1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
|
///////////////////////////////////////////////////////////////////////
// File: simddetect.cpp
// Description: Architecture detector.
// Author: Stefan Weil (based on code from Ray Smith)
//
// (C) Copyright 2014, Google Inc.
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
///////////////////////////////////////////////////////////////////////
#ifdef HAVE_CONFIG_H
# include "config_auto.h" // for HAVE_AVX, ...
#endif
#include <numeric> // for std::inner_product
#include "dotproduct.h"
#include "intsimdmatrix.h" // for IntSimdMatrix
#include "params.h" // for STRING_VAR
#include "simddetect.h"
#include "tprintf.h" // for tprintf
#if !defined(__clang__) && defined(__GNUC__) && (__GNUC__ < 12)
// The GNU compiler g++ fails to compile with the Accelerate framework
// (tested with versions 10 and 11), so unconditionally disable it.
#undef HAVE_FRAMEWORK_ACCELERATE
#endif
#if defined(HAVE_FRAMEWORK_ACCELERATE)
// Use Apple Accelerate framework.
// https://developer.apple.com/documentation/accelerate/simd
#include <Accelerate/Accelerate.h>
#endif
#if defined(HAVE_AVX) || defined(HAVE_AVX2) || defined(HAVE_FMA) || defined(HAVE_SSE4_1)
// See https://en.wikipedia.org/wiki/CPUID.
# define HAS_CPUID
#endif
#if defined(HAS_CPUID)
# if defined(__GNUC__)
# include <cpuid.h>
# elif defined(_WIN32)
# include <intrin.h>
# endif
#endif
#if defined(HAVE_NEON) && !defined(__aarch64__)
# if defined(HAVE_ANDROID_GETCPUFAMILY)
# include <cpu-features.h>
# elif defined(HAVE_GETAUXVAL)
# include <asm/hwcap.h>
# include <sys/auxv.h>
# elif defined(HAVE_ELF_AUX_INFO)
# include <sys/auxv.h>
# include <sys/elf.h>
# endif
#endif
namespace tesseract {
// Computes and returns the dot product of the two n-vectors u and v.
// Note: because the order of addition is different among the different dot
// product functions, the results can (and do) vary slightly (although they
// agree to within about 4e-15). This produces different results when running
// training, despite all random inputs being precisely equal.
// To get consistent results, use just one of these dot product functions.
// On a test multi-layer network, serial is 57% slower than SSE, and AVX
// is about 8% faster than SSE. This suggests that the time is memory
// bandwidth constrained and could benefit from holding the reused vector
// in AVX registers.
DotProductFunction DotProduct;
static STRING_VAR(dotproduct, "auto", "Function used for calculation of dot product");
SIMDDetect SIMDDetect::detector;
#if defined(__aarch64__)
// ARMv8 always has NEON.
bool SIMDDetect::neon_available_ = true;
#elif defined(HAVE_NEON)
// If true, then Neon has been detected.
bool SIMDDetect::neon_available_;
#else
// If true, then AVX has been detected.
bool SIMDDetect::avx_available_;
bool SIMDDetect::avx2_available_;
bool SIMDDetect::avx512F_available_;
bool SIMDDetect::avx512BW_available_;
bool SIMDDetect::avx512VNNI_available_;
// If true, then FMA has been detected.
bool SIMDDetect::fma_available_;
// If true, then SSe4.1 has been detected.
bool SIMDDetect::sse_available_;
/* willus mod */
bool SIMDDetect::neon_available_ = false;
#endif
char SIMDDetect::method[16];
#if defined(HAVE_FRAMEWORK_ACCELERATE)
static TFloat DotProductAccelerate(const TFloat* u, const TFloat* v, int n) {
TFloat total = 0;
const int stride = 1;
#if defined(FAST_FLOAT)
vDSP_dotpr(u, stride, v, stride, &total, n);
#else
vDSP_dotprD(u, stride, v, stride, &total, n);
#endif
return total;
}
#endif
// Computes and returns the dot product of the two n-vectors u and v.
static TFloat DotProductGeneric(const TFloat *u, const TFloat *v, int n) {
TFloat total = 0;
for (int k = 0; k < n; ++k) {
total += u[k] * v[k];
}
return total;
}
// Compute dot product using std::inner_product.
static TFloat DotProductStdInnerProduct(const TFloat *u, const TFloat *v, int n) {
return std::inner_product(u, u + n, v, static_cast<TFloat>(0));
}
/* willus mod -- add label arg */
static void SetDotProduct(DotProductFunction f, const IntSimdMatrix *m = nullptr,const char *label = nullptr) {
DotProduct = f;
IntSimdMatrix::intSimdMatrix = m;
if (label==nullptr)
strncpy(SIMDDetect::method,"Generic",15);
else
strncpy(SIMDDetect::method,label,15);
}
// Constructor.
