. issue #32698
import Core.Compiler.getfield_tfunc
@test getfield_tfunc(NamedTuple{(:id, :y), T} where {T <: Tuple{Int, Union{Float64, Missing}}},
                     Const(:y)) == Union{Missing, Float64}
@test getfield_tfunc(NamedTuple{(:id, :y), T} where {T <: Tuple{Int, Union{Float64, Missing}}},
                     Const(2)) == Union{Missing, Float64}
@test getfield_tfunc(NamedTuple{(:id, :y), T} where {T <: Tuple{Int, Union{Float64, Missing}}},
                     Symbol) == Union{Missing, Float64, Int}
@test getfield_tfunc(NamedTuple{<:Any, T} where {T <: Tuple{Int, Union{Float64, Missing}}},
                     Symbol) == Union{Missing, Float64, Int}
@test getfield_tfunc(NamedTuple{<:Any, T} where {T <: Tuple{Int, Union{Float64, Missing}}},
                     Int) == Union{Missing, Float64, Int}
@test getfield_tfunc(NamedTuple{<:Any, T} where {T <: Tuple{Int, Union{Float64, Missing}}},
                     Const(:x)) == Union{Missing, Float64, Int}

struct Foo_22708
    x::Ptr{Foo_22708}
end

f_22708(x::Int) = f_22708(Foo_22708, x)
f_22708(::Type{Foo_22708}, x) = bar_22708("x")
f_22708(x) = x
bar_22708(x) = f_22708(x)

@test bar_22708(1) == "x"

# mechanism for spoofing work-limiting heuristics and early generator expansion (#24852)
function _generated_stub(gen::Symbol, args::Vector{Any}, params::Vector{Any}, line, file, expand_early)
    stub = Expr(:new, Core.GeneratedFunctionStub, gen, args, params, line, file, expand_early)
    return Expr(:meta, :generated, stub)
end

f24852_kernel1(x, y::Tuple) = x * y[1][1][1]
f24852_kernel2(x, y::Tuple) = f24852_kernel1(x, (y,))
f24852_kernel3(x, y::Tuple) = f24852_kernel2(x, (y,))
f24852_kernel(x, y::Number) = f24852_kernel3(x, (y,))

function f24852_kernel_cinfo(fsig::Type)
    world = typemax(UInt) # FIXME
    sig, spvals, method = Base._methods_by_ftype(fsig, -1, world)[1]
    isdefined(method, :source) || return (nothing, :(f(x, y)))
    code_info = Base.uncompressed_ir(method)
    Meta.partially_inline!(code_info.code, Any[], sig, Any[spvals...], 1, 0, :propagate)
    if startswith(String(method.name), "f24852")
        for a in code_info.code
            if a isa Expr && a.head == :(=)
                a = a.args[2]
            end
            if a isa Expr && length(a.args) === 3 && a.head === :call
                pushfirst!(a.args, Core.SlotNumber(1))
            end
        end
    end
    pushfirst!(code_info.slotnames, Symbol("#self#"))
    pushfirst!(code_info.slotflags, 0x00)
    return method, code_info
end

function f24852_gen_cinfo_uninflated(X, Y, _, f, x, y)
    _, code_info = f24852_kernel_cinfo(Tuple{f, x, y})
    return code_info
end

function f24852_gen_cinfo_inflated(X, Y, _, f, x, y)
    method, code_info = f24852_kernel_cinfo(Tuple{f, x, y})
    code_info.method_for_inference_limit_heuristics = method
    return code_info
end

function f24852_gen_expr(X, Y, _, f, x, y) # deparse f(x::X, y::Y) where {X, Y}
    if f === typeof(f24852_kernel)
        f2 = :f24852_kernel3
    elseif f === typeof(f24852_kernel3)
        f2 = :f24852_kernel2
    elseif f === typeof(f24852_kernel2)
        f2 = :f24852_kernel1
    elseif f === typeof(f24852_kernel1)
        return :((x::$X) * (y::$Y)[1][1][1])
    else
        return :(error(repr(f)))
    end
    return :(f24852_late_expr($f2, x::$X, (y::$Y,)))
end

@eval begin
    function f24852_late_expr(f, x::X, y::Y) where {X, Y}
        $(_generated_stub(:f24852_gen_expr, Any[:self, :f, :x, :y],
                          Any[:X, :Y], @__LINE__, QuoteNode(Symbol(@__FILE__)), false))
        $(Expr(:meta, :generated_only))
        #= no body =#
    end
    function f24852_late_inflated(f, x::X, y::Y) where {X, Y}
        $(_generated_stub(:f24852_gen_cinfo_inflated, Any[:self, :f, :x, :y],
                          Any[:X, :Y], @__LINE__, QuoteNode(Symbol(@__FILE__)), false))
        $(Expr(:meta, :generated_only))
        #= no body =#
    end
    function f24852_late_uninflated(f, x::X, y::Y) where {X, Y}
        $(_generated_stub(:f24852_gen_cinfo_uninflated, Any[:self, :f, :x, :y],
                          Any[:X, :Y], @__LINE__, QuoteNode(Symbol(@__FILE__)), false))
        $(Expr(:meta, :generated_only))
        #= no body =#
    end
end

