1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950
|
// K-3D
// Copyright (c) 1995-2004, Timothy M. Shead
//
// Contact: tshead@k-3d.com
//
// This program is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// General Public License for more details.
//
// You should have received a copy of the GNU General Public
// License along with this program; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
#include "mesh.h"
#include "result.h"
#include "utility.h"
#include <algorithm>
namespace k3d
{
/////////////////////////////////////////////////////////////////////////////
// point
point::point(const vector3& Position) :
position(Position)
{
}
point::point(const double X, const double Y, const double Z) :
position(X, Y, Z)
{
}
/////////////////////////////////////////////////////////////////////////////
// point_group
point_group::point_group() :
material(0)
{
}
/////////////////////////////////////////////////////////////////////////////
// split_edge
/////////////////////////////////////////////////////////////////////////////
// face
face::face(split_edge* FirstEdge) :
first_edge(FirstEdge)
{
}
/////////////////////////////////////////////////////////////////////////////
// normal
vector3 normal(const split_edge* const Loop)
{
/// Calculates the normal for an edge loop using the summation method, which is more robust than the three-point methods (handles zero-length edges)
vector3 result(0, 0, 0);
for(const split_edge* edge = Loop; edge && edge->face_clockwise; edge = edge->face_clockwise)
{
const vector3& i = edge->vertex->position;
const vector3& j = edge->face_clockwise->vertex->position;
result[0] += (i[1] + j[1]) * (j[2] - i[2]);
result[1] += (i[2] + j[2]) * (j[0] - i[0]);
result[2] += (i[0] + j[0]) * (j[1] - i[1]);
if(Loop == edge->face_clockwise)
break;
}
return 0.5 * result;
}
vector3 normal(const face& Face)
{
return normal(Face.first_edge);
}
/////////////////////////////////////////////////////////////////////////////
// polyhedron
polyhedron::polyhedron() :
type(POLYGONS),
material(0)
{
}
polyhedron::~polyhedron()
{
std::for_each(faces.begin(), faces.end(), delete_object());
std::for_each(edges.begin(), edges.end(), delete_object());
}
std::ostream& operator<<(std::ostream& Stream, const polyhedron::type_t& RHS)
{
switch(RHS)
{
case polyhedron::POLYGONS:
Stream << "polygons";
break;
case polyhedron::CATMULL_CLARK_SUBDIVISION_MESH:
Stream << "catmull_clark";
break;
}
return Stream;
}
std::istream& operator>>(std::istream& Stream, polyhedron::type_t& RHS)
{
std::string buffer;
Stream >> buffer;
//std::cerr << debug << __PRETTY_FUNCTION__ << " " << buffer << std::endl;
if(buffer == "polygons")
RHS = polyhedron::POLYGONS;
else if(buffer == "catmull_clark")
RHS = polyhedron::CATMULL_CLARK_SUBDIVISION_MESH;
else
std::cerr << error << "Unknown polyhedron type [" << buffer << "]" << std::endl;
return Stream;
}
/////////////////////////////////////////////////////////////////////////////
// linear_curve
/////////////////////////////////////////////////////////////////////////////
// linear_curve_group
linear_curve_group::linear_curve_group() :
wrap(false),
material(0)
{
}
linear_curve_group::~linear_curve_group()
{
std::for_each(curves.begin(), curves.end(), delete_object());
}
/////////////////////////////////////////////////////////////////////////////
// cubic_curve
