File: bitmap_element.h

package info (click to toggle)
k3d 0.4.3.0-3
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 51,716 kB
  • ctags: 81,610
  • sloc: cpp: 283,698; ansic: 64,095; xml: 61,533; sh: 9,026; makefile: 5,282; python: 431; perl: 308; awk: 130
file content (511 lines) | stat: -rw-r--r-- 15,082 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
#ifndef MODULE_BITMAP_BITMAP_ELEMENT_H
#define MODULE_BITMAP_BITMAP_ELEMENT_H

// K-3D
// Copyright (c) 1995-2004, Timothy M. Shead
//
// Contact: tshead@k-3d.com
//
// This program is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
// General Public License for more details.
//
// You should have received a copy of the GNU General Public
// License along with this program; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA

/** \file
          \author Anders Dahnielson (anders@dahnielson.com)
*/

#include <k3dsdk/algebra.h> 
#include <k3dsdk/bitmap.h>

#include "bitmap_functions.h"

namespace libk3dbitmap
{

/*
   The relationship between 'pixel space' and (2d) 'world space'

        | ------ w ----- |
      - +----------------+
      | | +-> u          | p s
        | |              | i p
      h | v      +       | x a
        |  v    c \      | e c
      | |          \     | l e
      - +-----------\----+
                     \
                      \            max
                 +-----------------+
                 |      \ ^ y      | w s
                 |       \|        | o p
                 |        +--> x   | r a
                 |       o         | l c
                 |                 | d e
                 +-----------------+
               min
*/

/// Class to treat bitmap as element in (2d) world space
class bitmap_element
{
public:
	/// Extremes in world space
	int min_x, max_x, min_y, max_y;

	bitmap_element(k3d::bitmap* Bitmap) :
		m_position_x(0),
		m_position_y(0),
		m_bitmap(new k3d::bitmap(*Bitmap))
	{
		update_boundary();	
	}

	/// Return pixel value by world space coord
	const k3d::bitmap::pixel_type get_pixel(const int x, const int y)
	{
		// Convert world space to pixel space
		unsigned int u = (m_bitmap->width()/2) + (x - m_position_x); 
		unsigned int v = (m_bitmap->height()/2) - (y - m_position_y);
		
		// We must at least be inside the data
		if (u < 0 || v < 0 || u > m_bitmap->width() || v > m_bitmap->height())
			return k3d::pixel(0,0,0,k3d::pixel::sample_traits::transparent());
		
		// Return the pixel
		return *(m_bitmap->begin() + (u + (m_bitmap->width() * v)));
	}

	/// Return bitmap
	k3d::bitmap* get_bitmap()
	{
		return m_bitmap;
	}

	/// Scale element
	void scale(const k3d::vector2 scaling)
	{
		double scaling_x = scaling[k3d::VX];
		double scaling_y = scaling[k3d::VY];

		// Horizontal scaling
		if (scaling_x < 0)
		{
			flip();
			scaling_x = std::abs(scaling_x);
		}
		if (scaling_x != 1)
		{
			// Create mapping ...
			std::vector<double> mapping_x;
			for (unsigned int u = 0; u < m_bitmap->width(); ++u)
				mapping_x.push_back(u * scaling[k3d::VX]);
			
			// Create a bitmap to hold output ...
			const int width = static_cast<int>(m_bitmap->width() * scaling[k3d::VX]);
			k3d::bitmap* const output = new k3d::bitmap(width, m_bitmap->height());
			
			// Create scanline adapters ...
			scanline<k3d::bitmap::pixel_type> in(m_bitmap->data(), m_bitmap->width());
			scanline<k3d::bitmap::pixel_type> out(output->data(), output->width());
			
			// Resample each scanline ...
			for (unsigned int v = 0; v < m_bitmap->height(); ++v)
			{
				walg_forward(mapping_x, in, out, in.size(), out.size());
				++in; ++out;
			}
			
			// Replace bitmap ...
			m_bitmap = output;
		}

		// Vertical scaling
		if (scaling_y < 0)
		{
			flop();
			scaling_y = std::abs(scaling_y);
		}
		if (scaling_y != 1)
		{
			// Rotate bitmap 90CW
			rotate90CW();

			// Create mapping ...
			std::vector<double> mapping_y;
			for (unsigned int v = 0; v < m_bitmap->width(); ++v)
				mapping_y.push_back(v * scaling[k3d::VY]);

