1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
|
// K-3D
// Copyright (c) 1995-2004, Timothy M. Shead
//
// Contact: tshead@k-3d.com
//
// This program is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// General Public License for more details.
//
// You should have received a copy of the GNU General Public
// License along with this program; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
/** \file
\brief Creates an FFT-based fractal landscape
\author Romain Behar (romainbehar@yahoo.com)
*/
#include <k3dsdk/imaterial.h>
#include <k3dsdk/object.h>
#include <k3dsdk/persistence.h>
#include <k3dsdk/material.h>
#include <k3dsdk/material_collection.h>
#include <k3dsdk/measurement.h>
#include <k3dsdk/mesh_source.h>
#include <k3dsdk/module.h>
#include <k3dsdk/plugins.h>
#include <k3dsdk/transform.h>
#include <complex>
#include <iostream>
namespace libk3dmesh
{
/// Creates terrains out of a brownian movement using Fast Fourrier Transform
// (actually a 2-variable discrete inverse FFT is used)
class terrain_seed
{
public:
/// Store four random numbers
k3d::vector4 m_Seeds;
terrain_seed() {}
terrain_seed(k3d::vector4 seed) { m_Seeds = seed; }
// A random variable
double drand()
{
double d = (double)rand()/(double)RAND_MAX;
if(d < 1e-6) return 1e-6;
return d;
}
// A normal random variable
double normaldrand(int k, int l, double d)
{
double dk = (double)k, dl = (double)l;
double sigma = 1/exp((4-d)/2*log(dk*dk + dl*dl));
return sigma*sqrt(-2*log(m_Seeds.n[0]))*cos(2*k3d::pi()*m_Seeds.n[1]);
}
// A normal random complex variable
std::complex<double> cplxnormaldrand(int k, int l, double d)
{
double dk = (double)k, dl = (double)l;
double sigma = 1/exp((4-d)/2*log(dk*dk + dl*dl));
return sigma*std::complex<double>(sqrt(-2*log(m_Seeds.n[0]))*cos(2*k3d::pi()*m_Seeds.n[1]), sqrt(-2*log(m_Seeds.n[2]))*cos(2*k3d::pi()*m_Seeds.n[3]));
}
void Randomize()
{
for(unsigned long i = 0; i < 4; i++)
m_Seeds.n[i] = drand();
}
};
class FFT_vector
{
public:
FFT_vector(int Size) :
m_Size(Size)
{
P.resize(m_Size);
Roots.resize(m_Size);
Temp.resize(m_Size);
Roots[0] = std::complex<double>(1.0);
std::complex<double> Wt = std::polar<double>(1.0, k3d::pi_times_2() / static_cast<double>(m_Size));
std::complex<double> Wj = Wt;
for(int i = m_Size-1; i > 0; i--)
{
Roots[i] = Wt;
Wt *= Wj;
}
}
void InvFFT()
{
RealFFT(m_Size, 0);
}
void RealFFT(unsigned long d, unsigned long k)
{
if(d < 2)
return;
unsigned long i, j;
for(i = 0; i < d/2; i++)
{
j = k + 2*i;
Temp[i] = P[j];
Temp[i+d/2] = P[j+1];
}
for(i = 0; i < d; i++)
P[k+i] = Temp[i];
RealFFT(d/2, k);
RealFFT(d/2, k+d/2);
j = m_Size / d;
for(i = 0; i < d/2; i++)
{
std::complex<double> aux = Roots[i*j] * P[k+d/2+i];
Temp[i] = P[k+i] + aux;
Temp[i+d/2] = P[k+i] - aux;
}
for(i = 0; i < d; i++)
P[k+i] = Temp[i];
}
std::vector< std::complex<double> > P;
protected:
int m_Size;
std::vector< std::complex<double> > Roots;
std::vector< std::complex<double> > Temp;
};
typedef FFT_vector* FFT_map;
// Generate a fractal terrain using preset random values with 2D FFT
typedef std::vector< std::vector<terrain_seed> > terrain_seeds_t;
FFT_map* seeds_to_terrain(unsigned long N, double d, terrain_seeds_t& TerrainSeeds)
{
// Allocate terrain ...