/////////////////////////////////////////////////////////////////////////////
// cubic_curve_group
cubic_curve_group::cubic_curve_group() :
wrap(false),
material(0)
{
}
cubic_curve_group::~cubic_curve_group()
{
std::for_each(curves.begin(), curves.end(), delete_object());
}
/////////////////////////////////////////////////////////////////////////////
// nucurve
nucurve::nucurve() :
order(2)
{
}
/////////////////////////////////////////////////////////////////////////////
// nucurve_group
nucurve_group::nucurve_group() :
material(0)
{
}
nucurve_group::~nucurve_group()
{
std::for_each(curves.begin(), curves.end(), delete_object());
}
/////////////////////////////////////////////////////////////////////////////
// bilinear_patch
bilinear_patch::bilinear_patch() :
material(0)
{
}
/////////////////////////////////////////////////////////////////////////////
// bicubic_patch
bicubic_patch::bicubic_patch() :
material(0)
{
}
/////////////////////////////////////////////////////////////////////////////
// nupatch
nupatch::nupatch() :
u_order(2),
v_order(2),
material(0)
{
}
/////////////////////////////////////////////////////////////////////////////
// blobby
blobby::blobby(opcode* Opcode) :
root(Opcode),
material(0)
{
}
blobby::~blobby()
{
delete root;
}
void blobby::accept(visitor& Visitor)
{
if(root)
root->accept(Visitor);
}
/////////////////////////////////////////////////////////////////////////////
// blobby::constant
blobby::constant::constant(double Value) :
value(Value)
{
}
blobby::opcode* blobby::constant::clone()
{
return new constant(*this);
}
void blobby::constant::accept(visitor& Visitor)
{
Visitor.visit_constant(*this);
}
/////////////////////////////////////////////////////////////////////////////
// blobby::ellipsoid
blobby::ellipsoid::ellipsoid(point* Origin, const matrix4& Transformation) :
origin(Origin),
transformation(Transformation)
{
}
blobby::opcode* blobby::ellipsoid::clone()
{
return new ellipsoid(*this);
}
void blobby::ellipsoid::accept(visitor& Visitor)
{
Visitor.visit_ellipsoid(*this);
}
////////////////////////////////////////////////////////////////////////////
// blobby::segment
blobby::segment::segment(point* Start, point* End, double Radius, const matrix4& Transformation) :
start(Start),
end(End),
radius(Radius),
transformation(Transformation)
{
}
blobby::opcode* blobby::segment::clone()
{
return new segment(*this);
}
void blobby::segment::accept(visitor& Visitor)
{
Visitor.visit_segment(*this);
}
/////////////////////////////////////////////////////////////////////////////
// blobby::subtract
blobby::subtract::subtract(opcode* Subtrahend, opcode* Minuend) :
subtrahend(Subtrahend),
minuend(Minuend)
{
}
blobby::subtract::~subtract()
{
delete subtrahend;
delete minuend;
}
blobby::opcode* blobby::subtract::clone()
{
return new subtract(subtrahend->clone(), minuend->clone());
}
void blobby::subtract::accept(visitor& Visitor)
{
Visitor.visit_subtract(*this);
}
////////////////////////////////////////////////////////////////////////////
// blobby::divide
blobby::divide::divide(opcode* Dividend, opcode* Divisor) :
dividend(Dividend),
divisor(Divisor)
{
}
blobby::divide::~divide()
{
delete dividend;
delete divisor;
}
blobby::opcode* blobby::divide::clone()
{
return new divide(dividend->clone(), divisor->clone());
}
void blobby::divide::accept(visitor& Visitor)
{
