File: gts_interface.cpp

package info (click to toggle)
k3d 0.4.3.0-3
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 51,716 kB
  • ctags: 81,610
  • sloc: cpp: 283,698; ansic: 64,095; xml: 61,533; sh: 9,026; makefile: 5,282; python: 431; perl: 308; awk: 130
file content (883 lines) | stat: -rw-r--r-- 26,829 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
// K-3D
// Copyright (c) 1995-2004, Timothy M. Shead
//
// Contact: tshead@k-3d.com
//
// This program is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
// General Public License for more details.
//
// You should have received a copy of the GNU General Public
// License along with this program; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA

/** \file
		\brief Implements GTS interface
		\author Romain Behar (romainbehar@yahoo.com)
*/

#include <k3dsdk/result.h>

#include "gts_interface.h"

#include <set>
#include <utility>

namespace libk3dgts
{

namespace detail
{

k3d::mesh::points_t points;
edges_t edges;
triangles_t triangles;

void get_vertex(GtsPoint* p, gpointer* data)
{
	double x = static_cast<double>(p->x);
	double y = static_cast<double>(p->y);
	double z = static_cast<double>(p->z);
	points.push_back(new k3d::point(x, y, z));

	// Hash for edges indices
	g_hash_table_insert(static_cast<GHashTable*>(data[1]), p, GUINT_TO_POINTER(++(*((guint*) data[0]))));
}

void get_edge(GtsSegment* s, gpointer* data)
{
	edge_t edge;
	edge.push_back(GPOINTER_TO_UINT(g_hash_table_lookup(static_cast<GHashTable*>(data[1]), s->v1)));
	edge.push_back(GPOINTER_TO_UINT(g_hash_table_lookup(static_cast<GHashTable*>(data[1]), s->v2)));
	edges.push_back(edge);

	// Hash for triangles indices
	g_hash_table_insert(static_cast<GHashTable*>(data[2]), s, GUINT_TO_POINTER(++(*((guint*) data[0]))));
}

void get_face(GtsTriangle* t, gpointer* data)
{
	triangle_t triangle;
	triangle.push_back(GPOINTER_TO_UINT(g_hash_table_lookup(static_cast<GHashTable*>(data[2]), t->e1)));
	triangle.push_back(GPOINTER_TO_UINT(g_hash_table_lookup(static_cast<GHashTable*>(data[2]), t->e2)));
	triangle.push_back(GPOINTER_TO_UINT(g_hash_table_lookup(static_cast<GHashTable*>(data[2]), t->e3)));
	triangles.push_back(triangle);
}

} // namespace detail

bool copy_surface(GtsSurface* Surface, k3d::mesh& Mesh)
{
	// Clear global arrays ...
	detail::points.clear();
	detail::edges.clear();
	detail::triangles.clear();

	// Extract vertices, edges and triangles ...
	gpointer data[3];
	guint n;
	GHashTable *vindex, *eindex;
	data[0] = &n;
	data[1] = vindex = g_hash_table_new(0, 0);
	data[2] = eindex = g_hash_table_new(0, 0);

	n = 0;
	gts_surface_foreach_vertex(Surface, (GtsFunc)detail::get_vertex, data);
	n = 0;
	gts_surface_foreach_edge(Surface, (GtsFunc)detail::get_edge, data);
	gts_surface_foreach_face(Surface, (GtsFunc)detail::get_face, data);
	g_hash_table_destroy(vindex);
	g_hash_table_destroy(eindex);

	// Create K-3D mesh
	Mesh.polyhedra.push_back(new k3d::polyhedron());
	k3d::polyhedron& polyhedron = *Mesh.polyhedra.back();

	// Transform points ...
	k3d::mesh::points_t::iterator p_end(detail::points.end());
	for(k3d::mesh::points_t::iterator p = detail::points.begin(); p != p_end; ++p)
	{
		double x = (*p)->position[0];
		double y = (*p)->position[1];
		double z = (*p)->position[2];

		// Transform from GTS to K-3D rigth-handed system
		(*p)->position[0] = -x;
		(*p)->position[1] = z;
		(*p)->position[2] = -y;