@eval begin
    function f24852_early_expr(f, x::X, y::Y) where {X, Y}
        $(_generated_stub(:f24852_gen_expr, Any[:self, :f, :x, :y],
                          Any[:X, :Y], @__LINE__, QuoteNode(Symbol(@__FILE__)), true))
        $(Expr(:meta, :generated_only))
        #= no body =#
    end
    function f24852_early_inflated(f, x::X, y::Y) where {X, Y}
        $(_generated_stub(:f24852_gen_cinfo_inflated, Any[:self, :f, :x, :y],
                          Any[:X, :Y], @__LINE__, QuoteNode(Symbol(@__FILE__)), true))
        $(Expr(:meta, :generated_only))
        #= no body =#
    end
    function f24852_early_uninflated(f, x::X, y::Y) where {X, Y}
        $(_generated_stub(:f24852_gen_cinfo_uninflated, Any[:self, :f, :x, :y],
                          Any[:X, :Y], @__LINE__, QuoteNode(Symbol(@__FILE__)), true))
        $(Expr(:meta, :generated_only))
        #= no body =#
    end
end

x, y = rand(), rand()
result = f24852_kernel(x, y)

@test result === f24852_late_expr(f24852_kernel, x, y)
@test Base.return_types(f24852_late_expr, typeof((f24852_kernel, x, y))) == Any[Any]
@test result === f24852_late_uninflated(f24852_kernel, x, y)
@test Base.return_types(f24852_late_uninflated, typeof((f24852_kernel, x, y))) == Any[Any]
@test result === f24852_late_uninflated(f24852_kernel, x, y)
@test Base.return_types(f24852_late_uninflated, typeof((f24852_kernel, x, y))) == Any[Any]

@test result === f24852_early_expr(f24852_kernel, x, y)
@test Base.return_types(f24852_early_expr, typeof((f24852_kernel, x, y))) == Any[Any]
@test result === f24852_early_uninflated(f24852_kernel, x, y)
@test Base.return_types(f24852_early_uninflated, typeof((f24852_kernel, x, y))) == Any[Any]
@test result === @inferred f24852_early_inflated(f24852_kernel, x, y)
@test Base.return_types(f24852_early_inflated, typeof((f24852_kernel, x, y))) == Any[Float64]

# TODO: test that `expand_early = true` + inflated `method_for_inference_limit_heuristics`
# can be used to tighten up some inference result.

f26339(T) = T === Union{} ? 1 : ""
g26339(T) = T === Int ? 1 : ""
@test Base.return_types(f26339, (Int,)) == Any[String]
@test Base.return_types(g26339, (Int,)) == Any[String]
@test Base.return_types(f26339, (Type{Int},)) == Any[String]
@test Base.return_types(g26339, (Type{Int},)) == Any[Int]
@test Base.return_types(f26339, (Type{Union{}},)) == Any[Int]
@test Base.return_types(g26339, (Type{Union{}},)) == Any[String]
@test Base.return_types(f26339, (typeof(Union{}),)) == Any[Int]
@test Base.return_types(g26339, (typeof(Union{}),)) == Any[String]
@test Base.return_types(f26339, (Type,)) == Any[Union{Int, String}]
@test Base.return_types(g26339, (Type,)) == Any[Union{Int, String}]

# Test that Conditional doesn't get widened to Bool too quickly
f25261() = (1, 1)
f25261(s) = i == 1 ? (1, 2) : nothing
function foo25261()
    next = f25261()
    while next !== nothing
        next = f25261(Core.getfield(next, 2))
    end
end
opt25261 = code_typed(foo25261, Tuple{}, optimize=false)[1].first.code
i = 1
# Skip to after the branch
while !Meta.isexpr(opt25261[i], :gotoifnot); global i += 1; end
foundslot = false
for expr25261 in opt25261[i:end]
    if expr25261 isa TypedSlot && expr25261.typ === Tuple{Int, Int}
        # This should be the assignment to the SSAValue into the getfield
        # call - make sure it's a TypedSlot
        global foundslot = true
    end
end
@test foundslot

function f25579(g)
    h = g[]
    t = (h === nothing)
    h = 3.0
    return t ? typeof(h) : typeof(h)
end
@test @inferred f25579(Ref{Union{Nothing, Int}}(nothing)) == Float64
@test @inferred f25579(Ref{Union{Nothing, Int}}(1)) == Float64
function g25579(g)
    h = g[]
    h = (h === nothing)
    return h ? typeof(h) : typeof(h)
end
@test @inferred g25579(Ref{Union{Nothing, Int}}(nothing)) == Bool
@test @inferred g25579(Ref{Union{Nothing, Int}}(1)) == Bool
function h25579(g)
    h = g[]
    t = (h === nothing)
    try
        h = -1.25
        error("continue at catch block")
    catch
    end
    return t ? typeof(h) : typeof(h)
end
@test Base.return_types(h25579, (Base.RefValue{Union{Nothing, Int}},)) ==
        Any[Union{Type{Float64}, Type{Int}, Type{Nothing}}]

f26172(v) = Val{length(Base.tail(ntuple(identity, v)))}() # Val(M-1)
g26172(::Val{0}) = ()
g26172(v) = (nothing, g26172(f26172(v))...)
@test @inferred(g26172(Val(10))) === ntuple(_ -> nothing, 10)

function conflicting_assignment_conditional()
    x = iterate([])
    if x === (x = 4; nothing)
        return x
    end
    return 5
end
@test @inferred(conflicting_assignment_conditional()) === 4

# 26826 constant prop through varargs

struct Foo26826{A,B}
    a::A
    b::B
end

x26826 = rand()

apply26826(f, args...) = f(args...)