Visitor.visit_divide(*this);
}
////////////////////////////////////////////////////////////////////////////////////////
// blobby::variable_operands
void blobby::variable_operands::add_operand(blobby::opcode* Operand)
{
operands.push_back(Operand);
}
void blobby::variable_operands::operands_accept(visitor& Visitor)
{
for(operands_t::iterator operand = operands.begin(); operand != operands.end(); ++operand)
(*operand)->accept(Visitor);
}
blobby::variable_operands::~variable_operands()
{
std::for_each(operands.begin(), operands.end(), delete_object());
}
void blobby::variable_operands::clone_operands()
{
for(operands_t::iterator operand = operands.begin(); operand != operands.end(); ++operand)
(*operand) = (*operand)->clone();
}
////////////////////////////////////////////////////////////////////////////////////////
// blobby::add
blobby::opcode* blobby::add::clone()
{
add* result = new add(*this);
result->clone_operands();
return result;
}
void blobby::add::accept(visitor& Visitor)
{
Visitor.visit_add(*this);
}
////////////////////////////////////////////////////////////////////////////////////////
// blobby::multiply
blobby::opcode* blobby::multiply::clone()
{
multiply* result = new multiply(*this);
result->clone_operands();
return result;
}
void blobby::multiply::accept(visitor& Visitor)
{
Visitor.visit_multiply(*this);
}
////////////////////////////////////////////////////////////////////////////////////////
// blobby::max
blobby::opcode* blobby::max::clone()
{
max* result = new max(*this);
result->clone_operands();
return result;
}
void blobby::max::accept(visitor& Visitor)
{
Visitor.visit_max(*this);
}
////////////////////////////////////////////////////////////////////////////////////////
// blobby::min
blobby::opcode* blobby::min::clone()
{
min* result = new min(*this);
result->clone_operands();
return result;
}
void blobby::min::accept(visitor& Visitor)
{
Visitor.visit_min(*this);
}
/////////////////////////////////////////////////////////////////////////////
// mesh
mesh::mesh()
{
}
mesh::~mesh()
{
std::for_each(bicubic_patches.begin(), bicubic_patches.end(), delete_object());
std::for_each(bilinear_patches.begin(), bilinear_patches.end(), delete_object());
std::for_each(cubic_curve_groups.begin(), cubic_curve_groups.end(), delete_object());
std::for_each(linear_curve_groups.begin(), linear_curve_groups.end(), delete_object());
std::for_each(polyhedra.begin(), polyhedra.end(), delete_object());
std::for_each(point_groups.begin(), point_groups.end(), delete_object());
std::for_each(points.begin(), points.end(), delete_object());
}
/////////////////////////////////////////////////////////////////////////////
// add_unit_cube
void add_unit_cube(mesh& Mesh, polyhedron& Polyhedron)
{
// Create points ...
boost::multi_array<point*, 3> points(boost::extents[2][2][2]);
points[0][0][0] = new point(-0.5, -0.5, -0.5);
points[1][0][0] = new point(0.5, -0.5, -0.5);
points[1][1][0] = new point(0.5, 0.5, -0.5);
points[0][1][0] = new point(-0.5, 0.5, -0.5);
points[0][0][1] = new point(-0.5, -0.5, 0.5);
points[1][0][1] = new point(0.5, -0.5, 0.5);
points[1][1][1] = new point(0.5, 0.5, 0.5);
points[0][1][1] = new point(-0.5, 0.5, 0.5);
for(unsigned long i = 0; i != 2; ++i)
for(unsigned long j = 0; j != 2; ++j)
for(unsigned long k = 0; k != 2; ++k)
Mesh.points.push_back(points[i][j][k]);
// Create edges ...
