File: lstmrecognizer.cpp

package info (click to toggle)
k2pdfopt 2.51%2Bds-1
  • links: PTS
  • area: main
  • in suites: buster
  • size: 4,480 kB
  • sloc: ansic: 81,694; cpp: 5,829; makefile: 5
file content (520 lines) | stat: -rw-r--r-- 20,486 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
///////////////////////////////////////////////////////////////////////
// File:        lstmrecognizer.cpp
// Description: Top-level line recognizer class for LSTM-based networks.
// Author:      Ray Smith
// Created:     Thu May 02 10:59:06 PST 2013
//
// (C) Copyright 2013, Google Inc.
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
///////////////////////////////////////////////////////////////////////

// Include automatically generated configuration file if running autoconf.
#ifdef HAVE_CONFIG_H
#include "config_auto.h"
#endif

#include "lstmrecognizer.h"

#include "allheaders.h"
#include "callcpp.h"
#include "dict.h"
#include "genericheap.h"
#include "helpers.h"
#include "imagedata.h"
#include "input.h"
#include "lstm.h"
#include "normalis.h"
#include "pageres.h"
#include "ratngs.h"
#include "recodebeam.h"
#include "scrollview.h"
#include "statistc.h"
#include "tprintf.h"

namespace tesseract {

// Default ratio between dict and non-dict words.
const double kDictRatio = 2.25;
// Default certainty offset to give the dictionary a chance.
const double kCertOffset = -0.085;

LSTMRecognizer::LSTMRecognizer()
    : network_(nullptr),
      training_flags_(0),
      training_iteration_(0),
      sample_iteration_(0),
      null_char_(UNICHAR_BROKEN),
      learning_rate_(0.0f),
      momentum_(0.0f),
      adam_beta_(0.0f),
      dict_(nullptr),
      search_(nullptr),
      debug_win_(nullptr) {}

LSTMRecognizer::~LSTMRecognizer() {
  delete network_;
  delete dict_;
  delete search_;
}

// Loads a model from mgr, including the dictionary only if lang is not null.
bool LSTMRecognizer::Load(const char* lang, TessdataManager* mgr) {
  TFile fp;
  if (!mgr->GetComponent(TESSDATA_LSTM, &fp)) return false;
  if (!DeSerialize(mgr, &fp)) return false;
  if (lang == nullptr) return true;
  // Allow it to run without a dictionary.
  LoadDictionary(lang, mgr);
  return true;
}

// Writes to the given file. Returns false in case of error.
bool LSTMRecognizer::Serialize(const TessdataManager* mgr, TFile* fp) const {
  bool include_charsets = mgr == nullptr ||
                          !mgr->IsComponentAvailable(TESSDATA_LSTM_RECODER) ||
                          !mgr->IsComponentAvailable(TESSDATA_LSTM_UNICHARSET);
  if (!network_->Serialize(fp)) return false;
  if (include_charsets && !GetUnicharset().save_to_file(fp)) return false;
  if (!network_str_.Serialize(fp)) return false;
  if (!fp->Serialize(&training_flags_)) return false;
  if (!fp->Serialize(&training_iteration_)) return false;
  if (!fp->Serialize(&sample_iteration_)) return false;
  if (!fp->Serialize(&null_char_)) return false;
  if (!fp->Serialize(&adam_beta_)) return false;
  if (!fp->Serialize(&learning_rate_)) return false;
  if (!fp->Serialize(&momentum_)) return false;
  if (include_charsets && IsRecoding() && !recoder_.Serialize(fp)) return false;
  return true;
}

// Reads from the given file. Returns false in case of error.
bool LSTMRecognizer::DeSerialize(const TessdataManager* mgr, TFile* fp) {
  delete network_;
  network_ = Network::CreateFromFile(fp);
  if (network_ == nullptr) return false;
  bool include_charsets = mgr == nullptr ||
                          !mgr->IsComponentAvailable(TESSDATA_LSTM_RECODER) ||
                          !mgr->IsComponentAvailable(TESSDATA_LSTM_UNICHARSET);
  if (include_charsets && !ccutil_.unicharset.load_from_file(fp, false))
    return false;
  if (!network_str_.DeSerialize(fp)) return false;
  if (!fp->DeSerialize(&training_flags_)) return false;
  if (!fp->DeSerialize(&training_iteration_)) return false;
  if (!fp->DeSerialize(&sample_iteration_)) return false;
  if (!fp->DeSerialize(&null_char_)) return false;
  if (!fp->DeSerialize(&adam_beta_)) return false;
  if (!fp->DeSerialize(&learning_rate_)) return false;
  if (!fp->DeSerialize(&momentum_)) return false;
  if (include_charsets && !LoadRecoder(fp)) return false;
  if (!include_charsets && !LoadCharsets(mgr)) return false;
  network_->SetRandomizer(&randomizer_);
  network_->CacheXScaleFactor(network_->XScaleFactor());
  return true;
}

