1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
|
import logging
import multiprocessing as mproc
import os
from pathlib import Path
import tempfile
from typing import NamedTuple, Tuple
from jupyter_cache.base import JupyterCacheAbstract, ProjectNb
from jupyter_cache.cache.db import NbProjectRecord
from jupyter_cache.executors.base import ExecutorRunResult, JupyterExecutorAbstract
from jupyter_cache.executors.utils import (
ExecutionResult,
copy_assets,
create_cache_bundle,
single_nb_execution,
)
REPORT_LEVEL = logging.INFO + 1
logging.addLevelName(REPORT_LEVEL, "REPORT")
class ProcessData(NamedTuple):
"""Data for the process worker."""
pk: int
uri: str
cache: JupyterCacheAbstract
timeout: int
allow_errors: bool
class ExecutionWorkerBase:
"""Base execution worker.
Note this must be pickleable.
"""
@property
def logger(self) -> logging.Logger:
raise NotImplementedError
def log_info(self, msg: str):
self.logger.info(msg)
def execute(self, project_nb: ProjectNb, data: ProcessData) -> ExecutionResult:
raise NotImplementedError
def __call__(self, data: ProcessData) -> Tuple[int, str]:
try:
project_nb = data.cache.get_project_notebook(data.pk)
except Exception:
self.logger.error(
"Failed Retrieving: %s" % data.uri,
exc_info=True,
)
return (2, data.uri)
try:
self.log_info("Executing: %s" % project_nb.uri)
result = self.execute(project_nb, data)
except Exception:
self.logger.error(
"Failed Executing: %s" % data.uri,
exc_info=True,
)
return (2, data.uri)
if result.err:
self.logger.warning(
"Execution Excepted: %s\n%s: %s"
% (project_nb.uri, type(result.err).__name__, str(result.err))
)
NbProjectRecord.set_traceback(
project_nb.uri, result.exc_string, data.cache.db
)
return (1, data.uri)
self.log_info("Execution Successful: %s" % project_nb.uri)
try:
# TODO deal with artifact retrieval
bundle = create_cache_bundle(
project_nb, result.cwd, None, result.time, result.exc_string
)
data.cache.cache_notebook_bundle(
bundle, check_validity=False, overwrite=True
)
except Exception:
self.logger.error(
"Failed Caching: %s" % data.uri,
exc_info=True,
)
return (2, data.uri)
return (0, data.uri)
class ExecutionWorkerLocalSerial(ExecutionWorkerBase):
"""Execution worker, that executes in local folder."""
def __init__(self, logger: logging.Logger) -> None:
super().__init__()
self._logger = logger
@property
def logger(self) -> logging.Logger:
return self._logger
@staticmethod
def execute(project_nb: ProjectNb, data: ProcessData) -> ExecutionResult:
cwd = str(Path(project_nb.uri).parent)
return single_nb_execution(
project_nb.nb,
cwd=cwd,
timeout=data.timeout,
allow_errors=data.allow_errors,
)
class ExecutionWorkerTempSerial(ExecutionWorkerBase):
"""Execution worker, that executes in temporary folder."""
def __init__(self, logger: logging.Logger) -> None:
super().__init__()
self._logger = logger
@property
def logger(self) -> logging.Logger:
return self._logger
@staticmethod
def execute(project_nb: ProjectNb, data: ProcessData) -> ExecutionResult:
with tempfile.TemporaryDirectory() as cwd:
copy_assets(project_nb.uri, project_nb.assets, cwd)
return single_nb_execution(
project_nb.nb,
cwd=cwd,
timeout=data.timeout,
allow_errors=data.allow_errors,
)
class ExecutionWorkerLocalMProc(ExecutionWorkerBase):
"""Execution worker, that executes in local folder."""
@property
def logger(self) -> logging.Logger:
return mproc.get_logger()
def log_info(self, msg: str):
# multiprocessing logs a lot at info level that we do not want to see
self.logger.log(REPORT_LEVEL, msg)
@staticmethod
def execute(project_nb: ProjectNb, data: ProcessData) -> ExecutionResult:
cwd = str(Path(project_nb.uri).parent)
return single_nb_execution(
project_nb.nb,
cwd=cwd,
timeout=data.timeout,
allow_errors=data.allow_errors,
)
class ExecutionWorkerTempMProc(ExecutionWorkerBase):
"""Execution worker, that executes in temporary folder."""
@property
def logger(self) -> logging.Logger:
return mproc.get_logger()
def log_info(self, msg: str):
# multiprocessing logs a lot at info level that we do not want to see
self.logger.log(REPORT_LEVEL, msg)
@staticmethod
def execute(project_nb: ProjectNb, data: ProcessData) -> ExecutionResult:
with tempfile.TemporaryDirectory() as cwd:
copy_assets(project_nb.uri, project_nb.assets, cwd)
return single_nb_execution(
project_nb.nb,
cwd=cwd,
timeout=data.timeout,
allow_errors=data.allow_errors,
)
class JupyterExecutorLocalSerial(JupyterExecutorAbstract):
"""An implementation of an executor; executing locally in serial."""
_EXECUTION_WORKER = ExecutionWorkerLocalSerial
def run_and_cache(
self,
*,
filter_uris=None,
filter_pks=None,
timeout=30,
allow_errors=False,
force=False,
) -> ExecutorRunResult:
# Get the notebook that require re-execution
execute_records = self.get_records(
filter_uris, filter_pks, clear_tracebacks=True, force=force
)
self.logger.info("Executing %s notebook(s) in serial" % len(execute_records))
results = [
self._EXECUTION_WORKER(self.logger)(
ProcessData(record.pk, record.uri, self.cache, timeout, allow_errors)
)
for record in execute_records
]
return ExecutorRunResult(
succeeded=[p for i, p in results if i == 0],
excepted=[p for i, p in results if i == 1],
errored=[p for i, p in results if i == 2],
)
class JupyterExecutorTempSerial(JupyterExecutorLocalSerial):
"""An implementation of an executor; executing in a temporary folder in serial."""
_EXECUTION_WORKER = ExecutionWorkerTempSerial
class JupyterExecutorLocalMproc(JupyterExecutorAbstract):
"""An implementation of an executor; executing locally in parallel."""
_EXECUTION_WORKER = ExecutionWorkerLocalMProc
def run_and_cache(
self,
*,
filter_uris=None,
filter_pks=None,
timeout=30,
allow_errors=False,
force=False,
) -> ExecutorRunResult:
# Get the notebook that require re-execution
execute_records = self.get_records(
filter_uris, filter_pks, clear_tracebacks=True
)
self.logger.info(
"Executing %s notebook(s) over pool of %s processors"
% (len(execute_records), os.cpu_count())
)
mproc.log_to_stderr(
REPORT_LEVEL if self.logger.level == logging.INFO else self.logger.level
)
with mproc.Pool() as pool:
results = pool.map(
self._EXECUTION_WORKER(),
[
ProcessData(
record.pk, record.uri, self.cache, timeout, allow_errors
)
for record in execute_records
],
)
return ExecutorRunResult(
succeeded=[p for i, p in results if i == 0],
excepted=[p for i, p in results if i == 1],
errored=[p for i, p in results if i == 2],
)
class JupyterExecutorTempMproc(JupyterExecutorLocalMproc):
"""An implementation of an executor; executing in a temporary directory and in parallel."""
_EXECUTION_WORKER = ExecutionWorkerTempMProc
|