1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
|
// K-3D
// Copyright (c) 1995-2004, Timothy M. Shead
//
// Contact: tshead@k-3d.com
//
// This program is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// General Public License for more details.
//
// You should have received a copy of the GNU General Public
// License along with this program; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
/** \file
\author Timothy M. Shead (tshead@k-3d.com)
\author Romain Behar (romainbehar@yahoo.com)
*/
#include <k3dsdk/bounding_box.h>
#include <k3dsdk/mesh.h>
#include <k3dsdk/result.h>
#include "surface_polygonizer.h"
#include <limits>
namespace libk3dmesh
{
namespace detail
{
// Point to segment distance
double distance_to_segment(const k3d::vector3& Point, const k3d::vector3& S1, const k3d::vector3& S2)
{
const k3d::vector3 vector = S2 - S1;
const k3d::vector3 w = Point - S1;
const double c1 = w * vector;
if(c1 <= 0)
return (Point - S1).Length();
const double c2 = vector * vector;
if(c2 <= c1)
return (Point - S2).Length();
const double b = c1 / c2;
const k3d::vector3 middlepoint = S1 + b * vector;
return (Point - middlepoint).Length();
}
k3d::vector3 nearest_segment_point(const k3d::vector3& Point, const k3d::vector3& S1, const k3d::vector3& S2)
{
const k3d::vector3 vector = S2 - S1;
const k3d::vector3 w = Point - S1;
const double c1 = w * vector;
if(c1 <= 0)
return S1;
const double c2 = vector * vector;
if(c2 <= c1)
return S2;
const double b = c1 / c2;
const k3d::vector3 middlepoint = S1 + b * vector;
return middlepoint;
}
/////////////////////////////////////////////////////////////////////////////
// blobby_vm
typedef std::vector<k3d::vector3> origins_t;
/// Blobby virtual machine - calculates the value of an implicit surface at a given 3D point
class blobby_vm :
public implicit_functor,
private k3d::blobby::visitor
{
public:
blobby_vm(k3d::blobby& Blobby, origins_t& Origins, k3d::bounding_box& BBox, bool& IsComplex) :
origins(Origins),
bbox(BBox),
is_complex(IsComplex)
{
Blobby.accept(*this);
}
double implicit_value(const vertex_t& Point)
{
std::stack<double> stack;
stack.push(0);
for(unsigned long pc = 0; pc < instructions.size(); )
{
switch(instructions[pc++].opcode)
{
case CONSTANT:
stack.push(instructions[pc++].value);
break;
case ELLIPSOID:
{
double r2 = (*reinterpret_cast<k3d::matrix4*>(instructions[pc++].matrix) * Point).Length2();
stack.push(r2 <= 1 ? 1 - 3*r2 + 3*r2*r2 - r2*r2*r2 : 0);
}
break;
case SEGMENT:
{
k3d::matrix4 m = *reinterpret_cast<k3d::matrix4*>(instructions[pc++].matrix);
k3d::vector3 start = *reinterpret_cast<k3d::vector3*>(instructions[pc++].vector);
k3d::vector3 end = *reinterpret_cast<k3d::vector3*>(instructions[pc++].vector);
const double radius = instructions[pc++].value;
double r2 = ((k3d::translation3D(nearest_segment_point(Point, start, end)) * k3d::scaling3D(radius) * m).Inverse() * Point).Length2();
stack.push(r2 <= 1 ? (1 - 3*r2 + 3*r2*r2 - r2*r2*r2) : 0);
}
break;
case SUBTRACT:
{
// Stack inverts parameters
const double b = stack.top(); stack.pop();
const double a = stack.top(); stack.pop();
stack.push(a - b);
}
break;
case DIVIDE:
{
// Stack inverts parameters
const double b = stack.top(); stack.pop();
const double a = stack.top(); stack.pop();
if(b != 0)
stack.push(a / b);
else
stack.push(1.0);
}
break;
case ADD:
{
const size_t count = instructions[pc++].count;
double sum = 0;
for(size_t i = 0; i != count; ++i)
{
sum += stack.top();
stack.pop();
}
stack.push(sum);
}
break;
case MULTIPLY:
{
const size_t count = instructions[pc++].count;
double product = 1;
for(size_t i = 0; i != count; ++i)
{
product *= stack.top();
stack.pop();
}
stack.push(product);
}
break;
case MIN:
{
const size_t count = instructions[pc++].count;
double minimum = std::numeric_limits<double>::max();
for(size_t i = 0; i != count; ++i)
{
minimum = std::min(minimum, stack.top());
stack.pop();
}
stack.push(minimum);
}
break;
case MAX:
{
const size_t count = instructions[pc++].count;
double maximum = -std::numeric_limits<double>::max();
for(size_t i = 0; i != count; ++i)
{
maximum = std::max(maximum, stack.top());
stack.pop();
}
stack.push(maximum);
}
break;
}
}
return stack.top();
}
private:
void visit_constant(k3d::blobby::constant& Constant)
{
instructions.push_back(instruction(CONSTANT));
instructions.push_back(instruction(Constant.value));
}
void visit_ellipsoid(k3d::blobby::ellipsoid& Ellipsoid)
{
k3d::matrix4 transformation = k3d::translation3D(Ellipsoid.origin->position) * Ellipsoid.transformation;
grow_bounding_box(transformation);
instructions.push_back(instruction(ELLIPSOID));
instructions.push_back(instruction(transformation.Inverse()));
origins.push_back(Ellipsoid.origin->position);
}
void visit_segment(k3d::blobby::segment& Segment)
{
k3d::vector3& start = Segment.start->position;
k3d::vector3& end = Segment.end->position;
k3d::matrix4& transformation = Segment.transformation;
double radius = Segment.radius;
grow_bounding_box(k3d::translation3D(start) * transformation, radius);
grow_bounding_box(k3d::translation3D(end) * transformation, radius);
instructions.push_back(instruction(SEGMENT));
instructions.push_back(instruction(transformation));
instructions.push_back(instruction(start));
instructions.push_back(instruction(end));
instructions.push_back(instruction(radius));
origins.push_back(Segment.start->position);
}
void visit_subtract(k3d::blobby::subtract& Subtract)
{
// Note - order matters, here !