			// Create a bitmap to hold output ...
			const int width = static_cast<int>(m_bitmap->width() * scaling[k3d::VY]);
			k3d::bitmap* const output = new k3d::bitmap(width, m_bitmap->height());

			// Create scanline adapters ...
			scanline<k3d::bitmap::pixel_type> in(m_bitmap->data(), m_bitmap->width());
			scanline<k3d::bitmap::pixel_type> out(output->data(), output->width());

			// Resample each scanline ...
			for (unsigned int u = 0; u < m_bitmap->height(); ++u)
			{
				walg_forward(mapping_y, in, out, in.size(), out.size());
				++in; ++out;
			}

			// Replace bitmap ...
			m_bitmap = output;

			// Rotate bitmap 90CCW
			rotate90CCW();
		}

		update_boundary();
	}

	/// Rotate element
	void rotate(double angle)
	{
		// Calculate smallest arbitary rotation necessary
		const double _45 =  k3d::radians(45.0);
		const double _90 =  k3d::radians(90.0);

		const int num_of_45s = static_cast<int>(angle / _45);
		const double rest_angle = std::fmod(angle, _45);

		if (num_of_45s % 2) // uneven
		{
			rotateOrtho(static_cast<int>(((num_of_45s * _45) / _90) + 1));
			angle = (_45 + rest_angle) - _90;
		}
		else if(num_of_45s) // even
		{
			rotateOrtho(num_of_45s / 2);
			angle = rest_angle;
		}

		double center_x = m_bitmap->width()/2;
		double center_y = m_bitmap->height()/2;

		double top_left_x, top_right_x, bottom_left_x, bottom_right_x;

		// Horizontal pass
		if (angle != 0)
		{
			// Calculate new bitmap size
			const double top_left = ((0-center_x) * cos(angle) - (0-center_y) * sin(angle)) + center_x;
			const double top_right = ((m_bitmap->width()-1-center_x) * cos(angle) - (0-center_y) * sin(angle)) + center_x;
			const double bottom_left = ((0-center_x) * cos(angle) - (m_bitmap->height()-1-center_y) * sin(angle)) + center_x;
			const double bottom_right = ((m_bitmap->width()-1-center_x) * cos(angle) - (m_bitmap->height()-1-center_y) * sin(angle)) + center_x;

			const double min = std::min(std::min(top_left, bottom_left), std::min(top_right, bottom_right));
			const double max = std::max(std::max(top_left, bottom_left), std::max(top_right, bottom_right));

			const int width = static_cast<int>(max - min);
			const double offset_u = std::abs(min);

			// Values to be pluged into next pass
			top_left_x = top_left + offset_u;
			top_right_x = top_right + offset_u;
			bottom_left_x = bottom_left + offset_u;
			bottom_right_x = bottom_right + offset_u;

			// Create a bitmap to hold output ...
			k3d::bitmap* const output = new k3d::bitmap(width, m_bitmap->height());
			
			// Create scanline adapters ...
			scanline<k3d::bitmap::pixel_type> in(m_bitmap->data(), m_bitmap->width());
			scanline<k3d::bitmap::pixel_type> out(output->data(), output->width());
			
			// Resample each scanline ...
			for (unsigned int v = 0; v < m_bitmap->height(); ++v)
			{
				std::vector<double> mapping_x;
				for (unsigned int u = 0; u < m_bitmap->width(); ++u)
					mapping_x.push_back(((u-center_x) * cos(angle) - (v-center_y) * sin(angle)) + center_x + offset_u);
				
				walg_forward(mapping_x, in, out, in.size(), out.size());
				++in; ++out;
			}
			
			// Replace bitmap ...
			m_bitmap = output;
		}

		// Vertical pass
		if (angle != 0)
		{
			// Rotate bitmap 90CW
			rotate90CW();

			// Calculate necessary bitmap size
 			const double top_left = (((top_left_x-center_x) * sin(-angle) + (m_bitmap->width()-1-center_y)) / cos(-angle)) + center_y;
 			const double top_right = (((top_right_x-center_x) * sin(-angle) + (m_bitmap->width()-1-center_y)) / cos(-angle)) + center_y;
  			const double bottom_left = (((bottom_left_x-center_x) * sin(-angle) + (0-center_y)) / cos(-angle)) + center_y;
 			const double bottom_right = (((bottom_right_x-center_x) * sin(-angle) + (0-center_y)) / cos(-angle)) + center_y;

			const double min = std::min(std::min(top_left, bottom_left), std::min(top_right, bottom_right));
			const double max = std::max(std::max(top_left, bottom_left), std::max(top_right, bottom_right));

			const int width = static_cast<int>(max - min);
			const double offset_v = std::abs(min);