boost::multi_array<split_edge*, 2> edges(boost::extents[6][4]);
edges[0][0] = new split_edge(points[0][1][0]);
edges[0][1] = new split_edge(points[1][1][0]);
edges[0][2] = new split_edge(points[1][0][0]);
edges[0][3] = new split_edge(points[0][0][0]);
edges[1][0] = new split_edge(points[1][1][0]);
edges[1][1] = new split_edge(points[1][1][1]);
edges[1][2] = new split_edge(points[1][0][1]);
edges[1][3] = new split_edge(points[1][0][0]);
edges[2][0] = new split_edge(points[1][1][1]);
edges[2][1] = new split_edge(points[0][1][1]);
edges[2][2] = new split_edge(points[0][0][1]);
edges[2][3] = new split_edge(points[1][0][1]);
edges[3][0] = new split_edge(points[0][1][1]);
edges[3][1] = new split_edge(points[0][1][0]);
edges[3][2] = new split_edge(points[0][0][0]);
edges[3][3] = new split_edge(points[0][0][1]);
edges[4][0] = new split_edge(points[0][1][1]);
edges[4][1] = new split_edge(points[1][1][1]);
edges[4][2] = new split_edge(points[1][1][0]);
edges[4][3] = new split_edge(points[0][1][0]);
edges[5][0] = new split_edge(points[0][0][0]);
edges[5][1] = new split_edge(points[1][0][0]);
edges[5][2] = new split_edge(points[1][0][1]);
edges[5][3] = new split_edge(points[0][0][1]);
edges[0][0]->companion = edges[4][2];
edges[0][1]->companion = edges[1][3];
edges[0][2]->companion = edges[5][0];
edges[0][3]->companion = edges[3][1];
edges[1][0]->companion = edges[4][1];
edges[1][1]->companion = edges[2][3];
edges[1][2]->companion = edges[5][1];
edges[1][3]->companion = edges[0][1];
edges[2][0]->companion = edges[4][0];
edges[2][1]->companion = edges[3][3];
edges[2][2]->companion = edges[5][2];
edges[2][3]->companion = edges[1][1];
edges[3][0]->companion = edges[4][3];
edges[3][1]->companion = edges[0][3];
edges[3][2]->companion = edges[5][3];
edges[3][3]->companion = edges[2][1];
edges[4][0]->companion = edges[2][0];
edges[4][1]->companion = edges[1][0];
edges[4][2]->companion = edges[0][0];
edges[4][3]->companion = edges[3][0];
edges[5][0]->companion = edges[0][2];
edges[5][1]->companion = edges[1][2];
edges[5][2]->companion = edges[2][2];
edges[5][3]->companion = edges[3][2];
for(unsigned long i = 0; i != 6; ++i)
for(unsigned long j = 0; j != 4; ++j)
edges[i][j]->face_clockwise = edges[i][(j+1)%4];
for(unsigned long i = 0; i != 6; ++i)
for(unsigned long j = 0; j != 4; ++j)
Polyhedron.edges.push_back(edges[i][j]);
// Create faces ...
for(unsigned long i = 0; i != 6; ++i)
Polyhedron.faces.push_back(new face(edges[i][0]));
}
/////////////////////////////////////////////////////////////////////////////
// add_grid
grid_results_t add_grid(mesh& Mesh, polyhedron& Polyhedron, const unsigned long Rows, const unsigned long Columns, const bool StitchTop, const bool StitchSide)
{
// Sanity checks ...
assert(Rows);
assert(Columns);
// Calculate the number of faces to create along each axis ...
const unsigned long face_rows = Rows;
const unsigned long face_columns = Columns;
// Calculate the number of points that need to be created along each axis ...
unsigned long point_rows = face_rows + (StitchTop ? 0 : 1);
unsigned long point_columns = face_columns + (StitchSide ? 0 : 1);
// Create points ...
boost::multi_array<point*, 2> points(boost::extents[point_rows][point_columns]);
for(unsigned long row = 0; row != point_rows; ++row)
{
for(unsigned long column = 0; column != point_columns; ++column)
{
points[row][column] = new point(0, 0, 0);
Mesh.points.push_back(points[row][column]);
}
}
// Create edges ...
boost::multi_array<split_edge*, 3> edges(boost::extents[face_rows][face_columns][4]);
for(unsigned long row = 0; row != face_rows; ++row)
{
for(unsigned long column = 0; column != face_columns; ++column)
{
edges[row][column][0] = new split_edge(points[row][column]);
edges[row][column][1] = new split_edge(points[row][(column+1) % point_columns]);
edges[row][column][2] = new split_edge(points[(row+1) % point_rows][(column+1) % point_columns]);
edges[row][column][3] = new split_edge(points[(row+1) % point_rows][column]);
for(unsigned long i = 0; i != 4; ++i)
edges[row][column][i]->face_clockwise = edges[row][column][(i+1)%4];
for(unsigned long i = 0; i != 4; ++i)
Polyhedron.edges.push_back(edges[row][column][i]);
}
}
// Join edges ...