// Loads the charsets from mgr.
bool LSTMRecognizer::LoadCharsets(const TessdataManager* mgr) {
  TFile fp;
  if (!mgr->GetComponent(TESSDATA_LSTM_UNICHARSET, &fp)) return false;
  if (!ccutil_.unicharset.load_from_file(&fp, false)) return false;
  if (!mgr->GetComponent(TESSDATA_LSTM_RECODER, &fp)) return false;
  if (!LoadRecoder(&fp)) return false;
  return true;
}

// Loads the Recoder.
bool LSTMRecognizer::LoadRecoder(TFile* fp) {
  if (IsRecoding()) {
    if (!recoder_.DeSerialize(fp)) return false;
    RecodedCharID code;
    recoder_.EncodeUnichar(UNICHAR_SPACE, &code);
    if (code(0) != UNICHAR_SPACE) {
      tprintf("Space was garbled in recoding!!\n");
      return false;
    }
  } else {
    recoder_.SetupPassThrough(GetUnicharset());
    training_flags_ |= TF_COMPRESS_UNICHARSET;
  }
  return true;
}

// Loads the dictionary if possible from the traineddata file.
// Prints a warning message, and returns false but otherwise fails silently
// and continues to work without it if loading fails.
// Note that dictionary load is independent from DeSerialize, but dependent
// on the unicharset matching. This enables training to deserialize a model
// from checkpoint or restore without having to go back and reload the
// dictionary.
bool LSTMRecognizer::LoadDictionary(const char* lang, TessdataManager* mgr) {
  delete dict_;
  dict_ = new Dict(&ccutil_);
  dict_->SetupForLoad(Dict::GlobalDawgCache());
  dict_->LoadLSTM(lang, mgr);
  if (dict_->FinishLoad()) return true;  // Success.
  tprintf("Failed to load any lstm-specific dictionaries for lang %s!!\n",
          lang);
  delete dict_;
  dict_ = nullptr;
  return false;
}

// Recognizes the line image, contained within image_data, returning the
// ratings matrix and matching box_word for each WERD_RES in the output.
void LSTMRecognizer::RecognizeLine(const ImageData& image_data, bool invert,
                                   bool debug, double worst_dict_cert,
                                   const TBOX& line_box,
                                   PointerVector<WERD_RES>* words,
                                   int lstm_choice_mode) {
  NetworkIO outputs;
  float scale_factor;
  NetworkIO inputs;
  if (!RecognizeLine(image_data, invert, debug, false, false, &scale_factor,
                     &inputs, &outputs))
    return;
  if (search_ == nullptr) {
    search_ =
        new RecodeBeamSearch(recoder_, null_char_, SimpleTextOutput(), dict_);
  }
  search_->Decode(outputs, kDictRatio, kCertOffset, worst_dict_cert,
                  &GetUnicharset(), lstm_choice_mode);
  search_->ExtractBestPathAsWords(line_box, scale_factor, debug,
                                  &GetUnicharset(), words, lstm_choice_mode);
}

// Helper computes min and mean best results in the output.
void LSTMRecognizer::OutputStats(const NetworkIO& outputs, float* min_output,
                                 float* mean_output, float* sd) {
  const int kOutputScale = INT8_MAX;
  STATS stats(0, kOutputScale + 1);
  for (int t = 0; t < outputs.Width(); ++t) {
    int best_label = outputs.BestLabel(t, nullptr);
    if (best_label != null_char_) {
      float best_output = outputs.f(t)[best_label];
      stats.add(static_cast<int>(kOutputScale * best_output), 1);
    }
  }
  // If the output is all nulls it could be that the photometric interpretation
  // is wrong, so make it look bad, so the other way can win, even if not great.
  if (stats.get_total() == 0) {
    *min_output = 0.0f;
    *mean_output = 0.0f;
    *sd = 1.0f;
  } else {
    *min_output = static_cast<float>(stats.min_bucket()) / kOutputScale;
    *mean_output = stats.mean() / kOutputScale;
    *sd = stats.sd() / kOutputScale;
  }
}