			// Create a bitmap to hold output ...
			k3d::bitmap* const output = new k3d::bitmap(width, m_bitmap->height());
			
			// Create scanline adapters ...
			scanline<k3d::bitmap::pixel_type> in(m_bitmap->data(), m_bitmap->width());
			scanline<k3d::bitmap::pixel_type> out(output->data(), output->width());
			
			// Resample each scanline ...
			for (unsigned int x = 0; x < m_bitmap->height(); ++x)
			{
				std::vector<double> mapping_y;
				for (unsigned int v = 0; v < m_bitmap->width(); ++v)
					mapping_y.push_back((((x-center_x) * sin(-angle) + (v-center_y)) / cos(-angle)) + center_y + offset_v);

				walg_forward(mapping_y, in, out, in.size(), out.size());
				++in; ++out;
			}
			
			// Replace bitmap ...
			m_bitmap = output;
			
			// Rotate bitmap 90CCW
			rotate90CCW();
		}

		update_boundary();
	}

	/// Set element position
	void position(const k3d::vector2 position)
	{
		m_position_x = static_cast<int>(std::floor(position[k3d::VX])); // integral translation
		m_position_y = static_cast<int>(std::floor(position[k3d::VY])); // integral translation

		const double translate_x = position[k3d::VX] - m_position_x; // fractional translation
		const double translate_y = position[k3d::VY] - m_position_y; // fractional translation

//		std::cerr << info << "Position (" << m_position_x << ", " << m_position_y << ")" << std::endl;

		// Horizontal translation
		if (translate_x != 0)
		{
//			std::cerr << info << "Horizontal translation by " << translate_x << " pixels" << std::endl;

			// Create mapping ...
			std::vector<double> mapping_x;
			for (unsigned int u = 0; u < m_bitmap->width(); ++u)
				mapping_x.push_back(u + translate_x);

			// Create a bitmap to hold output ...
			k3d::bitmap* const output = new k3d::bitmap(m_bitmap->width(), m_bitmap->height());

			// Create scanline adapters ...
			scanline<k3d::bitmap::pixel_type> in(m_bitmap->data(), m_bitmap->width());
			scanline<k3d::bitmap::pixel_type> out(output->data(), output->width());

			// Resample each scanline ...
			for (unsigned int v = 0; v < m_bitmap->height(); ++v)
			{
				walg_forward(mapping_x, in, out, in.size(), out.size());
				++in; ++out;
			}

			// Replace bitmap ...
			m_bitmap = output;
		}

		// Vertical translation
		if (translate_y != 0)
		{
//			std::cerr << info << "Vertical translation by " << translate_y << " pixels" << std::endl;

			// Rotate bitmap 90CW
			rotate90CW();

			// Create mapping ...
			std::vector<double> mapping_y;
			for (unsigned int v = 0; v < m_bitmap->width(); ++v)
				mapping_y.push_back(v + translate_y);

			// Create a bitmap to hold output ...
			k3d::bitmap* const output = new k3d::bitmap(m_bitmap->width(), m_bitmap->height());

			// Create scanline adapters ...
			scanline<k3d::bitmap::pixel_type> in(m_bitmap->data(), m_bitmap->width());
			scanline<k3d::bitmap::pixel_type> out(output->data(), output->width());

			// Resample each scanline ...
			for (unsigned int u = 0; u < m_bitmap->height(); ++u)
			{
				walg_forward(mapping_y, in, out, in.size(), out.size());
				++in; ++out;
			}

			// Replace bitmap ...
			m_bitmap = output;

			// Rotate bitmap 90CCW
			rotate90CCW();
		}

		update_boundary();
	}

	/// Color transform element
	void color(k3d::matrix4 const color_matrix, bool premultiplied)
	{
		if (color_matrix != k3d::identity3D())
		{
			for (k3d::bitmap::iterator i = m_bitmap->begin(); i != m_bitmap->end(); ++i)
			{
				double I_red = k3d::color_traits<double>::convert((*i).red);
				double I_green = k3d::color_traits<double>::convert((*i).green);
				double I_blue = k3d::color_traits<double>::convert((*i).blue);
				double I_alpha = k3d::color_traits<double>::convert((*i).alpha);