		// Add point to k3d::mesh
		Mesh.points.push_back(*p);
	}

	// Create triangles ...
	triangles_t::const_iterator t_end(detail::triangles.end());
	for(triangles_t::const_iterator t = detail::triangles.begin(); t != t_end; ++t)
	{
		edge_t gts_edge1 = detail::edges[(*t)[0] - 1];
		edge_t gts_edge2 = detail::edges[(*t)[1] - 1];
		//edge_t gts_edge3 = detail::edges[(*t)[2] - 1];

		unsigned long edge1_first = gts_edge1[0] - 1;
		unsigned long edge1_second = gts_edge1[1] - 1;
		unsigned long edge2_first = gts_edge2[0] - 1;
		unsigned long edge2_second = gts_edge2[1] - 1;
		//unsigned long edge3_first = gts_edge3[0] - 1;
		//unsigned long edge3_second = gts_edge3[1] - 1;

		// Determine order of vertices
		unsigned long p[3];
		if(edge1_first == edge2_first)
			{
				p[0] = edge1_second;
				p[1] = edge1_first;
				p[2] = edge2_second;
			}
		else if(edge1_first == edge2_second)
			{
				p[0] = edge1_second;
				p[1] = edge1_first;
				p[2] = edge2_first;
			}
		else if(edge1_second == edge2_first)
			{
				p[0] = edge1_first;
				p[1] = edge1_second;
				p[2] = edge2_second;
			}
		else
			// edge1_second == edge2_second
			{
				p[0] = edge1_first;
				p[1] = edge1_second;
				p[2] = edge2_first;
			}

		// Create a triangle ...
		k3d::split_edge* edge1 = new k3d::split_edge(detail::points[p[0]]);
		k3d::split_edge* edge2 = new k3d::split_edge(detail::points[p[1]]);
		k3d::split_edge* edge3 = new k3d::split_edge(detail::points[p[2]]);

		// Invert face (because of coordinate system switch)
		edge1->face_clockwise = edge3;
		edge3->face_clockwise = edge2;
		edge2->face_clockwise = edge1;

		polyhedron.edges.push_back(edge1);
		polyhedron.edges.push_back(edge2);
		polyhedron.edges.push_back(edge3);

		k3d::face* const face = new k3d::face(edge1);
		return_val_if_fail(face, false);

		polyhedron.faces.push_back(face);
	}

	return_val_if_fail(k3d::is_valid(polyhedron), false);
	//assert_warning(k3d::is_solid(polyhedron));

	return true;
}

namespace detail
{

/// std::pair equivalent that maintains the order of its members
template<typename T1, typename T2>
class ordered_pair;

template<typename T1, typename T2>
bool operator<(const ordered_pair<T1,T2>& lhs, const ordered_pair<T1,T2>& rhs);

template<typename T1, typename T2>
class ordered_pair :
	public std::pair<T1, T2>
{
public:
	typedef T1 first_type;
	typedef T2 second_type;

	T1 first;
	T2 second;

	explicit ordered_pair()
	{
	}

	explicit ordered_pair(const T1& First, const T2& Second) :
		first(First < Second ? First : Second),
		second(First < Second ? Second : First)
	{
	}

	explicit ordered_pair(const k3d::split_edge* Edge) :
		first(Edge->vertex < Edge->face_clockwise->vertex ? Edge->vertex : Edge->face_clockwise->vertex),
		second(Edge->vertex < Edge->face_clockwise->vertex ? Edge->face_clockwise->vertex : Edge->vertex)
	{
	}

	friend bool operator< <>(const ordered_pair& lhs, const ordered_pair& rhs);
};

template<typename T1, typename T2>
bool operator<(const ordered_pair<T1,T2>& lhs, const ordered_pair<T1,T2>& rhs)
{
	if(lhs.first != rhs.first)
		return lhs.first < rhs.first;