// Recognizes the image_data, returning the labels,
// scores, and corresponding pairs of start, end x-coords in coords.
bool LSTMRecognizer::RecognizeLine(const ImageData& image_data, bool invert,
                                   bool debug, bool re_invert, bool upside_down,
                                   float* scale_factor, NetworkIO* inputs,
                                   NetworkIO* outputs) {
  // Maximum width of image to train on.
  const int kMaxImageWidth = 2560;
  // This ensures consistent recognition results.
  SetRandomSeed();
  int min_width = network_->XScaleFactor();
  Pix* pix = Input::PrepareLSTMInputs(image_data, network_, min_width,
                                      &randomizer_, scale_factor);
  if (pix == nullptr) {
    /* willus mod -- no warning */
    /*
    tprintf("Line cannot be recognized!!\n");
    */
    return false;
  }
  if (network_->IsTraining() && pixGetWidth(pix) > kMaxImageWidth) {
    tprintf("Image too large to learn!! Size = %dx%d\n", pixGetWidth(pix),
            pixGetHeight(pix));
    pixDestroy(&pix);
    return false;
  }
  if (upside_down) pixRotate180(pix, pix);
  // Reduction factor from image to coords.
  *scale_factor = min_width / *scale_factor;
  inputs->set_int_mode(IsIntMode());
  SetRandomSeed();
  Input::PreparePixInput(network_->InputShape(), pix, &randomizer_, inputs);
  network_->Forward(debug, *inputs, nullptr, &scratch_space_, outputs);
  // Check for auto inversion.
  float pos_min, pos_mean, pos_sd;
  OutputStats(*outputs, &pos_min, &pos_mean, &pos_sd);
  if (invert && pos_min < 0.5) {
    // Run again inverted and see if it is any better.
    NetworkIO inv_inputs, inv_outputs;
    inv_inputs.set_int_mode(IsIntMode());
    SetRandomSeed();
    pixInvert(pix, pix);
    Input::PreparePixInput(network_->InputShape(), pix, &randomizer_,
                           &inv_inputs);
    network_->Forward(debug, inv_inputs, nullptr, &scratch_space_, &inv_outputs);
    float inv_min, inv_mean, inv_sd;
    OutputStats(inv_outputs, &inv_min, &inv_mean, &inv_sd);
    if (inv_min > pos_min && inv_mean > pos_mean && inv_sd < pos_sd) {
      // Inverted did better. Use inverted data.
      if (debug) {
        tprintf("Inverting image: old min=%g, mean=%g, sd=%g, inv %g,%g,%g\n",
                pos_min, pos_mean, pos_sd, inv_min, inv_mean, inv_sd);
      }
      *outputs = inv_outputs;
      *inputs = inv_inputs;
    } else if (re_invert) {
      // Inverting was not an improvement, so undo and run again, so the
      // outputs match the best forward result.
      SetRandomSeed();
      network_->Forward(debug, *inputs, nullptr, &scratch_space_, outputs);
    }
  }
  pixDestroy(&pix);
  if (debug) {
    GenericVector<int> labels, coords;
    LabelsFromOutputs(*outputs, &labels, &coords);
    DisplayForward(*inputs, labels, coords, "LSTMForward", &debug_win_);
    DebugActivationPath(*outputs, labels, coords);
  }
  return true;
}

// Converts an array of labels to utf-8, whether or not the labels are
// augmented with character boundaries.
STRING LSTMRecognizer::DecodeLabels(const GenericVector<int>& labels) {
  STRING result;
  int end = 1;
  for (int start = 0; start < labels.size(); start = end) {
    if (labels[start] == null_char_) {
      end = start + 1;
    } else {
      result += DecodeLabel(labels, start, &end, nullptr);
    }
  }
  return result;
}