// Tests the architecture in a system-dependent way to detect AVX, SSE and
// any other available SIMD equipment.
// __GNUC__ is also defined by compilers that include GNU extensions such as
// clang.
SIMDDetect::SIMDDetect() {
// The fallback is a generic dot product calculation.
SetDotProduct(DotProductGeneric,nullptr,"Generic");
#if defined(HAS_CPUID)
# if defined(__GNUC__)
unsigned int eax, ebx, ecx, edx;
if (__get_cpuid(1, &eax, &ebx, &ecx, &edx) != 0) {
// Note that these tests all use hex because the older compilers don't have
// the newer flags.
# if defined(HAVE_SSE4_1)
sse_available_ = (ecx & 0x00080000) != 0;
# endif
# if defined(HAVE_AVX) || defined(HAVE_AVX2) || defined(HAVE_FMA)
auto xgetbv = []() {
uint32_t xcr0;
__asm__("xgetbv" : "=a"(xcr0) : "c"(0) : "%edx");
return xcr0;
};
if ((ecx & 0x08000000) && ((xgetbv() & 6) == 6)) {
// OSXSAVE bit is set, XMM state and YMM state are fine.
# if defined(HAVE_FMA)
fma_available_ = (ecx & 0x00001000) != 0;
# endif
# if defined(HAVE_AVX)
avx_available_ = (ecx & 0x10000000) != 0;
if (avx_available_) {
// There is supposed to be a __get_cpuid_count function, but this is all
// there is in my cpuid.h. It is a macro for an asm statement and cannot
// be used inside an if.
__cpuid_count(7, 0, eax, ebx, ecx, edx);
avx2_available_ = (ebx & 0x00000020) != 0;
avx512F_available_ = (ebx & 0x00010000) != 0;
avx512BW_available_ = (ebx & 0x40000000) != 0;
avx512VNNI_available_ = (ecx & 0x00000800) != 0;
}
# endif
}
# endif
}
# elif defined(_WIN32)
int cpuInfo[4];
int max_function_id;
__cpuid(cpuInfo, 0);
max_function_id = cpuInfo[0];
if (max_function_id >= 1) {
__cpuid(cpuInfo, 1);
# if defined(HAVE_SSE4_1)
sse_available_ = (cpuInfo[2] & 0x00080000) != 0;
# endif
# if defined(HAVE_AVX) || defined(HAVE_AVX2) || defined(HAVE_FMA)
if ((cpuInfo[2] & 0x08000000) && ((_xgetbv(0) & 6) == 6)) {
// OSXSAVE bit is set, XMM state and YMM state are fine.
# if defined(HAVE_FMA)
fma_available_ = (cpuInfo[2] & 0x00001000) != 0;
# endif
# if defined(HAVE_AVX)
avx_available_ = (cpuInfo[2] & 0x10000000) != 0;
# endif
# if defined(HAVE_AVX2)
if (max_function_id >= 7) {
__cpuid(cpuInfo, 7);
avx2_available_ = (cpuInfo[1] & 0x00000020) != 0;
avx512F_available_ = (cpuInfo[1] & 0x00010000) != 0;
avx512BW_available_ = (cpuInfo[1] & 0x40000000) != 0;
avx512VNNI_available_ = (cpuInfo[2] & 0x00000800) != 0;
}
# endif
}
# endif
}
# else
# error "I don't know how to test for SIMD with this compiler"
# endif
#endif
#if defined(HAVE_NEON) && !defined(__aarch64__)
# if defined(HAVE_ANDROID_GETCPUFAMILY)
{
AndroidCpuFamily family = android_getCpuFamily();
if (family == ANDROID_CPU_FAMILY_ARM)
neon_available_ = (android_getCpuFeatures() & ANDROID_CPU_ARM_FEATURE_NEON);
}
# elif defined(HAVE_GETAUXVAL)
neon_available_ = getauxval(AT_HWCAP) & HWCAP_NEON;
# elif defined(HAVE_ELF_AUX_INFO)
unsigned long hwcap = 0;
elf_aux_info(AT_HWCAP, &hwcap, sizeof hwcap);
neon_available_ = hwcap & HWCAP_NEON;
# endif
#endif
// Select code for calculation of dot product based on autodetection.
if (false) {
// This is a dummy to support conditional compilation.
#if defined(HAVE_AVX512F)
} else if (avx512F_available_) {
// AVX512F detected.
/* willus mod */
SetDotProduct(DotProductAVX512F, &IntSimdMatrix::intSimdMatrixAVX2,"AVX512F");
#endif
#if defined(HAVE_AVX2)
} else if (avx2_available_) {
// AVX2 detected.
/* willus mod */
SetDotProduct(DotProductAVX, &IntSimdMatrix::intSimdMatrixAVX2,"AVX2");
#endif
#if defined(HAVE_AVX)
} else if (avx_available_) {
// AVX detected.