	return lhs.second < rhs.second;
}

/// Test to see if a mesh is all triangles
bool triangle_test(const k3d::mesh& Mesh)
{
	k3d::mesh::polyhedra_t::const_iterator polyhedron;
	for(polyhedron = Mesh.polyhedra.begin(); polyhedron != Mesh.polyhedra.end(); polyhedron++)
		{
			k3d::polyhedron::faces_t::iterator face;
			for(face = (*polyhedron)->faces.begin(); face != (*polyhedron)->faces.end(); face++)
				{
					k3d::split_edge* first = (*face)->first_edge;
					// Skip empty faces
					if(!first)
						continue;

					k3d::split_edge* current_edge = first->face_clockwise;
					// Skip one-edged faces
					if(!current_edge)
						continue;

					unsigned long edge_number = 1;

					while(current_edge != first)
						{
							edge_number++;
							current_edge = current_edge->face_clockwise;
						}

					if(edge_number != 3)
						return false;
				}
		}

	return true;
}

typedef ordered_pair<k3d::point*, k3d::point*> ordered_edge_t;
typedef std::set<ordered_edge_t> ordered_edges_t;
typedef std::vector<ordered_edge_t> edge_triangle_t;
typedef std::vector<edge_triangle_t> edge_triangles_t;

} // namespace detail

GtsSurface* gts_surface(const k3d::mesh& Mesh)
{
	// Process only if object is triangulated ...
	if(!detail::triangle_test(Mesh))
		return 0;

	// Create a mapping of points-to-one-based-indices ...
	std::map<k3d::point*, unsigned long> point_map;
	k3d::mesh::points_t::const_iterator p_end(Mesh.points.end());
	for(k3d::mesh::points_t::const_iterator point = Mesh.points.begin(); point != p_end; ++point)
		point_map[*point] = point_map.size();

	// Build the collection of edges ...
	detail::ordered_edges_t edges;
	for(k3d::mesh::polyhedra_t::const_iterator polyhedron = Mesh.polyhedra.begin(); polyhedron != Mesh.polyhedra.end(); polyhedron++)
		for(k3d::polyhedron::edges_t::const_iterator edge = (*polyhedron)->edges.begin(); edge != (*polyhedron)->edges.end(); edge++)
			edges.insert(detail::ordered_edge_t(*edge));

	// Create a mapping of edges-to-one-based-indices ...
	std::map<detail::ordered_edge_t, unsigned long> edge_map;
	for(detail::ordered_edges_t::iterator edge = edges.begin(); edge != edges.end(); ++edge)
		edge_map[*edge] = edge_map.size();

	// Build triangle collection ...
	detail::edge_triangles_t triangle_collection;
	for(k3d::mesh::polyhedra_t::const_iterator polyhedron = Mesh.polyhedra.begin(); polyhedron != Mesh.polyhedra.end(); polyhedron++)
		for(k3d::polyhedron::faces_t::const_iterator face = (*polyhedron)->faces.begin(); face != (*polyhedron)->faces.end(); face++)
		{
			detail::edge_triangle_t triangle;

			k3d::split_edge* first = (*face)->first_edge;
			// Skip empty faces
			if(!first)
				continue;

			triangle.push_back(detail::ordered_edge_t(first));

			k3d::split_edge* current_edge = first->face_clockwise;
			// Skip one-edged faces
			if(!current_edge)
				continue;

			triangle.push_back(detail::ordered_edge_t(current_edge));

			current_edge = current_edge->face_clockwise;
			if(current_edge)
				if(current_edge->face_clockwise == first)
					{
						triangle.push_back(detail::ordered_edge_t(current_edge));
						triangle_collection.push_back(triangle);
					}
		}

	// Create new GTS surface
	GtsSurface* surface = gts_surface_new(gts_surface_class(), gts_face_class(), gts_edge_class(), gts_vertex_class());
	return_val_if_fail(surface, 0);