# We use getproperty to drive these tests because it requires constant
# propagation in order to lower to a well-inferred getfield call.
f26826(x) = apply26826(Base.getproperty, Foo26826(1, x), :b)

@test @inferred(f26826(x26826)) === x26826

getfield26826(x, args...) = Base.getproperty(x, getfield(args, 2))

g26826(x) = getfield26826(x, :a, :b)

@test @inferred(g26826(Foo26826(1, x26826))) === x26826

# Somewhere in here should be a single getfield call, and it should be inferred as Float64.
# If this test is broken (especially if inference is getting a correct, but loose result,
# like a Union) then it's potentially an indication that the optimizer isn't hitting the
# InferenceResult cache properly for varargs methods.
let ct = Core.Compiler.code_typed(f26826, (Float64,))[1]
    typed_code, retty = ct.first, ct.second
    found_poorly_typed_getfield_call = false
    for i = 1:length(typed_code.code)
        stmt = typed_code.code[i]
        rhs = Meta.isexpr(stmt, :(=)) ? stmt.args[2] : stmt
        if Meta.isexpr(rhs, :call) && rhs.args[1] == GlobalRef(Base, :getfield) && typed_code.ssavaluetypes[i] !== Float64
            found_poorly_typed_getfield_call = true
        end
    end
    @test !found_poorly_typed_getfield_call && retty === Float64
end

# 27059 fix fieldtype vararg and union handling

f27059(::Type{T}) where T = i -> fieldtype(T, i)
T27059 = Tuple{Float64,Vararg{Float32}}
@test f27059(T27059)(2) === fieldtype(T27059, 2) === Float32
@test f27059(Union{T27059,Tuple{Vararg{Symbol}}})(2) === Union{Float32,Symbol}
@test fieldtype(Union{Tuple{Int,Symbol},Tuple{Float64,String}}, 1) === Union{Int,Float64}
@test fieldtype(Union{Tuple{Int,Symbol},Tuple{Float64,String}}, 2) === Union{Symbol,String}
@test fieldtype(Union{Tuple{T,Symbol},Tuple{S,String}} where {T<:Number,S<:T}, 1) === Union{S,T} where {T<:Number,S<:T}

# PR #27068, improve `ifelse` inference

@noinline _f_ifelse_isa_() = rand(Bool) ? 1 : nothing
function _g_ifelse_isa_()
    x = _f_ifelse_isa_()
    ifelse(isa(x, Nothing), 1, x)
end
@test Base.return_types(_g_ifelse_isa_, ()) == [Int]

# Equivalence of Const(T.instance) and T for singleton types
@test Const(nothing) ⊑ Nothing && Nothing ⊑ Const(nothing)

# Don't pessimize apply_type to anything worse than Type and yield Bottom for invalid Unions
@test Core.Compiler.return_type(Core.apply_type, Tuple{Type{Union}}) == Type{Union{}}
@test Core.Compiler.return_type(Core.apply_type, Tuple{Type{Union},Any}) == Type
@test Core.Compiler.return_type(Core.apply_type, Tuple{Type{Union},Any,Any}) == Type
@test Core.Compiler.return_type(Core.apply_type, Tuple{Type{Union},Int}) == Union{}
@test Core.Compiler.return_type(Core.apply_type, Tuple{Type{Union},Any,Int}) == Union{}
@test Core.Compiler.return_type(Core.apply_type, Tuple{Any}) == Type
@test Core.Compiler.return_type(Core.apply_type, Tuple{Any,Any}) == Type

# PR 27351, make sure optimized type intersection for method invalidation handles typevars

abstract type AbstractT27351 end
struct T27351 <: AbstractT27351 end
for i27351 in 1:15
    @eval f27351(::Val{$i27351}, ::AbstractT27351, ::AbstractT27351) = $i27351
end
f27351(::T, ::T27351, ::T27351) where {T} = 16
@test_throws MethodError f27351(Val(1), T27351(), T27351())

# Domsort stress test (from JLD2.jl) - Issue #27625
function JLD2_hash(k::Ptr{UInt8}, n::Integer=length(k), initval::UInt32=UInt32(0))
    # Set up the internal state
    a = b = c = 0xdeadbeef + convert(UInt32, n) + initval

    ptr = k
    @inbounds while n > 12
        a += unsafe_load(convert(Ptr{UInt32}, ptr))
        ptr += 4
        b += unsafe_load(convert(Ptr{UInt32}, ptr))
        ptr += 4
        c += unsafe_load(convert(Ptr{UInt32}, ptr))
        (a, b, c) = mix(a, b, c)
        ptr += 4
        n -= 12
    end
    @inbounds if n > 0
        if n == 12
            c += unsafe_load(convert(Ptr{UInt32}, ptr+8))
            @goto n8
        elseif n == 11
            c += UInt32(unsafe_load(Ptr{UInt8}(ptr+10)))<<16
            @goto n10
        elseif n == 10
            @label n10
            c += UInt32(unsafe_load(Ptr{UInt8}(ptr+9)))<<8
            @goto n9
        elseif n == 9
            @label n9
            c += unsafe_load(ptr+8)
            @goto n8
        elseif n == 8
            @label n8
            b += unsafe_load(convert(Ptr{UInt32}, ptr+4))
            @goto n4
        elseif n == 7
            @label n7
            b += UInt32(unsafe_load(Ptr{UInt8}(ptr+6)))<<16
            @goto n6
        elseif n == 6
            @label n6
            b += UInt32(unsafe_load(Ptr{UInt8}(ptr+5)))<<8
            @goto n5
        elseif n == 5
            @label n5
            b += unsafe_load(ptr+4)
            @goto n4
        elseif n == 4
            @label n4
            a += unsafe_load(convert(Ptr{UInt32}, ptr))
        elseif n == 3
            @label n3
            a += UInt32(unsafe_load(Ptr{UInt8}(ptr+2)))<<16
            @goto n2
        elseif n == 2
            @label n2
            a += UInt32(unsafe_load(Ptr{UInt8}(ptr+1)))<<8
            @goto n1
        elseif n == 1
            @label n1
            a += unsafe_load(ptr)
        end
        c = a + b + c
    end
    c
end
@test isa(code_typed(JLD2_hash, Tuple{Ptr{UInt8}, Int, UInt32}), Array)

