File: memory.c

package info (click to toggle)
jzip 210r20001005d-2
  • links: PTS
  • area: main
  • in suites: wheezy
  • size: 1,088 kB
  • sloc: ansic: 11,700; makefile: 64; sh: 27
file content (419 lines) | stat: -rw-r--r-- 10,204 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419

/* $Id: memory.c,v 1.2 2000/05/25 22:28:56 jholder Exp $   
 * --------------------------------------------------------------------
 * see doc/License.txt for License Information   
 * --------------------------------------------------------------------
 * 
 * File name: $Id: memory.c,v 1.2 2000/05/25 22:28:56 jholder Exp $  
 *   
 * Description:    
 *    
 * Modification history:      
 * $Log: memory.c,v $
 * Revision 1.2  2000/05/25 22:28:56  jholder
 * changes routine names to reflect zmachine opcode names per spec 1.0
 *
 * Revision 1.1.1.1  2000/05/10 14:21:34  jholder
 *
 * imported
 *
 *
 * --------------------------------------------------------------------
 */

/*
 * memory.c
 *
 * Code and data caching routines
 *
 */

#include "ztypes.h"

/* A cache entry */

typedef struct cache_entry
{
   struct cache_entry *flink;
   int page_number;
   zbyte_t data[PAGE_SIZE];
}
cache_entry_t;

/* Cache chain anchor */

static cache_entry_t *cache = NULL;

/* Pseudo translation buffer, one entry each for code and data pages */

static unsigned int current_code_page = 0;
static cache_entry_t *current_code_cachep = NULL;
static unsigned int current_data_page = 0;
static cache_entry_t *current_data_cachep = NULL;

static unsigned int calc_data_pages( void );
static cache_entry_t *update_cache( int );

/*
 * load_cache
 *
 * Initialise the cache and any other dynamic memory objects. The memory
 * required can be split into two areas. Firstly, three buffers are required for
 * input, output and status line. Secondly, two data areas are required for
 * writeable data and read only data. The writeable data is the first chunk of
 * the file and is put into non-paged cache. The read only data is the remainder
 * of the file which can be paged into the cache as required. Writeable data has
 * to be memory resident because it cannot be written out to a backing store.
 *
 */

void load_cache( void )
{
   unsigned long file_size;
   unsigned int i, file_pages, data_pages;
   cache_entry_t *cachep;

   /* Allocate output and status line buffers */

   line = ( char * ) malloc( screen_cols + 1 );
   if ( line == NULL )
   {
      fatal( "load_cache(): Insufficient memory to play game" );
   }
   status_line = ( char * ) malloc( screen_cols + 1 );
   if ( status_line == NULL )
   {
      fatal( "load_cache(): Insufficient memory to play game" );
   }

   /* Must have at least one cache page for memory calculation */
   cachep = ( cache_entry_t * ) malloc( sizeof ( cache_entry_t ) );

   if ( cachep == NULL )
   {
      fatal( "load_cache(): Insufficient memory to play game" );
   }
   cachep->flink = cache;
   cachep->page_number = 0;
   cache = cachep;

   /* Calculate dynamic cache pages required */

   if ( h_config & CONFIG_MAX_DATA )
   {
      data_pages = calc_data_pages(  );
   }
   else
   {
      data_pages = ( h_data_size + PAGE_MASK ) >> PAGE_SHIFT;
   }
   data_size = data_pages * PAGE_SIZE;
   file_size = ( unsigned long ) h_file_size *story_scaler;

   file_pages = ( unsigned int ) ( ( file_size + PAGE_MASK ) >> PAGE_SHIFT );

   /* Allocate static data area and initialise it */

   datap = ( zbyte_t * ) malloc( data_size );
   if ( datap == NULL )
   {
      fatal( "load_cache(): Insufficient memory to play game" );
   }
   for ( i = 0; i < data_pages; i++ )
   {
      read_page( i, &datap[i * PAGE_SIZE] );
   }

   /* Allocate memory for undo */

   undo_datap = ( zbyte_t * ) malloc( data_size );

   /* Allocate cache pages and initialise them */

   for ( i = data_pages; cachep != NULL && i < file_pages; i++ )
   {
      cachep = ( cache_entry_t * ) malloc( sizeof ( cache_entry_t ) );

      if ( cachep != NULL )
      {
         cachep->flink = cache;
         cachep->page_number = i;
         read_page( cachep->page_number, cachep->data );
         cache = cachep;
      }
   }

}                               /* load_cache */

/*
 * unload_cache
 *
 * Deallocate cache and other memory objects.
 *
 */

void unload_cache( void )
{
   cache_entry_t *cachep, *nextp;

   /* Make sure all output has been flushed */

   z_new_line(  );

   /* Free output buffer, status line and data memory */

   free( line );
   free( status_line );
   free( datap );
   free( undo_datap );

   /* Free cache memory */

   for ( cachep = cache; cachep->flink != NULL; cachep = nextp )
   {
      nextp = cachep->flink;
      free( cachep );
   }

}                               /* unload_cache */

/*
 * read_code_word
 *
 * Read a word from the instruction stream.
 *
 */

zword_t read_code_word( void )
{
   zword_t w;

   w = ( zword_t ) read_code_byte(  ) << 8;
   w |= ( zword_t ) read_code_byte(  );

   return ( w );