	// Add points
	GtsVertex** gts_vertices = static_cast<GtsVertex**>(g_malloc((Mesh.points.size() + 1) * sizeof(GtsVertex*)));
	guint n = 0;
	for(k3d::mesh::points_t::const_iterator point = Mesh.points.begin(); point != p_end; ++point)
		{
			// Transform coords back to GTS convention
			const k3d::vector3 coords = (*point)->position;
			GtsObject* new_vertex = gts_object_new (GTS_OBJECT_CLASS (surface->vertex_class));
			GtsVertex* v = GTS_VERTEX (new_vertex);

			v->p.x = -coords[0];
			v->p.y = -coords[2];
			v->p.z = coords[1];

			gts_vertices[n++] = v;
		}

	// Add edges
	GtsEdge** gts_edges = static_cast<GtsEdge**>(g_malloc((edges.size() + 1) * sizeof(GtsEdge*)));
	n = 0;
	for(detail::ordered_edges_t::iterator edge = edges.begin(); edge != edges.end(); ++edge)
		{
			guint p1 = point_map[edge->first];
			guint p2 = point_map[edge->second];
			GtsEdge* new_edge = gts_edge_new (surface->edge_class, gts_vertices[p1 - 1], gts_vertices[p2 - 1]);

			gts_edges[n++] = new_edge;
		}

	// Add triangles
	for(detail::edge_triangles_t::iterator triangle = triangle_collection.begin(); triangle != triangle_collection.end(); ++triangle)
		{
			assert_warning(triangle->size() == 3);

			guint s1 = edge_map[(*triangle)[0]];
			guint s2 = edge_map[(*triangle)[1]];
			guint s3 = edge_map[(*triangle)[2]];

			// Invert face (because of coordinate system switch)
			GtsFace* new_face = gts_face_new (surface->face_class,
				gts_edges[s1 - 1], gts_edges[s3 - 1], gts_edges[s2 - 1]);

			gts_surface_add_face (surface, new_face);
		}

	g_free (gts_vertices);
	g_free (gts_edges);

	return surface;
}

namespace detail
{

/// GTS Vertex overloading

#define GTS_MYVERTEX(obj)	GTS_OBJECT_CAST (obj, detail::GtsMyVertex, detail::gts_myvertex_class ())
#define GTS_MYVERTEX_CLASS(klass) GTS_OBJECT_CLASS_CAST (klass, detail::GtsMyVertexClass, detail::gts_myvertex_class())
#define GTS_IS_MYVERTEX(obj)	(gts_object_is_from_class (obj, detail::gts_myvertex_class ()))

// Define structure for myvertex which is derived from vertex and adds number variable
struct _GtsMyVertex
{
	GtsVertex parent;
	gulong number;
};

// Default data class definition following standard
struct _GtsMyVertexClass
{
	GtsVertexClass parent_class;
};

// Create aliases for myvertex data and myvertex data class
typedef struct _GtsMyVertex          GtsMyVertex;
typedef struct _GtsMyVertexClass     GtsMyVertexClass;

// Prototype for myvertex data class function following standard
GtsMyVertexClass * gts_myvertex_class (void);

// Define an init function for myvertex data class
static void myvertex_init (GtsMyVertex * myvertex)
{
	myvertex->number = 0;
}

// gts_myvertex_class:
// define internal function to create myvertex data class following standard
GtsMyVertexClass * gts_myvertex_class (void)
{
	static GtsMyVertexClass * klass = 0;

	if (klass == 0)
		{
			GtsObjectClassInfo myvertex_info = {
				"GtsMyVertex",
				sizeof (GtsMyVertex),
				sizeof (GtsMyVertexClass),
				(GtsObjectClassInitFunc) 0,
				(GtsObjectInitFunc) myvertex_init,
				(GtsArgSetFunc) 0,
				(GtsArgGetFunc) 0
				};

			klass = static_cast<GtsMyVertexClass*>(gts_object_class_new (GTS_OBJECT_CLASS (gts_vertex_class ()), &myvertex_info));
		}

	return klass;
}

/// GTS Edge overloading

#define GTS_MYEDGE(obj)	GTS_OBJECT_CAST (obj, detail::GtsMyEdge, detail::gts_myedge_class ())
#define GTS_MYEDGE_CLASS(klass) GTS_OBJECT_CLASS_CAST (klass, detail::GtsMyEdgeClass, detail::gts_myedge_class())
#define GTS_IS_MYEDGE(obj)	(gts_object_is_from_class (obj, detail::gts_myedge_class ()))