# issue #19668
struct Foo19668
    Foo19668(; kwargs...) = new()
end
@test Base.return_types(Foo19668, ()) == [Foo19668]

# this `if` statement is necessary; make sure front-end var promotion isn't fooled
# by simple control flow.
if true
    struct Bar19668
        x
        Bar19668(; x=true) = new(x)
    end
end
@test Base.return_types(Bar19668, ()) == [Bar19668]

if false
    struct RD19668
        x
        RD19668() = new(0)
    end
else
    struct RD19668
        x
        RD19668(; x = true) = new(x)
    end
end
@test Base.return_types(RD19668, ()) == [RD19668]

# issue #15276
function f15276(x)
    if x > 1
    else
        y = 2
        z->y
    end
end
@test Base.return_types(f15276(1), (Int,)) == [Int]

# issue #29326
function f29326()::Any
    begin
        a = 1
        (() -> a)()
    end
end
@test Base.return_types(f29326, ()) == [Int]

function g15276()
    spp = Int[0]
    sol = [spp[i] for i=1:0]
    if false
        spp[1]
    end
    sol
end
@test g15276() isa Vector{Int}

function inbounds_30563()
    local y
    @inbounds for i in 1:10
        y = (m->2i)(0)
    end
    return y
end
@test Base.return_types(inbounds_30563, ()) == Any[Int]

function ifs_around_var_capture()
    if false end
    x = 1
    if false end
    f = y->x
    f(0)
end
@test Base.return_types(ifs_around_var_capture, ()) == Any[Int]

# issue #27316 - inference shouldn't hang on these
f27316(::Vector) = nothing
f27316(::Any) = f27316(Any[][1]), f27316(Any[][1])
let expected = NTuple{2, Union{Nothing, NTuple{2, Union{Nothing, Tuple{Any, Any}}}}}
    @test Tuple{Nothing, Nothing} <: only(Base.return_types(f27316, Tuple{Int})) == expected # we may be able to improve this bound in the future
end
function g27316()
    x = nothing
    while rand() < 0.5
        x = (x,)
    end
    return x
end
@test Tuple{Tuple{Nothing}} <: only(Base.return_types(g27316, Tuple{})) == Union{Nothing, Tuple{Any}} # we may be able to improve this bound in the future
const R27316 = Tuple{Tuple{Vector{T}}} where T
h27316_(x) = (x,)
h27316_(x::Tuple{Vector}) = (Any[x][1],)::R27316 # a UnionAll of a Tuple, not vice versa!
function h27316()
    x = [1]
    while rand() < 0.5
        x = h27316_(x)
    end
    return x
end
@test Tuple{Tuple{Vector{Int}}} <: only(Base.return_types(h27316, Tuple{})) == Union{Vector{Int}, Tuple{Any}} # we may be able to improve this bound in the future

# PR 27434, inference when splatting iterators with type-based state
splat27434(x) = (x...,)
struct Iterator27434
    x::Int
    y::Int
    z::Int
end
Base.iterate(i::Iterator27434) = i.x, Val(1)
Base.iterate(i::Iterator27434, ::Val{1}) = i.y, Val(2)
Base.iterate(i::Iterator27434, ::Val{2}) = i.z, Val(3)
Base.iterate(::Iterator27434, ::Any) = nothing
@test @inferred(splat27434(Iterator27434(1, 2, 3))) == (1, 2, 3)
@test @inferred((1, 2, 3) == (1, 2, 3))
@test Core.Compiler.return_type(splat27434, Tuple{typeof(Iterators.repeated(1))}) == Union{}

# issue #32465
let rt = Base.return_types(splat27434, (NamedTuple{(:x,), Tuple{T}} where T,))
    @test rt == Any[Tuple{Any}]
    @test !Base.has_free_typevars(rt[1])
end

# issue #27078
f27078(T::Type{S}) where {S} = isa(T, UnionAll) ? f27078(T.body) : T
T27078 = Vector{Vector{T}} where T
@test f27078(T27078) === T27078.body

# issue #28070
g28070(f, args...) = f(args...)
@test @inferred g28070(Core._apply, Base.:/, (1.0, 1.0)) == 1.0

# issue #28079
struct Foo28079 end
@inline h28079(x, args...) = g28079(x, args...)
@inline g28079(::Any, f, args...) = f(args...)
test28079(p, n, m) = h28079(Foo28079(), Base.pointerref, p, n, m)
cinfo_unoptimized = code_typed(test28079, (Ptr{Float32}, Int, Int); optimize=false)[].first
cinfo_optimized = code_typed(test28079, (Ptr{Float32}, Int, Int); optimize=true)[].first
@test cinfo_unoptimized.ssavaluetypes[end-1] === cinfo_optimized.ssavaluetypes[end-1] === Float32