const unsigned long edge_rows = face_rows - (StitchTop ? 0 : 1);
const unsigned long edge_columns = face_columns - (StitchSide ? 0 : 1);
for(unsigned long row = 0; row != edge_rows; ++row)
{
for(unsigned long column = 0; column != face_columns; ++column)
join_edges(*edges[row][column][2], *edges[(row+1) % face_rows][column][0]);
}
for(unsigned long column = 0; column != edge_columns; ++column)
{
for(unsigned long row = 0; row != face_rows; ++row)
join_edges(*edges[row][column][1], *edges[row][(column+1) % face_columns][3]);
}
// Create faces ...
boost::multi_array<face*, 2> faces(boost::extents[face_rows][face_columns]);
for(unsigned long row = 0; row != face_rows; ++row)
{
for(unsigned long column = 0; column != face_columns; ++column)
{
face* const new_face = new face(edges[row][column][0]);
Polyhedron.faces.push_back(new_face);
}
}
return boost::make_tuple(points, edges, faces);
}
namespace detail
{
/// Provides a mapping of old-to-new points that can be used with std::transform
struct point_map_t :
public std::map<point*, point*>,
public blobby::visitor
{
virtual ~point_map_t()
{
}
point* operator()(point* Key)
{
return operator[](Key);
}
void visit_constant(blobby::constant& Constant)
{
}
void visit_ellipsoid(blobby::ellipsoid& Ellipsoid)
{
Ellipsoid.origin = operator[](Ellipsoid.origin);
}
void visit_segment(blobby::segment& Segment)
{
Segment.start = operator[](Segment.start);
Segment.end = operator[](Segment.end);
}
void visit_subtract(blobby::subtract& Subtract)
{
Subtract.subtrahend->accept(*this);
Subtract.minuend->accept(*this);
}
void visit_divide(blobby::divide& Divide)
{
Divide.dividend->accept(*this);
Divide.divisor->accept(*this);
}
void visit_add(blobby::add& Add)
{
Add.operands_accept(*this);
}
void visit_multiply(blobby::multiply& Multiply)
{
Multiply.operands_accept(*this);
}
void visit_min(blobby::min& Min)
{
Min.operands_accept(*this);
}
void visit_max(blobby::max& Max)
{
Max.operands_accept(*this);
}
};
} // namespace detail
/////////////////////////////////////////////////////////////////////////////
// deep_copy
void deep_copy(const mesh& Input, mesh& Output)
{
// Duplicate points ...
detail::point_map_t point_map;
point_map[0] = 0;
for(mesh::points_t::const_iterator p = Input.points.begin(); p != Input.points.end(); ++p)
{
Output.points.push_back(new point(**p));
point_map.insert(std::make_pair(*p, Output.points.back()));
}
// Duplicate point clouds ...
for(mesh::point_groups_t::const_iterator pt_group = Input.point_groups.begin(); pt_group != Input.point_groups.end(); ++pt_group)
{
point_group* const new_point_group = new point_group(**pt_group);
std::transform(new_point_group->points.begin(), new_point_group->points.end(), new_point_group->points.begin(), point_map);
Output.point_groups.push_back(new_point_group);
}
// Duplicate polyhedra ...
for(mesh::polyhedra_t::const_iterator pn = Input.polyhedra.begin(); pn != Input.polyhedra.end(); ++pn)
{
polyhedron* const new_polyhedron = new polyhedron(**pn);
// Duplicate edges ...
typedef std::map<split_edge*, split_edge*> edge_map_t;
edge_map_t edge_map;
edge_map[0] = 0;
for(polyhedron::edges_t::iterator edge = new_polyhedron->edges.begin(); edge != new_polyhedron->edges.end(); ++edge)
{
split_edge* const new_edge = new split_edge(**edge);
edge_map.insert(std::make_pair(*edge, new_edge));
*edge = new_edge;
}
// Re-link edges ...
