File: dotproductsse.cpp

package info (click to toggle)
k2pdfopt 2.55%2Bds-3.1
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 4,896 kB
  • sloc: ansic: 87,945; cpp: 5,915; makefile: 5
file content (149 lines) | stat: -rw-r--r-- 4,823 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
///////////////////////////////////////////////////////////////////////
// File:        dotproductsse.cpp
// Description: Architecture-specific dot-product function.
// Author:      Ray Smith
//
// (C) Copyright 2015, Google Inc.
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
///////////////////////////////////////////////////////////////////////

#if !defined(__SSE4_1__)
/* willus mode -- don't throw an error -- just skip */
/*
#  if defined(__i686__) || defined(__x86_64__)
#    error Implementation only for SSE 4.1 capable architectures
#  endif
*/
#else

#  include <emmintrin.h>
#  include <smmintrin.h>
#  include <cstdint>
#  include "dotproduct.h"

namespace tesseract {

// Computes and returns the dot product of the n-vectors u and v.
// Uses Intel SSE intrinsics to access the SIMD instruction set.
#if defined(FAST_FLOAT)
float DotProductSSE(const float *u, const float *v, int n) {
  int max_offset = n - 4;
  int offset = 0;
  // Accumulate a set of 4 sums in sum, by loading pairs of 4 values from u and
  // v, and multiplying them together in parallel.
  __m128 sum = _mm_setzero_ps();
  if (offset <= max_offset) {
    offset = 4;
    // Aligned load is reputedly faster but requires 16 byte aligned input.
    if ((reinterpret_cast<uintptr_t>(u) & 15) == 0 &&
        (reinterpret_cast<uintptr_t>(v) & 15) == 0) {
      // Use aligned load.
      sum = _mm_load_ps(u);
      __m128 floats2 = _mm_load_ps(v);
      // Multiply.
      sum = _mm_mul_ps(sum, floats2);
      while (offset <= max_offset) {
        __m128 floats1 = _mm_load_ps(u + offset);
        floats2 = _mm_load_ps(v + offset);
        floats1 = _mm_mul_ps(floats1, floats2);
        sum = _mm_add_ps(sum, floats1);
        offset += 4;
      }
    } else {
      // Use unaligned load.
      sum = _mm_loadu_ps(u);
      __m128 floats2 = _mm_loadu_ps(v);
      // Multiply.
      sum = _mm_mul_ps(sum, floats2);
      while (offset <= max_offset) {
        __m128 floats1 = _mm_loadu_ps(u + offset);
        floats2 = _mm_loadu_ps(v + offset);
        floats1 = _mm_mul_ps(floats1, floats2);
        sum = _mm_add_ps(sum, floats1);
        offset += 4;
      }
    }
  }
  // Add the 4 sums in sum horizontally.
#if 0
  alignas(32) float tmp[4];
  _mm_store_ps(tmp, sum);
  float result = tmp[0] + tmp[1] + tmp[2] + tmp[3];
#else
  __m128 zero = _mm_setzero_ps();
  // https://www.felixcloutier.com/x86/haddps
  sum = _mm_hadd_ps(sum, zero);
  sum = _mm_hadd_ps(sum, zero);
  // Extract the low result.
  float result = _mm_cvtss_f32(sum);
#endif
  // Add on any left-over products.
  while (offset < n) {
    result += u[offset] * v[offset];
    ++offset;
  }
  return result;
}
#else
double DotProductSSE(const double *u, const double *v, int n) {
  int max_offset = n - 2;
  int offset = 0;
  // Accumulate a set of 2 sums in sum, by loading pairs of 2 values from u and
  // v, and multiplying them together in parallel.
  __m128d sum = _mm_setzero_pd();
  if (offset <= max_offset) {
    offset = 2;
    // Aligned load is reputedly faster but requires 16 byte aligned input.
    if ((reinterpret_cast<uintptr_t>(u) & 15) == 0 &&
        (reinterpret_cast<uintptr_t>(v) & 15) == 0) {
      // Use aligned load.
      sum = _mm_load_pd(u);
      __m128d floats2 = _mm_load_pd(v);
      // Multiply.
      sum = _mm_mul_pd(sum, floats2);
      while (offset <= max_offset) {
        __m128d floats1 = _mm_load_pd(u + offset);
        floats2 = _mm_load_pd(v + offset);
        offset += 2;
        floats1 = _mm_mul_pd(floats1, floats2);
        sum = _mm_add_pd(sum, floats1);
      }
    } else {
      // Use unaligned load.
      sum = _mm_loadu_pd(u);
      __m128d floats2 = _mm_loadu_pd(v);
      // Multiply.
      sum = _mm_mul_pd(sum, floats2);
      while (offset <= max_offset) {
        __m128d floats1 = _mm_loadu_pd(u + offset);
        floats2 = _mm_loadu_pd(v + offset);
        offset += 2;
        floats1 = _mm_mul_pd(floats1, floats2);
        sum = _mm_add_pd(sum, floats1);
      }
    }
  }
  // Add the 2 sums in sum horizontally.
  sum = _mm_hadd_pd(sum, sum);
  // Extract the low result.
  double result = _mm_cvtsd_f64(sum);
  // Add on any left-over products.
  while (offset < n) {
    result += u[offset] * v[offset];
    ++offset;
  }
  return result;
}
#endif

} // namespace tesseract.

#endif