# issue #27907
ig27907(T::Type, N::Integer, offsets...) = ig27907(T, T, N, offsets...)

function ig27907(::Type{T}, ::Type, N::Integer, offsets...) where {T}
    if length(offsets) < N
        return typeof(ig27907(T, N, offsets..., 0))
    else
        return 0
    end
end

@test ig27907(Int, Int, 1, 0) == 0

# issue #28279
function f28279(b::Bool)
    i = 1
    while i > b
        i -= 1
    end
    if b end
    return i + 1
end
code28279 = code_lowered(f28279, (Bool,))[1].code
oldcode28279 = deepcopy(code28279)
ssachangemap = fill(0, length(code28279))
labelchangemap = fill(0, length(code28279))
worklist = Int[]
let i
    for i in 1:length(code28279)
        stmt = code28279[i]
        if Meta.isexpr(stmt, :gotoifnot)
            push!(worklist, i)
            ssachangemap[i] = 1
            if i < length(code28279)
                labelchangemap[i + 1] = 1
            end
        end
    end
end
Core.Compiler.renumber_ir_elements!(code28279, ssachangemap, labelchangemap)
@test length(code28279) === length(oldcode28279)
offset = 1
let i
    for i in 1:length(code28279)
        if i == length(code28279)
            @test Meta.isexpr(code28279[i], :return)
            @test Meta.isexpr(oldcode28279[i], :return)
            @test code28279[i].args[1].id == (oldcode28279[i].args[1].id + offset - 1)
        elseif Meta.isexpr(code28279[i], :gotoifnot)
            @test Meta.isexpr(oldcode28279[i], :gotoifnot)
            @test code28279[i].args[1] == oldcode28279[i].args[1]
            @test code28279[i].args[2] == (oldcode28279[i].args[2] + offset)
            global offset += 1
        else
            @test code28279[i] == oldcode28279[i]
        end
    end
end

# issue #28356
# unit test to make sure countunionsplit overflows gracefully
# we don't care what number is returned as long as it's large
@test Core.Compiler.countunionsplit(Any[Union{Int32,Int64} for i=1:80]) > 100000

# make sure compiler doesn't hang in union splitting

struct S28356{T<:Union{Float64,Float32}}
x1::T
x2::T
x3::T
x4::T
x5::T
x6::T
x7::T
x8::T
x9::T
x10::T
x11::T
x12::T
x13::T
x14::T
x15::T
x16::T
x17::T
x18::T
x19::T
x20::T
x21::T
x22::T
x23::T
x24::T
x25::T
x26::T
x27::T
x28::T
x29::T
x30::T
x31::T
x32::T
x33::T
x34::T
x35::T
x36::T
x37::T
x38::T
x39::T
x40::T
x41::T
x42::T
x43::T
x44::T
x45::T
x46::T
x47::T
x48::T
x49::T
x50::T
x51::T
x52::T
x53::T
x54::T
x55::T
x56::T
x57::T
x58::T
x59::T
x60::T
x61::T
x62::T
x63::T
x64::T
x65::T
x66::T
x67::T
x68::T
x69::T
x70::T
x71::T
x72::T
x73::T
x74::T
x75::T
x76::T
x77::T
x78::T
x79::T
x80::T
end

function f28356(::Type{T}) where {T<:Union{Float64,Float32}}
    S28356(T(0),T(0),T(0),T(0),T(0),T(0),T(0),T(0),T(0),T(0),T(0),T(0),T(0),T(0),T(0),T(0),T(0),T(0),T(0),T(0),T(0),T(0),T(0),T(0),T(0),T(0),T(0),T(0),T(0),T(0),T(0),T(0),T(0),T(0),T(0),T(0),T(0),T(0),T(0),T(0),T(0),T(0),T(0),T(0),T(0),T(0),T(0),T(0),T(0),T(0),T(0),T(0),T(0),T(0),T(0),T(0),T(0),T(0),T(0),T(0),T(0),T(0),T(0),T(0),T(0),T(0),T(0),T(0),T(0),T(0),T(0),T(0),T(0),T(0),T(0),T(0),T(0),T(0),T(0),T(0))
end

h28356() = f28356(Any[Float64][1])

@test h28356() isa S28356{Float64}

# Issue #28444
mutable struct foo28444
    a::Int
    b::Int
end
function bar28444()
    a = foo28444(1, 2)
    c, d = a.a, a.b
    e = (c, d)
    e[1]
end
@test bar28444() == 1

# issue #28641
struct VoxelIndices{T <: Integer}
    voxCrnrPos::NTuple{8,NTuple{3,T}}
    voxEdgeCrnrs::NTuple{19, NTuple{2,T}}
    voxEdgeDir::NTuple{19,T}
    voxEdgeIx::NTuple{8,NTuple{8,T}}
    subTets::NTuple{6,NTuple{4,T}}
    tetEdgeCrnrs::NTuple{6,NTuple{2,T}}
    tetTri::NTuple{16,NTuple{6,T}}
end
f28641(x::VoxelIndices, f) = getfield(x, f)
@test Base.return_types(f28641, (Any,Symbol)) == Any[Tuple]

# issue #29036
function f29036(s, i)
    val, i = iterate(s, i)
    val
end
@test Base.return_types(f29036, (String, Int)) == Any[Char]