for(edge_map_t::iterator edge = edge_map.begin(); edge != edge_map.end(); ++edge)
{
if(!edge->first)
continue;
edge->second->vertex = point_map[edge->second->vertex];
edge->second->face_clockwise = edge_map.find(edge->second->face_clockwise)->second;
edge->second->companion = edge_map.find(edge->second->companion)->second;
}
// Duplicate faces ...
for(polyhedron::faces_t::iterator f = new_polyhedron->faces.begin(); f != new_polyhedron->faces.end(); ++f)
{
face* const new_face = new face(**f);
new_face->first_edge = edge_map[new_face->first_edge];
// Duplicate holes ...
for(face::holes_t::iterator hole = new_face->holes.begin(); hole != new_face->holes.end(); ++hole)
*hole = edge_map.find(*hole)->second;
*f = new_face;
}
Output.polyhedra.push_back(new_polyhedron);
}
// Duplicate linear curve groups ...
for(mesh::linear_curve_groups_t::const_iterator group = Input.linear_curve_groups.begin(); group != Input.linear_curve_groups.end(); ++group)
{
linear_curve_group* const new_group = new linear_curve_group(**group);
for(linear_curve_group::curves_t::iterator curve = new_group->curves.begin(); curve != new_group->curves.end(); ++curve)
{
*curve = new linear_curve(**curve);
std::transform((*curve)->control_points.begin(), (*curve)->control_points.end(), (*curve)->control_points.begin(), point_map);
}
Output.linear_curve_groups.push_back(new_group);
}
// Duplicate cubic curve groups ...
for(mesh::cubic_curve_groups_t::const_iterator group = Input.cubic_curve_groups.begin(); group != Input.cubic_curve_groups.end(); ++group)
{
cubic_curve_group* const new_group = new cubic_curve_group(**group);
for(cubic_curve_group::curves_t::iterator curve = new_group->curves.begin(); curve != new_group->curves.end(); ++curve)
{
*curve = new cubic_curve(**curve);
std::transform((*curve)->control_points.begin(), (*curve)->control_points.end(), (*curve)->control_points.begin(), point_map);
}
Output.cubic_curve_groups.push_back(new_group);
}
// Duplicate nucurve groups ...
for(mesh::nucurve_groups_t::const_iterator group = Input.nucurve_groups.begin(); group != Input.nucurve_groups.end(); ++group)
{
nucurve_group* const new_group = new nucurve_group(**group);
for(nucurve_group::curves_t::iterator curve = new_group->curves.begin(); curve != new_group->curves.end(); ++curve)
{
*curve = new nucurve(**curve);
for(nucurve::control_points_t::iterator control_point = (*curve)->control_points.begin(); control_point != (*curve)->control_points.end(); ++control_point)
control_point->position = point_map[control_point->position];
}
Output.nucurve_groups.push_back(new_group);
}
// Duplicate bilinear patches ...
for(mesh::bilinear_patches_t::const_iterator patch = Input.bilinear_patches.begin(); patch != Input.bilinear_patches.end(); ++patch)
{
bilinear_patch* const new_patch = new bilinear_patch(**patch);
std::transform(new_patch->control_points.begin(), new_patch->control_points.end(), new_patch->control_points.begin(), point_map);
Output.bilinear_patches.push_back(new_patch);
}
// Duplicate bicubic patches ...
for(mesh::bicubic_patches_t::const_iterator patch = Input.bicubic_patches.begin(); patch != Input.bicubic_patches.end(); ++patch)
{
bicubic_patch* const new_patch = new bicubic_patch(**patch);
std::transform(new_patch->control_points.begin(), new_patch->control_points.end(), new_patch->control_points.begin(), point_map);
Output.bicubic_patches.push_back(new_patch);
}
// Duplicate nupatches ...
for(mesh::nupatches_t::const_iterator patch = Input.nupatches.begin(); patch != Input.nupatches.end(); ++patch)
{
nupatch* const new_patch = new nupatch(**patch);
for(nupatch::control_points_t::iterator control_point = new_patch->control_points.begin(); control_point != new_patch->control_points.end(); ++control_point)
control_point->position = point_map[control_point->position];
Output.nupatches.push_back(new_patch);
}
// Duplicate blobbies ...