Subtract.subtrahend->accept(*this);
Subtract.minuend->accept(*this);
instructions.push_back(instruction(SUBTRACT));
is_complex = true;
}
void visit_divide(k3d::blobby::divide& Divide)
{
// Note - order matters, here !
Divide.dividend->accept(*this);
Divide.divisor->accept(*this);
instructions.push_back(instruction(DIVIDE));
is_complex = true;
}
void visit_add(k3d::blobby::add& Add)
{
Add.operands_accept(*this);
instructions.push_back(instruction(ADD));
instructions.push_back(instruction(Add.operands.size()));
}
void visit_multiply(k3d::blobby::multiply& Multiply)
{
Multiply.operands_accept(*this);
instructions.push_back(instruction(MULTIPLY));
instructions.push_back(instruction(Multiply.operands.size()));
}
void visit_min(k3d::blobby::min& Min)
{
Min.operands_accept(*this);
instructions.push_back(instruction(MIN));
instructions.push_back(instruction(Min.operands.size()));
}
void visit_max(k3d::blobby::max& Max)
{
Max.operands_accept(*this);
instructions.push_back(instruction(MAX));
instructions.push_back(instruction(Max.operands.size()));
}
typedef enum
{
CONSTANT,
ELLIPSOID,
SEGMENT,
SUBTRACT,
DIVIDE,
ADD,
MULTIPLY,
MIN,
MAX
} opcode_t;
union instruction
{
public:
instruction(const opcode_t OpCode) : opcode(OpCode) {}
instruction(const size_t Count) : count(Count) {}
instruction(const double Value) : value(Value) {}
instruction(const k3d::vector3& Vector) { Vector.CopyArray(vector); }
instruction(const k3d::matrix4& Matrix) { Matrix.CopyArray(matrix); }
opcode_t opcode;
size_t count;
double value;
double vector[3];
double matrix[16];
};
void grow_bounding_box(const k3d::matrix4& transformation, const double radius = 1)
{
// Original object is a unit sphere
const double r = 0.5 * radius;
bbox.insert(transformation * k3d::vector3(-r, 0, 0));
bbox.insert(transformation * k3d::vector3(r, 0, 0));
bbox.insert(transformation * k3d::vector3(0, -r, 0));
bbox.insert(transformation * k3d::vector3(0, r, 0));
bbox.insert(transformation * k3d::vector3(0, 0, -r));
bbox.insert(transformation * k3d::vector3(0, 0, r));
}
std::vector<instruction> instructions;
origins_t& origins;
k3d::bounding_box& bbox;
bool is_complex;
};
/////////////////////////////////////////////////////////////////////////////
// polygonize_blobby
void polygonize_blobby(k3d::blobby* Opcode, unsigned long Voxels, vertices_t& Vertices, vertices_t& Normals, polygons_t& Polygons)
{
assert_warning(Opcode);
// Set up VM
origins_t origins;
k3d::bounding_box bbox;
bool is_complex = false;
blobby_vm blobby_functor(*Opcode, origins, bbox, is_complex);
// Check for empty set
if(!origins.size())
return;
// Compute voxel size based on bounding box
const double max = std::max(std::max(bbox.width(), bbox.height()), bbox.depth());
const double min = std::min(std::min(bbox.width(), bbox.height()), bbox.depth());
const double mid = (min+max) / 2;
// Adaptative voxel size (for OpenGL preview)
unsigned long voxels = Voxels;
if(voxels == 0)
{
// Experimental values
voxels = 20;
if(mid < 12)
voxels = 12;
if(mid < 8 && !is_complex)
voxels = 8;
}
double voxel_size = mid / static_cast<double>(voxels);
// Set up polygonizer
int n_x_over_2 = static_cast<int>(bbox.width() / voxel_size / 2) + 1;
int n_y_over_2 = static_cast<int>(bbox.height() / voxel_size / 2) + 1;
int n_z_over_2 = static_cast<int>(bbox.depth() / voxel_size / 2) + 1;
surface_polygonizer polygonizer(
surface_polygonizer::MARCHINGCUBE,
voxel_size, // Voxel size
0.421875, // Threshold (blobby specific)
-n_x_over_2, n_x_over_2, // Lattice X min-max
-n_y_over_2, n_y_over_2, // Lattice Y min-max
-n_z_over_2, n_z_over_2, // Lattice Z min-max
vertex_t(bbox.nx + bbox.width() / 2,
bbox.ny + bbox.height() / 2,
bbox.nz + bbox.depth() / 2), // Lattice center
static_cast<implicit_functor&>(blobby_functor),
Vertices, Normals, Polygons);
// Polygonize blobbies
bool missed_blobbies = false;
for(origins_t::const_iterator p = origins.begin(); p != origins.end(); p++)
if(!polygonizer.polygonize_from_inside_point(*p))
missed_blobbies = true;
// Second chance for missed blobbies
if(missed_blobbies)
polygonizer.polygonize_whole_grid();
}
} // namespace detail
} // namespace libk3dmesh
|