# issue #26729
module I26729
struct Less{O}
    is_less::O
end

struct By{T,O}
    by::T
    is_less::O
end

struct Reverse{O}
    is_less::O
end

function get_order(by = identity, func = isless, rev = false)
    ord = By(by, Less(func))
    rev ? Reverse(ord) : ord
end

get_order_kwargs(; by = identity, func = isless, rev = false) = get_order(by, func, rev)

# test that this doesn't cause an internal error
get_order_kwargs()
end

# Test that tail-like functions don't block constant propagation
my_tail_const_prop(i, tail...) = tail
function foo_tail_const_prop()
    Val{my_tail_const_prop(1,2,3,4)}()
end
@test (@inferred foo_tail_const_prop()) == Val{(2,3,4)}()

# PR #28955

a28955(f, args...) = f(args...)
b28955(args::Tuple) = a28955(args...)
c28955(args...) = b28955(args)
d28955(f, x, y) = c28955(f, Bool, x, y)
f28955(::Type{Bool}, x, y) = x
f28955(::DataType, x, y) = y

@test @inferred(d28955(f28955, 1, 2.0)) === 1

function g28955(x, y)
    _1 = tuple(Bool)
    _2 = isa(y, Int) ? nothing : _1
    _3 = tuple(_1..., x...)
    return getfield(_3, 1)
end

@test @inferred(g28955((1,), 1.0)) === Bool

# Test that inlining can look through repeated _applys
foo_inlining_apply(args...) = ccall(:jl_, Nothing, (Any,), args[1])
bar_inlining_apply() = Core._apply(Core._apply, (foo_inlining_apply,), ((1,),))
let ci = code_typed(bar_inlining_apply, Tuple{})[1].first
    @test length(ci.code) == 2
    @test ci.code[1].head == :foreigncall
end

# Test that inference can infer .instance of types
f_instance(::Type{T}) where {T} = T.instance
@test @inferred(f_instance(Nothing)) === nothing

# test for some limit-cycle caching poisoning
_false30098 = false
f30098() = _false30098 ? g30098() : 3
g30098() = (h30098(:f30098); 4)
h30098(f) = getfield(@__MODULE__, f)()
@test @inferred(g30098()) == 4 # make sure that this
@test @inferred(f30098()) == 3 # doesn't pollute the inference cache of this

# issue #30394
mutable struct Base30394
    a::Int
end

mutable struct Foo30394
    foo_inner::Base30394
    Foo30394() = new(Base30394(1))
end

mutable struct Foo30394_2
    foo_inner::Foo30394
    Foo30394_2() = new(Foo30394())
end

f30394(foo::T1, ::Type{T2}) where {T2, T1 <: T2} = foo

f30394(foo, T2) = f30394(foo.foo_inner, T2)

@test Base.return_types(f30394, (Foo30394_2, Type{Base30394})) == Any[Base30394]

# PR #30385

g30385(args...) = h30385(args...)
h30385(f, args...) = f(args...)
f30385(T, y) = g30385(getfield, g30385(tuple, T, y), 1)
k30385(::Type{AbstractFloat}) = 1
k30385(x) = "dummy"
j30385(T, y) = k30385(f30385(T, y))

@test @inferred(j30385(AbstractFloat, 1)) == 1
@test @inferred(j30385(:dummy, 1)) == "dummy"

@test Base.return_types(Tuple, (NamedTuple{<:Any,Tuple{Any,Int}},)) == Any[Tuple{Any,Int}]
@test Base.return_types(Base.splat(tuple), (typeof((a=1,)),)) == Any[Tuple{Int}]

# test that return_type_tfunc isn't affected by max_methods differently than return_type
_rttf_test(::Int8) = 0
_rttf_test(::Int16) = 0
_rttf_test(::Int32) = 0
_rttf_test(::Int64) = 0
_rttf_test(::Int128) = 0
_call_rttf_test() = Core.Compiler.return_type(_rttf_test, Tuple{Any})
@test Core.Compiler.return_type(_rttf_test, Tuple{Any}) === Int
@test _call_rttf_test() === Int

f_with_Type_arg(::Type{T}) where {T} = T
@test Base.return_types(f_with_Type_arg, (Any,)) == Any[Type]
@test Base.return_types(f_with_Type_arg, (Type{Vector{T}} where T,)) == Any[Type{Vector{T}} where T]

# Generated functions that only reference some of their arguments
@inline function my_ntuple(f::F, ::Val{N}) where {F,N}
    N::Int
    (N >= 0) || throw(ArgumentError(string("tuple length should be ≥0, got ", N)))
    if @generated
        quote
            @Base.nexprs $N i -> t_i = f(i)
            @Base.ncall $N tuple t
        end
    else
        Tuple(f(i) for i = 1:N)
    end
end
call_ntuple(a, b) = my_ntuple(i->(a+b; i), Val(4))
@test Base.return_types(call_ntuple, Tuple{Any,Any}) == [NTuple{4, Int}]
@test length(code_typed(my_ntuple, Tuple{Any, Val{4}})) == 1
@test_throws ErrorException code_typed(my_ntuple, Tuple{Any, Val})

@generated unionall_sig_generated(::Vector{T}, b::Vector{S}) where {T, S} = :($b)
@test length(code_typed(unionall_sig_generated, Tuple{Any, Vector{Int}})) == 1