// Define structure for myedge which is derived from edge and adds number variable
struct _GtsMyEdge
{
	GtsEdge parent;
	gulong number;
};

// Default data class definition following standard
struct _GtsMyEdgeClass
{
	GtsEdgeClass parent_class;
};

// Create aliases for myedge data and myedge data class
typedef struct _GtsMyEdge          GtsMyEdge;
typedef struct _GtsMyEdgeClass     GtsMyEdgeClass;

// Prototype for myedge data class function following standard
GtsMyEdgeClass * gts_myedge_class (void);

// Define an init function for myedge data class
static void myedge_init (GtsMyEdge * myedge)
{
	myedge->number = 0;
}

// gts_myedge_class:
// define internal function to create myedge data class following standard
GtsMyEdgeClass * gts_myedge_class (void)
{
	static GtsMyEdgeClass * klass = 0;

	if (klass == 0)
		{
			GtsObjectClassInfo myedge_info = {
				"GtsMyEdge",
				sizeof (GtsMyEdge),
				sizeof (GtsMyEdgeClass),
				(GtsObjectClassInitFunc) 0,
				(GtsObjectInitFunc) myedge_init,
				(GtsArgSetFunc) 0,
				(GtsArgGetFunc) 0
				};

			klass = static_cast<GtsMyEdgeClass*>(gts_object_class_new (GTS_OBJECT_CLASS (gts_edge_class ()), &myedge_info));
		}

	return klass;
}

/// GTS Face overloading

#define GTS_MYFACE(obj)		GTS_OBJECT_CAST (obj, detail::GtsMyFace, detail::gts_myface_class ())
#define GTS_MYFACE_CLASS(klass)	GTS_OBJECT_CLASS_CAST (klass, detail::GtsMyFaceClass, detail::gts_myface_class())
#define GTS_IS_MYFACE(obj)	(gts_object_is_from_class (obj, detail::gts_myface_class ()))

// Define structure for myface which is derived from face and adds more control variables
struct _GtsMyFace
{
	GtsFace parent;
	gulong number;
	gulong polyhedron_number;
	gulong polygon_number;
	gulong polygon_size;
};

// Default data class definition following standard
struct _GtsMyFaceClass
{
	GtsFaceClass parent_class;
};

// Create aliases for myface data and myface data class
typedef struct _GtsMyFace          GtsMyFace;
typedef struct _GtsMyFaceClass     GtsMyFaceClass;

// Prototype for myface data class function following standard
GtsMyFaceClass * gts_myface_class (void);

// Define an init function for myface data class
static void myface_init (GtsMyFace * myface)
{
	myface->number = 0;
	myface->polyhedron_number = 0;
	myface->polygon_number = 0;
	myface->polygon_size = 0;
}

// gts_myface_class:
// define internal function to create myface data class following standard
GtsMyFaceClass * gts_myface_class (void)
{
	static GtsMyFaceClass * klass = 0;

	if (klass == 0)
		{
			GtsObjectClassInfo myface_info = {
				"GtsMyFace",
				sizeof (GtsMyFace),
				sizeof (GtsMyFaceClass),
				(GtsObjectClassInitFunc) 0,
				(GtsObjectInitFunc) myface_init,
				(GtsArgSetFunc) 0,
				(GtsArgGetFunc) 0
				};

			klass = static_cast<GtsMyFaceClass*>(gts_object_class_new (GTS_OBJECT_CLASS (gts_face_class ()), &myface_info));
		}

	return klass;
}

} // namespace detail

GtsSurface* gts_polygonal_surface(const k3d::mesh& Mesh, unsigned long& PolyhedronIndex)
{
	k3d::mesh::points_t new_points;
	std::copy(Mesh.points.begin(), Mesh.points.end(), std::back_inserter(new_points));

	// Triangulate polyhedra ...
	detail::ordered_edges_t edge_collection;
	detail::edge_triangles_t triangle_collection;
	std::vector<unsigned long> triangles_polyhedron;
	std::vector<unsigned long> triangles_polygon;
	std::vector<unsigned long> triangles_sizes;
	unsigned long polygon_number = 0;
	for(k3d::mesh::polyhedra_t::const_iterator polyhedron_iterator = Mesh.polyhedra.begin(); polyhedron_iterator != Mesh.polyhedra.end(); ++polyhedron_iterator)
		{
			k3d::polyhedron& polyhedron = **polyhedron_iterator;