// Displays the forward results in a window with the characters and
// boundaries as determined by the labels and label_coords.
void LSTMRecognizer::DisplayForward(const NetworkIO& inputs,
                                    const GenericVector<int>& labels,
                                    const GenericVector<int>& label_coords,
                                    const char* window_name,
                                    ScrollView** window) {
#ifndef GRAPHICS_DISABLED  // do nothing if there's no graphics
  Pix* input_pix = inputs.ToPix();
  Network::ClearWindow(false, window_name, pixGetWidth(input_pix),
                       pixGetHeight(input_pix), window);
  int line_height = Network::DisplayImage(input_pix, *window);
  DisplayLSTMOutput(labels, label_coords, line_height, *window);
#endif  // GRAPHICS_DISABLED
}

// Displays the labels and cuts at the corresponding xcoords.
// Size of labels should match xcoords.
void LSTMRecognizer::DisplayLSTMOutput(const GenericVector<int>& labels,
                                       const GenericVector<int>& xcoords,
                                       int height, ScrollView* window) {
#ifndef GRAPHICS_DISABLED  // do nothing if there's no graphics
  int x_scale = network_->XScaleFactor();
  window->TextAttributes("Arial", height / 4, false, false, false);
  int end = 1;
  for (int start = 0; start < labels.size(); start = end) {
    int xpos = xcoords[start] * x_scale;
    if (labels[start] == null_char_) {
      end = start + 1;
      window->Pen(ScrollView::RED);
    } else {
      window->Pen(ScrollView::GREEN);
      const char* str = DecodeLabel(labels, start, &end, nullptr);
      if (*str == '\\') str = "\\\\";
      xpos = xcoords[(start + end) / 2] * x_scale;
      window->Text(xpos, height, str);
    }
    window->Line(xpos, 0, xpos, height * 3 / 2);
  }
  window->Update();
#endif  // GRAPHICS_DISABLED
}

// Prints debug output detailing the activation path that is implied by the
// label_coords.
void LSTMRecognizer::DebugActivationPath(const NetworkIO& outputs,
                                         const GenericVector<int>& labels,
                                         const GenericVector<int>& xcoords) {
  if (xcoords[0] > 0)
    DebugActivationRange(outputs, "<null>", null_char_, 0, xcoords[0]);
  int end = 1;
  for (int start = 0; start < labels.size(); start = end) {
    if (labels[start] == null_char_) {
      end = start + 1;
      DebugActivationRange(outputs, "<null>", null_char_, xcoords[start],
                           xcoords[end]);
      continue;
    } else {
      int decoded;
      const char* label = DecodeLabel(labels, start, &end, &decoded);
      DebugActivationRange(outputs, label, labels[start], xcoords[start],
                           xcoords[start + 1]);
      for (int i = start + 1; i < end; ++i) {
        DebugActivationRange(outputs, DecodeSingleLabel(labels[i]), labels[i],
                             xcoords[i], xcoords[i + 1]);
      }
    }
  }
}

// Prints debug output detailing activations and 2nd choice over a range
// of positions.
void LSTMRecognizer::DebugActivationRange(const NetworkIO& outputs,
                                          const char* label, int best_choice,
                                          int x_start, int x_end) {
  tprintf("%s=%d On [%d, %d), scores=", label, best_choice, x_start, x_end);
  double max_score = 0.0;
  double mean_score = 0.0;
  const int width = x_end - x_start;
  for (int x = x_start; x < x_end; ++x) {
    const float* line = outputs.f(x);
    const double score = line[best_choice] * 100.0;
    if (score > max_score) max_score = score;
    mean_score += score / width;
    int best_c = 0;
    double best_score = 0.0;
    for (int c = 0; c < outputs.NumFeatures(); ++c) {
      if (c != best_choice && line[c] > best_score) {
        best_c = c;
        best_score = line[c];
      }
    }
    tprintf(" %.3g(%s=%d=%.3g)", score, DecodeSingleLabel(best_c), best_c,
            best_score * 100.0);
  }
  tprintf(", Mean=%g, max=%g\n", mean_score, max_score);
}

// Helper returns true if the null_char is the winner at t, and it beats the
// null_threshold, or the next choice is space, in which case we will use the
// null anyway.
#if 0 // TODO: unused, remove if still unused after 2020.
static bool NullIsBest(const NetworkIO& output, float null_thr,
                       int null_char, int t) {
  if (output.f(t)[null_char] >= null_thr) return true;
  if (output.BestLabel(t, null_char, null_char, nullptr) != UNICHAR_SPACE)
    return false;
  return output.f(t)[null_char] > output.f(t)[UNICHAR_SPACE];
}
#endif