# Test that we don't limit recursions on the number of arguments, even if the
# arguments themselves are getting more complex
f_incr(x::Tuple, y::Tuple, args...) = f_incr((x, y), args...)
f_incr(x::Tuple) = x
@test @inferred(f_incr((), (), (), (), (), (), (), ())) ==
    ((((((((), ()), ()), ()), ()), ()), ()), ())

# Test PartialStruct for closures
@noinline use30783(x) = nothing
function foo30783(b)
    a = 1
    f = ()->(use30783(b); Val(a))
    f()
end
@test @inferred(foo30783(2)) == Val(1)

# PartialStruct tmerge
using Core.Compiler: PartialStruct, tmerge, Const, ⊑
struct FooPartial
    a::Int
    b::Int
    c::Int
end
let PT1 = PartialStruct(FooPartial, Any[Const(1), Const(2), Int]),
    PT2 = PartialStruct(FooPartial, Any[Const(1), Int, Int]),
    PT3 = PartialStruct(FooPartial, Any[Const(1), Int, Const(3)])

    @test PT1 ⊑ PT2
    @test !(PT1 ⊑ PT3) && !(PT2 ⊑ PT1)
    let (==) = (a, b)->(a ⊑ b && b ⊑ a)
        @test tmerge(PT1, PT3) == PT2
    end
end

# issue 31164
struct NoInit31164
    a::Int
    b::Any
    NoInit31164(a::Int) = new(a)
    NoInit31164(a::Int, b) = new(a, b)
end

@eval function foo31164(b, x)
    if b
       a = NoInit31164(1, x)
    else
       a = $(NoInit31164(1))
    end
    return a
end

@test_nowarn code_typed(foo31164, Tuple{Bool, Int}; optimize=false)

# there are errors when these functions are defined inside the @testset
f28762(::Type{<:AbstractArray{T}}) where {T} = T
f28762(::Type{<:AbstractArray}) = Any
g28762(::Type{X}) where {X} = Array{eltype(X)}(undef, 0)
h28762(::Type{X}) where {X} = Array{f28762(X)}(undef, 0)

@testset "@inferred bug from #28762" begin
    # this works since Julia 1.1
    @test (@inferred eltype(Array)) == Any
    @test (@inferred f28762(Array)) == Any
    @inferred g28762(Array{Int})
    @inferred h28762(Array{Int})
    @inferred g28762(Array)
    @inferred h28762(Array)
end

# issue #31663
module I31663
abstract type AbstractNode end

struct Node{N1<:AbstractNode, N2<:AbstractNode} <: AbstractNode
    a::N1
    b::N2
end

struct Leaf <: AbstractNode
end

function gen_nodes(qty::Integer) :: AbstractNode
    @assert qty > 0
    result = Leaf()
    for i in 1:qty
        result = Node(result, Leaf())
    end
    return result
end
end
@test count(==('}'), string(I31663.gen_nodes(50))) == 1275

# issue #31572
struct MixedKeyDict{T<:Tuple} #<: AbstractDict{Any,Any}
    dicts::T
end
Base.merge(f::Function, d::MixedKeyDict, others::MixedKeyDict...) = _merge(f, (), d.dicts, (d->d.dicts).(others)...)
Base.merge(f, d::MixedKeyDict, others::MixedKeyDict...) = _merge(f, (), d.dicts, (d->d.dicts).(others)...)
function _merge(f, res, d, others...)
    ofsametype, remaining = _alloftype(Base.heads(d), ((),), others...)
    return _merge(f, (res..., merge(f, ofsametype...)), Base.tail(d), remaining...)
end
_merge(f, res, ::Tuple{}, others...) = _merge(f, res, others...)
_merge(f, res, d) = MixedKeyDict((res..., d...))
_merge(f, res, ::Tuple{}) = MixedKeyDict(res)
function _alloftype(ofdesiredtype::Tuple{Vararg{D}}, accumulated, d::Tuple{D,Vararg}, others...) where D
    return _alloftype((ofdesiredtype..., first(d)),
                      (Base.front(accumulated)..., (last(accumulated)..., Base.tail(d)...), ()),
                      others...)
end
function _alloftype(ofdesiredtype, accumulated, d, others...)
    return _alloftype(ofdesiredtype,
                      (Base.front(accumulated)..., (last(accumulated)..., first(d))),
                      Base.tail(d), others...)
end
function _alloftype(ofdesiredtype, accumulated, ::Tuple{}, others...)
    return _alloftype(ofdesiredtype,
                      (accumulated..., ()),
                      others...)
end
_alloftype(ofdesiredtype, accumulated) = ofdesiredtype, Base.front(accumulated)
let
    d = MixedKeyDict((Dict(1 => 3), Dict(4. => 2)))
    e = MixedKeyDict((Dict(1 => 7), Dict(5. => 9)))
    @test merge(+, d, e).dicts == (Dict(1 => 10), Dict(4.0 => 2, 5.0 => 9))
    f = MixedKeyDict((Dict(2 => 7), Dict(5. => 11)))
    @test merge(+, d, e, f).dicts == (Dict(1 => 10, 2 => 7), Dict(4.0 => 2, 5.0 => 20))
end

# Issue #31974
f31974(a::UnitRange) = (if first(a) <= last(a); f31974((first(a)+1):last(a)); end; a)
f31974(n::Int) = f31974(1:n)
# This query hangs if type inference improperly attempts to const prop
# call cycles.
@test code_typed(f31974, Tuple{Int}) !== nothing

f_overly_abstract_complex() = Complex(Ref{Number}(1)[])
@test Base.return_types(f_overly_abstract_complex, Tuple{}) == [Complex]