			// Process each face ...
			for(k3d::polyhedron::faces_t::const_iterator face = polyhedron.faces.begin(); face != polyhedron.faces.end(); face++)
			{
				k3d::polyhedron::faces_t faces;
				faces.push_back(*face);

				k3d::polyhedron::edges_t edges;
				k3d::split_edge* current_edge = (*face)->first_edge;
				while(current_edge && current_edge != (*face)->first_edge)
				{
					edges.push_back(current_edge);
					current_edge = current_edge->face_clockwise;
				}

				// Triangulate ...
				k3d::polyhedron::faces_t new_faces;
				k3d::polyhedron::edges_t new_edges;
				k3d::triangulate(faces.begin(), faces.end(), std::back_inserter(new_faces), std::back_inserter(new_edges), std::back_inserter(new_points));

				// For each face ...
				for(k3d::polyhedron::faces_t::const_iterator face = new_faces.begin(); face != new_faces.end(); face++)
				{
					detail::edge_triangle_t triangle;
					k3d::split_edge* current_edge = (*face)->first_edge;
					assert_warning(current_edge);
					triangle.push_back(detail::ordered_edge_t(current_edge));

					current_edge = current_edge->face_clockwise;
					assert_warning(current_edge);
					triangle.push_back(detail::ordered_edge_t(current_edge));

					current_edge = current_edge->face_clockwise;
					assert_warning(current_edge && current_edge->face_clockwise == (*face)->first_edge);
					triangle.push_back(detail::ordered_edge_t(current_edge));

					triangle_collection.push_back(triangle);
					triangles_polyhedron.push_back(PolyhedronIndex);
					triangles_polygon.push_back(polygon_number);
					triangles_sizes.push_back(new_faces.size());

					// Save edges for mapping
					std::copy(triangle.begin(), triangle.end(), std::inserter(edge_collection, edge_collection.end()));
				}

				// Update counter
				polygon_number++;
			}

			// Update counter
			PolyhedronIndex++;
		}

	// Create new GTS surface
	GtsSurface* surface = gts_surface_new(gts_surface_class(), GTS_FACE_CLASS (detail::gts_myface_class()), GTS_EDGE_CLASS (detail::gts_myedge_class()), GTS_VERTEX_CLASS (detail::gts_myvertex_class()));
	return_val_if_fail(surface, 0);

	// Add points
	GtsVertex** gts_vertices = static_cast<GtsVertex**>(g_malloc((new_points.size() + 1) * sizeof(GtsVertex*)));
	std::map<k3d::point*, unsigned long> point_map;
	guint n = 0;
	gulong vertex_number = 1;
	k3d::mesh::points_t::const_iterator p_end(new_points.end());
	for(k3d::mesh::points_t::const_iterator point = new_points.begin(); point != p_end; ++point)
		{
			// Transform coords back to GTS convention
			const k3d::vector3 coords = (*point)->position;
			GtsObject* new_vertex = gts_object_new (GTS_OBJECT_CLASS (surface->vertex_class));
			detail::GtsMyVertex* myvertex = GTS_MYVERTEX(new_vertex);
			myvertex->number = vertex_number++;
			GtsVertex* v = GTS_VERTEX (new_vertex);

			v->p.x = -coords[0];
			v->p.y = -coords[2];
			v->p.z = coords[1];

			gts_vertices[n++] = v;

			// Create a mapping of points-to-one-based-indices ...
			point_map[*point] = n;
		}

	// Create a mapping of edges-to-one-based-indices ...
	std::map<detail::ordered_edge_t, unsigned long> edge_map;
	for(detail::ordered_edges_t::iterator edge = edge_collection.begin(); edge != edge_collection.end(); ++edge)
		edge_map[*edge] = edge_map.size();