				// Matte divide
				if (premultiplied && I_alpha != 0)
				{
					I_red   = I_red   / I_alpha;
					I_green = I_green / I_alpha;
					I_blue  = I_blue  / I_alpha;
				}
				
				// Color transform
				k3d::vector3 rgb_vector(I_red, I_green, I_blue);
				rgb_vector = rgb_vector * color_matrix;
				
				// Matte multiply (always) ...
				(*i).red = k3d::bitmap::pixel_type::sample_traits::convert(rgb_vector[k3d::VX] * I_alpha);
				(*i).green = k3d::bitmap::pixel_type::sample_traits::convert(rgb_vector[k3d::VY] * I_alpha);
				(*i).blue = k3d::bitmap::pixel_type::sample_traits::convert(rgb_vector[k3d::VZ] * I_alpha);
			}
		}
	}

	/// True tranlation
	void true_translation()
	{
		if (m_position_x != 0 || m_position_y != 0)
		{
			k3d::pixel_size_t left = 0;
			k3d::pixel_size_t right = 0;
			k3d::pixel_size_t top = 0;
			k3d::pixel_size_t bottom = 0;

			if (m_position_x > 0) 
				left = m_position_x * 2;
			else 
				right = std::abs(m_position_x) * 2;
			
			if (m_position_y > 0) 
				bottom = m_position_y * 2;
			else 
				top = std::abs(m_position_y) * 2;
			
			pad(left, right, top, bottom);
			m_position_x = 0;
			m_position_y = 0;
			update_boundary();
		}
	}

private:
	int m_position_x, m_position_y;
	k3d::bitmap* m_bitmap;

	void update_boundary()
	{
		min_x = m_position_x - (m_bitmap->width()/2);
		max_x = m_position_x + (m_bitmap->width()/2);

		min_y = m_position_y - (m_bitmap->height()/2);
		max_y = m_position_y + (m_bitmap->height()/2);
	}

	void pad(const k3d::pixel_size_t left, const k3d::pixel_size_t right, const k3d::pixel_size_t top, const k3d::pixel_size_t bottom)
	{
		k3d::bitmap* const bitmap_padded = new k3d::bitmap(left + m_bitmap->width() + right, top + m_bitmap->height() + bottom);
		bitmap_padding(*m_bitmap, *bitmap_padded, left, right, top, bottom);
		m_bitmap = bitmap_padded;
	}

	void rotate90CW()
	{
		k3d::bitmap* const bitmap_rotated_90CW = new k3d::bitmap(m_bitmap->height(), m_bitmap->width());
		bitmap_rotate90CW(*m_bitmap, *bitmap_rotated_90CW);
		m_bitmap = bitmap_rotated_90CW;
	}

	void rotate90CCW()
	{
		k3d::bitmap* const bitmap_rotated_90CCW = new k3d::bitmap(m_bitmap->height(), m_bitmap->width());
		bitmap_rotate90CCW(*m_bitmap, *bitmap_rotated_90CCW);
		m_bitmap = bitmap_rotated_90CCW;
	}

	void rotate180()
	{
		k3d::bitmap* const bitmap_rotated_180 = new k3d::bitmap(m_bitmap->width(), m_bitmap->height());
		bitmap_rotate180(*m_bitmap, *bitmap_rotated_180);
		m_bitmap = bitmap_rotated_180;
	}

	void flip()
	{
		k3d::bitmap* const bitmap_fliped = new k3d::bitmap(m_bitmap->width(), m_bitmap->height());
		bitmap_flip(*m_bitmap, *bitmap_fliped);
		m_bitmap = bitmap_fliped;
	}

	void flop()
	{
		k3d::bitmap* const bitmap_floped = new k3d::bitmap(m_bitmap->width(), m_bitmap->height());
		bitmap_flop(*m_bitmap, *bitmap_floped);
		m_bitmap = bitmap_floped;
	}

	void rotateOrtho(const int num_of_90s)
	{
		if (!(num_of_90s % 4))
			return;

		if (!(num_of_90s % 3))
		{
			if (num_of_90s > 0)
				rotate90CCW();
			else
				rotate90CW();
			return;
		}

		if (!(num_of_90s % 2))
		{
			rotate180();
			return;
		}

		if (!(num_of_90s % 1))
		{
			if (num_of_90s > 0)
				rotate90CW();
			else
				rotate90CCW();
			return;
		}
	}
};

} // namespace libk3dbitmap

#endif // !MODULE_BITMAP_BITMAP_ELEMENT_H