}                               /* read_code_word */

/*
 * read_code_byte
 *
 * Read a byte from the instruction stream.
 *
 */

zbyte_t read_code_byte( void )
{
   unsigned int page_number, page_offset;

   /* Calculate page and offset values */

   page_number = ( unsigned int ) ( pc >> PAGE_SHIFT );
   page_offset = ( unsigned int ) pc & PAGE_MASK;

   /* Load page into translation buffer */

   if ( page_number != current_code_page )
   {
      current_code_cachep = update_cache( page_number );
      current_code_page = page_number;
   }

   /* Update the PC */

   pc++;

   /* Return byte from page offset */

   if ( !current_code_cachep )
   {
      fatal
            ( "read_code_byte(): read from non-existant page!\n\t(Your dynamic memory usage _may_ be over 64k in size!)" );
   }

   return ( current_code_cachep->data[page_offset] );

}                               /* read_code_byte */

/*
 * read_data_word
 *
 * Read a word from the data area.
 *
 */

zword_t read_data_word( unsigned long *addr )
{
   zword_t w;

   w = ( zword_t ) read_data_byte( addr ) << 8;
   w |= ( zword_t ) read_data_byte( addr );

   return ( w );

}                               /* read_data_word */

/*
 * read_data_byte
 *
 * Read a byte from the data area.
 *
 */

zbyte_t read_data_byte( unsigned long *addr )
{
   unsigned int page_number, page_offset;
   zbyte_t value=0;

   /* Check if byte is in non-paged cache */

   if ( *addr < ( unsigned long ) data_size )
   {
      value = datap[*addr];
   }
   else
   {
      /* Calculate page and offset values */

      page_number = ( int ) ( *addr >> PAGE_SHIFT );
      page_offset = ( int ) *addr & PAGE_MASK;

      /* Load page into translation buffer */

      if ( page_number != current_data_page )
      {
         current_data_cachep = update_cache( page_number );
         current_data_page = page_number;
      }

      /* Fetch byte from page offset */

      if ( current_data_cachep )
      {
         value = current_data_cachep->data[page_offset];
      }
      else
      {
         fatal( "read_data_byte(): Fetching data from invalid page!" );
      }
   }

   /* Update the address */

   ( *addr )++;

   return ( value );

}                               /* read_data_byte */

/*
 * calc_data_pages
 *
 * Compute the best size for the data area cache. Some games have the data size
 * header parameter set too low. This causes a write outside of data area on
 * some games. To alleviate this problem the data area size is set to the
 * maximum of the restart size, the data size and the end of the dictionary. An
 * attempt is made to put the dictionary in the data area to stop paging during
 * a dictionary lookup. Some games have the dictionary end very close to the
 * 64K limit which may cause problems for machines that allocate memory in
 * 64K chunks.
 *
 */

static unsigned int calc_data_pages( void )
{
   unsigned long offset, data_end, dictionary_end;
   int separator_count, word_size, word_count;
   unsigned int data_pages;

   /* Calculate end of data area, use restart size if data size is too low */

   if ( h_data_size > h_restart_size )
   {
      data_end = h_data_size;
   }
   else
   {
      data_end = h_restart_size;
   }

   /* Calculate end of dictionary table */

   offset = h_words_offset;
   separator_count = read_data_byte( &offset );
   offset += separator_count;
   word_size = read_data_byte( &offset );
   word_count = read_data_word( &offset );
   dictionary_end = offset + ( word_size * word_count );

   /* If data end is too low then use end of dictionary instead */

   if ( dictionary_end > data_end )
   {
      data_pages = ( unsigned int ) ( ( dictionary_end + PAGE_MASK ) >> PAGE_SHIFT );
   }
   else
   {
      data_pages = ( unsigned int ) ( ( data_end + PAGE_MASK ) >> PAGE_SHIFT );
   }

   return ( data_pages );

}                               /* calc_data_pages */

/*
 * update_cache
 *
 * Called on a code or data page cache miss to find the page in the cache or
 * read the page in from disk. The chain is kept as a simple LRU chain. If a
 * page cannot be found then the page on the end of the chain is reused. If the
 * page is found, or reused, then it is moved to the front of the chain.
 *
 */

static cache_entry_t *update_cache( int page_number )
{
   cache_entry_t *cachep, *lastp;

   /* Search the cache chain for the page */

   for ( lastp = cache, cachep = cache;
         cachep->flink != NULL && cachep->page_number && cachep->page_number != page_number;
         lastp = cachep, cachep = cachep->flink )
      ;

   /* If no page in chain then read it from disk */

   if ( cachep->page_number != page_number )
   {
      /* Reusing last cache page, so invalidate cache if page was in use */
      if ( cachep->flink == NULL && cachep->page_number )
      {
         if ( current_code_page == ( unsigned int ) cachep->page_number )
         {
            current_code_page = 0;
         }
         if ( current_data_page == ( unsigned int ) cachep->page_number )
         {
            current_data_page = 0;
         }
      }

      /* Load the new page number and the page contents from disk */

      cachep->page_number = page_number;
      read_page( page_number, cachep->data );
   }

   /* If page is not at front of cache chain then move it there */

   if ( lastp != cache )
   {
      lastp->flink = cachep->flink;
      cachep->flink = cache;
      cache = cachep;
   }

   return ( cachep );

}                               /* update_cache */