/* willus mod */
SetDotProduct(DotProductAVX, &IntSimdMatrix::intSimdMatrixSSE,"AVX");
#endif
#if defined(HAVE_SSE4_1)
} else if (sse_available_) {
// SSE detected.
/* willus mod */
SetDotProduct(DotProductSSE, &IntSimdMatrix::intSimdMatrixSSE,"SSE");
#endif
#if defined(HAVE_NEON) || defined(__aarch64__)
} else if (neon_available_) {
// NEON detected.
/* willus mod */
SetDotProduct(DotProductNEON, &IntSimdMatrix::intSimdMatrixNEON,"NEON");
#endif
}
const char *dotproduct_env = getenv("DOTPRODUCT");
if (dotproduct_env != nullptr) {
// Override automatic settings by value from environment variable.
dotproduct = dotproduct_env;
Update();
}
}
void SIMDDetect::Update() {
// Select code for calculation of dot product based on the
// value of the config variable if that value is not empty.
const char *dotproduct_method = "generic";
if (dotproduct == "auto") {
// Automatic detection. Nothing to be done.
} else if (dotproduct == "generic") {
// Generic code selected by config variable.
/* willus mod */
SetDotProduct(DotProductGeneric,nullptr,"Generic");
dotproduct_method = "generic";
} else if (dotproduct == "native") {
// Native optimized code selected by config variable.
/* willus mod */
SetDotProduct(DotProductNative, IntSimdMatrix::intSimdMatrix,"Native");
dotproduct_method = "native";
#if defined(HAVE_AVX512F)
/* willus mod */
} else if (dotproduct == "avx512f" && avx512F_available_) {
// AVX2 selected by config variable.
/* willus mod */
SetDotProduct(DotProductAVX512F, &IntSimdMatrix::intSimdMatrixAVX2,"AVX512F");
dotproduct_method = "avx512f";
#endif
#if defined(HAVE_AVX2)
/* willus mod */
} else if (dotproduct == "avx2" && avx2_available_) {
// AVX2 selected by config variable.
/* willus mod */
SetDotProduct(DotProductAVX, &IntSimdMatrix::intSimdMatrixAVX2,"AVX2");
dotproduct_method = "avx2";
#endif
#if defined(HAVE_AVX)
/* willus mod */
} else if (dotproduct == "avx" && avx_available_) {
// AVX selected by config variable.
/* willus mod */
SetDotProduct(DotProductAVX, &IntSimdMatrix::intSimdMatrixSSE,"AVX");
dotproduct_method = "avx";
#endif
#if defined(HAVE_FMA)
/* willus mod */
} else if (dotproduct == "fma" && fma_available_) {
// FMA selected by config variable.
/* willus mod */
SetDotProduct(DotProductFMA, IntSimdMatrix::intSimdMatrix,"FMA");
dotproduct_method = "fma";
#endif
#if defined(HAVE_SSE4_1)
/* willus mod */
} else if (dotproduct == "sse" && sse_available_) {
// SSE selected by config variable.
/* willus mod */
SetDotProduct(DotProductSSE, &IntSimdMatrix::intSimdMatrixSSE,"SSE");
dotproduct_method = "sse";
#endif
#if defined(HAVE_FRAMEWORK_ACCELERATE)
} else if (dotproduct == "accelerate") {
/* willus mod */
SetDotProduct(DotProductAccelerate, IntSimdMatrix::intSimdMatrix,"Accelerate");
#endif
#if defined(HAVE_NEON) || defined(__aarch64__)
/* willus mod */
} else if (dotproduct == "neon" && neon_available_) {
// NEON selected by config variable.
/* willus mod */
SetDotProduct(DotProductNEON, &IntSimdMatrix::intSimdMatrixNEON,"NEON");
dotproduct_method = "neon";
#endif
} else if (dotproduct == "std::inner_product") {
// std::inner_product selected by config variable.
/* willus mod */
SetDotProduct(DotProductStdInnerProduct, IntSimdMatrix::intSimdMatrix,"Inner");
dotproduct_method = "std::inner_product";
} else {
// Unsupported value of config variable.
tprintf("Warning, ignoring unsupported config variable value: dotproduct=%s\n",
dotproduct.c_str());
tprintf(
"Supported values for dotproduct: auto generic native"
#if defined(HAVE_AVX2)
" avx2"
#endif
#if defined(HAVE_AVX)
" avx"
#endif
#if defined(HAVE_FMA)
" fma"
#endif
#if defined(HAVE_SSE4_1)
" sse"
#endif
#if defined(HAVE_FRAMEWORK_ACCELERATE)
" accelerate"
#endif
" std::inner_product.\n");
}
dotproduct.set_value(dotproduct_method);
}
} // namespace tesseract
|