	// Add edges
	GtsEdge** gts_edges = static_cast<GtsEdge**>(g_malloc((edge_collection.size() + 1) * sizeof(GtsEdge*)));
	n = 0;
	gulong edge_number = 1;
	for(detail::ordered_edges_t::iterator edge = edge_collection.begin(); edge != edge_collection.end(); ++edge)
		{
			guint p1 = point_map[edge->first];
			guint p2 = point_map[edge->second];
			GtsEdge* new_edge = gts_edge_new (surface->edge_class, gts_vertices[p1 - 1], gts_vertices[p2 - 1]);

			gts_edges[n++] = new_edge;

			detail::GtsMyEdge* myedge = GTS_MYEDGE(new_edge);
			myedge->number = edge_number++;
		}

	// Add triangles
	gulong face_number = 1;
	unsigned long index = 0;
	for(detail::edge_triangles_t::iterator triangle = triangle_collection.begin(); triangle != triangle_collection.end(); ++triangle)
		{
			assert_warning(triangle->size() == 3);

			guint s1 = edge_map[(*triangle)[0]];
			guint s2 = edge_map[(*triangle)[1]];
			guint s3 = edge_map[(*triangle)[2]];

			// Invert face (because of coordinate system switch)
			GtsFace* new_face = gts_face_new (surface->face_class,
				gts_edges[s1 - 1], gts_edges[s3 - 1], gts_edges[s2 - 1]);

			detail::GtsMyFace* myface = GTS_MYFACE(new_face);
			myface->number = face_number++;
			myface->polyhedron_number = triangles_polyhedron[index];
			myface->polygon_number = triangles_polygon[index];
			myface->polygon_size = triangles_sizes[index];

			gts_surface_add_face (surface, new_face);
		}

	g_free (gts_vertices);
	g_free (gts_edges);

	return surface;
}

namespace detail
{

typedef std::vector<unsigned long> info_t;
info_t info_polyhedron_number;
info_t info_polygon_number;
info_t info_polygon_size;

void get_numbered_vertex(GtsMyVertex* v, gpointer* data)
{
	GtsPoint* p = GTS_POINT (v);

	double x = static_cast<double>(p->x);
	double y = static_cast<double>(p->y);
	double z = static_cast<double>(p->z);
	points.push_back(new k3d::point(x, y, z));

	// Hash for edges indices
	g_hash_table_insert(static_cast<GHashTable*>(data[1]), p, GUINT_TO_POINTER(++(*((guint*) data[0]))));
}

void get_numbered_edge(GtsMyEdge* e, gpointer* data)
{
	GtsSegment* s = GTS_SEGMENT(e);

	edge_t edge;
	edge.push_back(GPOINTER_TO_UINT(g_hash_table_lookup(static_cast<GHashTable*>(data[1]), s->v1)));
	edge.push_back(GPOINTER_TO_UINT(g_hash_table_lookup(static_cast<GHashTable*>(data[1]), s->v2)));
	edges.push_back(edge);

	// Hash for triangles indices
	g_hash_table_insert(static_cast<GHashTable*>(data[2]), s, GUINT_TO_POINTER(++(*((guint*) data[0]))));
}

void get_numbered_face(GtsMyFace* f, gpointer* data)
{
	info_polyhedron_number.push_back(f->polyhedron_number);
	info_polygon_number.push_back(f->polygon_number);
	info_polygon_size.push_back(f->polygon_size);

	GtsTriangle* t = GTS_TRIANGLE(f);

	triangle_t triangle;
	triangle.push_back(GPOINTER_TO_UINT(g_hash_table_lookup(static_cast<GHashTable*>(data[2]), t->e1)));
	triangle.push_back(GPOINTER_TO_UINT(g_hash_table_lookup(static_cast<GHashTable*>(data[2]), t->e2)));
	triangle.push_back(GPOINTER_TO_UINT(g_hash_table_lookup(static_cast<GHashTable*>(data[2]), t->e3)));
	triangles.push_back(triangle);
}