for(mesh::blobbies_t::const_iterator blob = Input.blobbies.begin(); blob != Input.blobbies.end(); blob++)
{
blobby* const new_blobby = new blobby((*blob)->root->clone());
new_blobby->accept(point_map);
Output.blobbies.push_back(new_blobby);
}
}
/////////////////////////////////////////////////////////////////////////////
// is_valid
bool is_valid(const polyhedron& Polyhedron)
{
// For every face ...
for(polyhedron::faces_t::const_iterator face = Polyhedron.faces.begin(); face != Polyhedron.faces.end(); ++face)
{
// This is obviously wrong!!!
return_val_if_fail(*face, false);
}
// For every edge ...
for(polyhedron::edges_t::const_iterator edge = Polyhedron.edges.begin(); edge != Polyhedron.edges.end(); ++edge)
{
// This is obviously wrong!!!
return_val_if_fail(*edge, false);
// Every edge should have a vertex ...
return_val_if_fail((*edge)->vertex, false);
// Every edge should have a neighbor ...
return_val_if_fail((*edge)->face_clockwise, false);
// For edges with companions ...
if((*edge)->companion)
{
// Companions had better point to each other ...
return_val_if_fail((*edge)->companion->companion == (*edge), false);
// Companions had better NOT share the same vertex ...
return_val_if_fail((*edge)->vertex != (*edge)->companion->vertex, false);
}
}
return true;
}
/////////////////////////////////////////////////////////////////////////////
// is_valid
bool is_valid(const nucurve& Curve)
{
// Order must always be at least 2 (i.e. a linear curve)
return_val_if_fail(Curve.order >= 2, false);
// The number of control points must be >= order
return_val_if_fail(Curve.control_points.size() >= Curve.order, false);
// The number of knots must be equal to the number of control points plus the order
return_val_if_fail(Curve.knots.size() == Curve.control_points.size() + Curve.order, false);
// Knot vector values must always be in ascending order
for(unsigned long i = 1; i != Curve.knots.size(); ++i)
return_val_if_fail(Curve.knots[i] >= Curve.knots[i-1], false);
return true;
}
/////////////////////////////////////////////////////////////////////////////
// is_valid
bool is_valid(const nupatch& Patch)
{
// Order must always be at least 2 (i.e. linear curves), in each parametric direction
return_val_if_fail(Patch.u_order >= 2 && Patch.v_order >= 2, false);
// The number of control points must be >= order, in each parametric direction
// The number of knots must be equal to the number of control points plus the order, in each parametric direction
// Knot vector values must always be in ascending order, in each parametric direction
for(unsigned long i = 1; i != Patch.u_knots.size(); ++i)
return_val_if_fail(Patch.u_knots[i] >= Patch.u_knots[i-1], false);
for(unsigned long i = 1; i != Patch.v_knots.size(); ++i)
return_val_if_fail(Patch.v_knots[i] >= Patch.v_knots[i-1], false);
return true;
}
/////////////////////////////////////////////////////////////////////////////
// is_solid
bool is_solid(const polyhedron& Polyhedron)
{
if(!is_valid(Polyhedron))
return false;
if(Polyhedron.edges.empty())
return false;
for(polyhedron::edges_t::const_iterator edge = Polyhedron.edges.begin(); edge != Polyhedron.edges.end(); ++edge)
{
if(0 == (**edge).companion)
return false;
}
return true;
}
/////////////////////////////////////////////////////////////////////////////
// bounds
const bounding_box bounds(const mesh& Mesh)
{
bounding_box results;
for(mesh::points_t::const_iterator point = Mesh.points.begin(); point != Mesh.points.end(); ++point)
results.insert((*point)->position);
return results;
}
} // namespace k3d
|