// Converts the network output to a sequence of labels. Outputs labels, scores
// and start xcoords of each char, and each null_char_, with an additional
// final xcoord for the end of the output.
// The conversion method is determined by internal state.
void LSTMRecognizer::LabelsFromOutputs(const NetworkIO& outputs,
                                       GenericVector<int>* labels,
                                       GenericVector<int>* xcoords) {
  if (SimpleTextOutput()) {
    LabelsViaSimpleText(outputs, labels, xcoords);
  } else {
    LabelsViaReEncode(outputs, labels, xcoords);
  }
}

// As LabelsViaCTC except that this function constructs the best path that
// contains only legal sequences of subcodes for CJK.
void LSTMRecognizer::LabelsViaReEncode(const NetworkIO& output,
                                       GenericVector<int>* labels,
                                       GenericVector<int>* xcoords) {
  if (search_ == nullptr) {
    search_ =
        new RecodeBeamSearch(recoder_, null_char_, SimpleTextOutput(), dict_);
  }
  search_->Decode(output, 1.0, 0.0, RecodeBeamSearch::kMinCertainty, nullptr);
  search_->ExtractBestPathAsLabels(labels, xcoords);
}

// Converts the network output to a sequence of labels, with scores, using
// the simple character model (each position is a char, and the null_char_ is
// mainly intended for tail padding.)
void LSTMRecognizer::LabelsViaSimpleText(const NetworkIO& output,
                                         GenericVector<int>* labels,
                                         GenericVector<int>* xcoords) {
  labels->truncate(0);
  xcoords->truncate(0);
  const int width = output.Width();
  for (int t = 0; t < width; ++t) {
    float score = 0.0f;
    const int label = output.BestLabel(t, &score);
    if (label != null_char_) {
      labels->push_back(label);
      xcoords->push_back(t);
    }
  }
  xcoords->push_back(width);
}

// Returns a string corresponding to the label starting at start. Sets *end
// to the next start and if non-null, *decoded to the unichar id.
const char* LSTMRecognizer::DecodeLabel(const GenericVector<int>& labels,
                                        int start, int* end, int* decoded) {
  *end = start + 1;
  if (IsRecoding()) {
    // Decode labels via recoder_.
    RecodedCharID code;
    if (labels[start] == null_char_) {
      if (decoded != nullptr) {
        code.Set(0, null_char_);
        *decoded = recoder_.DecodeUnichar(code);
      }
      return "<null>";
    }
    int index = start;
    while (index < labels.size() &&
           code.length() < RecodedCharID::kMaxCodeLen) {
      code.Set(code.length(), labels[index++]);
      while (index < labels.size() && labels[index] == null_char_) ++index;
      int uni_id = recoder_.DecodeUnichar(code);
      // If the next label isn't a valid first code, then we need to continue
      // extending even if we have a valid uni_id from this prefix.
      if (uni_id != INVALID_UNICHAR_ID &&
          (index == labels.size() ||
           code.length() == RecodedCharID::kMaxCodeLen ||
           recoder_.IsValidFirstCode(labels[index]))) {
        *end = index;
        if (decoded != nullptr) *decoded = uni_id;
        if (uni_id == UNICHAR_SPACE) return " ";
        return GetUnicharset().get_normed_unichar(uni_id);
      }
    }
    return "<Undecodable>";
  } else {
    if (decoded != nullptr) *decoded = labels[start];
    if (labels[start] == null_char_) return "<null>";
    if (labels[start] == UNICHAR_SPACE) return " ";
    return GetUnicharset().get_normed_unichar(labels[start]);
  }
}

// Returns a string corresponding to a given single label id, falling back to
// a default of ".." for part of a multi-label unichar-id.
const char* LSTMRecognizer::DecodeSingleLabel(int label) {
  if (label == null_char_) return "<null>";
  if (IsRecoding()) {
    // Decode label via recoder_.
    RecodedCharID code;
    code.Set(0, label);
    label = recoder_.DecodeUnichar(code);
    if (label == INVALID_UNICHAR_ID) return "..";  // Part of a bigger code.
  }
  if (label == UNICHAR_SPACE) return " ";
  return GetUnicharset().get_normed_unichar(label);
}

}  // namespace tesseract.