} // namespace detail

bool copy_polygonal_surface(GtsSurface* Surface, const k3d::mesh& OldMesh, k3d::mesh& Mesh)
{
	// Clear global arrays ...
	detail::points.clear();
	detail::edges.clear();
	detail::triangles.clear();
	detail::info_polyhedron_number.clear();
	detail::info_polygon_number.clear();
	detail::info_polygon_size.clear();

	// Extract vertices, edges and triangles ...
	gpointer data[3];
	guint n;
	GHashTable *vindex, *eindex;
	data[0] = &n;
	data[1] = vindex = g_hash_table_new(0, 0);
	data[2] = eindex = g_hash_table_new(0, 0);

	n = 0;
	gts_surface_foreach_vertex(Surface, (GtsFunc)detail::get_numbered_vertex, data);
	n = 0;
	gts_surface_foreach_edge(Surface, (GtsFunc)detail::get_numbered_edge, data);
	gts_surface_foreach_face(Surface, (GtsFunc)detail::get_numbered_face, data);
	g_hash_table_destroy(vindex);
	g_hash_table_destroy(eindex);

	// Create K-3D mesh
	Mesh.polyhedra.push_back(new k3d::polyhedron());
	k3d::polyhedron& polyhedron = *Mesh.polyhedra.back();

	// Transform points ...
	k3d::mesh::points_t::iterator p_end(detail::points.end());
	for(k3d::mesh::points_t::iterator p = detail::points.begin(); p != p_end; ++p)
	{
		double x = (*p)->position[0];
		double y = (*p)->position[1];
		double z = (*p)->position[2];

		// Transform from GTS to K-3D rigth-handed system
		(*p)->position[0] = -x;
		(*p)->position[1] = z;
		(*p)->position[2] = -y;

		// Add point to k3d::mesh
		Mesh.points.push_back(*p);
	}

	// Create triangles ...
	triangles_t::const_iterator t_end(detail::triangles.end());
	for(triangles_t::const_iterator t = detail::triangles.begin(); t != t_end; ++t)
	{
		edge_t gts_edge1 = detail::edges[(*t)[0] - 1];
		edge_t gts_edge2 = detail::edges[(*t)[1] - 1];
		//edge_t gts_edge3 = detail::edges[(*t)[2] - 1];

		unsigned long edge1_first = gts_edge1[0] - 1;
		unsigned long edge1_second = gts_edge1[1] - 1;
		unsigned long edge2_first = gts_edge2[0] - 1;
		unsigned long edge2_second = gts_edge2[1] - 1;
		//unsigned long edge3_first = gts_edge3[0] - 1;
		//unsigned long edge3_second = gts_edge3[1] - 1;

		// Determine order of vertices
		unsigned long p[3];
		if(edge1_first == edge2_first)
			{
				p[0] = edge1_second;
				p[1] = edge1_first;
				p[2] = edge2_second;
			}
		else if(edge1_first == edge2_second)
			{
				p[0] = edge1_second;
				p[1] = edge1_first;
				p[2] = edge2_first;
			}
		else if(edge1_second == edge2_first)
			{
				p[0] = edge1_first;
				p[1] = edge1_second;
				p[2] = edge2_second;
			}
		else
			// edge1_second == edge2_second
			{
				p[0] = edge1_first;
				p[1] = edge1_second;
				p[2] = edge2_first;
			}

		// Create a triangle ...
		k3d::split_edge* edge1 = new k3d::split_edge(detail::points[p[0]]);
		k3d::split_edge* edge2 = new k3d::split_edge(detail::points[p[1]]);
		k3d::split_edge* edge3 = new k3d::split_edge(detail::points[p[2]]);

		// Invert face (because of coordinate system switch)
		edge1->face_clockwise = edge3;
		edge3->face_clockwise = edge2;
		edge2->face_clockwise = edge1;

		polyhedron.edges.push_back(edge1);
		polyhedron.edges.push_back(edge2);
		polyhedron.edges.push_back(edge3);

		k3d::face* const face = new k3d::face(edge1);
		return_val_if_fail(face, false);

		polyhedron.faces.push_back(face);
	}

	return_val_if_fail(k3d::is_valid(polyhedron), false);
	//assert_warning(k3d::is_solid(polyhedron));

	return true;
}

} // namespace libk3dgts