# Issue 26724
const IntRange = AbstractUnitRange{<:Integer}
const DenseIdx = Union{IntRange,Integer}
@inline foo_26724(result) =
    (result...,)
@inline foo_26724(result, i::Integer, I::DenseIdx...) =
    foo_26724(result, I...)
@inline foo_26724(result, r::IntRange, I::DenseIdx...) =
    foo_26724((result..., length(r)), I...)
@test @inferred(foo_26724((), 1:4, 1:5, 1:6)) === (4, 5, 6)

# Non uniformity in expresions with PartialTypeVar
@test Core.Compiler.:⊑(Core.Compiler.PartialTypeVar(TypeVar(:N), true, true), TypeVar)
let N = TypeVar(:N)
    @test Core.Compiler.apply_type_nothrow([Core.Compiler.Const(NTuple),
        Core.Compiler.PartialTypeVar(N, true, true),
        Core.Compiler.Const(Any)], Type{Tuple{Vararg{Any,N}}})
end

# issue #33768
function f33768()
    Core._apply()
end
function g33768()
    a = Any[iterate, tuple, (1,)]
    Core._apply_iterate(a...)
end
function h33768()
    Core._apply_iterate()
end
@test_throws ArgumentError f33768()
@test Base.return_types(f33768, ()) == Any[Union{}]
@test g33768() === (1,)
@test Base.return_types(g33768, ()) == Any[Any]
@test_throws ArgumentError h33768()
@test Base.return_types(h33768, ()) == Any[Union{}]

# constant prop of `Symbol("")`
f_getf_computed_symbol(p) = getfield(p, Symbol("first"))
@test Base.return_types(f_getf_computed_symbol, Tuple{Pair{Int8,String}}) == [Int8]

# issue #33954
struct X33954
    x::Ptr{X33954}
end
f33954(x) = rand(Bool) ? f33954((x,)) : x
@test Base.return_types(f33954, Tuple{X33954})[1] >: X33954

# issue #34752
struct a34752{T} end
function a34752(c, d...)
    length(d) > 1 || error()
end
function h34752()
    g = Tuple[(42, Any[42][1], 42)][1]
    a34752(g...)
end
@test h34752() === true

# issue 34834
pickvarnames(x::Symbol) = x
function pickvarnames(x::Vector{Any})
    varnames = ()
    for a in x
        varnames = (varnames..., pickvarnames(a) )
    end
    return varnames
end
@test pickvarnames(:a) === :a
@test pickvarnames(Any[:a, :b]) === (:a, :b)
@test only(Base.return_types(pickvarnames, (Vector{Any},))) == Tuple{Vararg{Union{Symbol, Tuple}}}
@test only(Base.code_typed(pickvarnames, (Vector{Any},), optimize=false))[2] == Tuple{Vararg{Union{Symbol, Tuple{Vararg{Union{Symbol, Tuple}}}}}}

@test map(>:, [Int], [Int]) == [true]

# constant prop through keyword arguments
_unstable_kw(;x=1,y=2) = x == 1 ? 0 : ""
_use_unstable_kw_1() = _unstable_kw(x = 2)
_use_unstable_kw_2() = _unstable_kw(x = 2, y = rand())
@test Base.return_types(_use_unstable_kw_1) == Any[String]
@test Base.return_types(_use_unstable_kw_2) == Any[String]
@eval struct StructWithSplatNew
    x::Int
    StructWithSplatNew(t) = $(Expr(:splatnew, :StructWithSplatNew, :t))
end
_construct_structwithsplatnew() = StructWithSplatNew(("",))
@test Base.return_types(_construct_structwithsplatnew) == Any[StructWithSplatNew]

# Issue #36531, double varargs in abstract_iteration
f36531(args...) = tuple((args...)...)
@test @inferred(f36531(1,2,3)) == (1,2,3)
@test code_typed(f36531, Tuple{Vararg{Int}}) isa Vector

# Issue #36710 - sizeof(::UnionAll) tfunc correctness
@test (sizeof(Ptr),) == sizeof.((Ptr,)) == sizeof.((Ptr{Cvoid},))
@test Core.Compiler.sizeof_tfunc(UnionAll) === Int
@test !Core.Compiler.sizeof_nothrow(UnionAll)

# Use a global constant to rely less on unrelated constant propagation
const const_int32_typename = Int32.name
# Check constant propagation for field of constant `TypeName`
# works for both valid and invalid field names. (Ref #37443)
getfield_const_typename_good1() = getfield(const_int32_typename, 1)
getfield_const_typename_good2() = getfield(const_int32_typename, :name)
getfield_const_typename_bad1() = getfield(const_int32_typename, 0x1)
@eval getfield_const_typename_bad2() = getfield(const_int32_typename, $(()))
for goodf in [getfield_const_typename_good1, getfield_const_typename_good2]
    local goodf
    local code = code_typed(goodf, Tuple{})[1].first.code
    @test code[1] == Expr(:return, QuoteNode(:Int32))
    @test goodf() === :Int32
end
for badf in [getfield_const_typename_bad1, getfield_const_typename_bad2]
    local badf
    local code = code_typed(badf, Tuple{})[1].first.code
    @test Meta.isexpr(code[1], :call)
    @test code[end] == Expr(:unreachable)
    @test_throws TypeError badf()
end

# issue #37638
@test !(Core.Compiler.return_type(() -> (nothing, Any[]...)[2], Tuple{}) <: Vararg)