FFT_map* terrain = new FFT_map[N];
for(unsigned long n = 0; n < N; n++)
terrain[n] = new FFT_vector(N);
// Set all values using a normal random variable (NRV),
// Array[0][0] = 0, Array[0][N/2] = NRV, Array[N/2][0] = NRV,
// Array[N/2][N/2]; fill up the array a normal random complex
// variable (CRNV) following the rule : CRNVi = Conjugate(CRNVj)
// when CRNVi and CRNVj are symmetrically placed around one
// of the three real values :
// 0 C C C R1 C C C (N = 8)
// C C C C1 C C C C
// C C C C C C C C
// C3 C C C C C C C
// R2 C C C R3 C C C C3 = Conjugate(C4), C1 = Conjugate(C2)
// C4 C C C C C C C
// C C C C C C C C
// C C C C C C2 C C
// 0, R1, R2, R3
terrain[0]->P[0] = std::complex<double>(0);
terrain[0]->P[N/2] = std::complex<double>(TerrainSeeds[0][N/2].normaldrand(0, N/2, d));
terrain[N/2]->P[0] = std::complex<double>(TerrainSeeds[N/2][0].normaldrand(N/2, 0, d));
terrain[N/2]->P[N/2] = std::complex<double>(TerrainSeeds[N/2][N/2].normaldrand(N/2, N/2, d));
// Row[0] and Row[N/2]
std::complex<double> Tmp;
unsigned long k;
for(k = 1; k < N/2; k++)
{
Tmp = TerrainSeeds[0][k].cplxnormaldrand(0, k, d);
terrain[k]->P[0] = Tmp;
terrain[N-k]->P[0] = std::conj(Tmp);
Tmp = TerrainSeeds[N/2][k].cplxnormaldrand(N/2, k, d);
terrain[k]->P[N/2] = Tmp;
terrain[N-k]->P[N/2] = std::conj(Tmp);
}
// Column[0] and Column[N/2]
for(k = 1; k < N/2; k++)
{
Tmp = TerrainSeeds[k][0].cplxnormaldrand(k, 0, d);
terrain[0]->P[k] = Tmp;
terrain[0]->P[N-k] = std::conj(Tmp);
Tmp = TerrainSeeds[k][N/2].cplxnormaldrand(k, N/2, d);
terrain[N/2]->P[k] = Tmp;
terrain[N/2]->P[N-k] = std::conj(Tmp);
}
// Fill up
unsigned long l;
for(k = 1; k < N/2; k++)
for(l = 1; l < N/2; l++)
{
Tmp = TerrainSeeds[k][l].cplxnormaldrand(k, l, d);
// The square inside 0 R1 R2 R3 and symmtrical values
terrain[k]->P[l] = Tmp;
terrain[N-k]->P[N-l] = std::conj(Tmp);
Tmp = TerrainSeeds[N-k][l].cplxnormaldrand(k, l, d);
// Bottom left inside square and symmetrical values
terrain[N-k]->P[l] = Tmp;
terrain[k]->P[N-l] = std::conj(Tmp);
}
// 2D inverse FFT
// Apply InvFFT on each row
for(k = 0; k < N; k++)
terrain[k]->InvFFT();
// Apply InvFFT on each column
FFT_vector TmpFFT(N);
for(l = 0; l < N; l++)
{
for(k = 0; k < N; k++) TmpFFT.P[k] = terrain[k]->P[l];
TmpFFT.InvFFT();
for(k = 0; k < N; k++) terrain[k]->P[l] = TmpFFT.P[k];
}
return terrain;
}
bool create_fft_triangle(k3d::polyhedron& Polyhedron, k3d::point* Point1, k3d::point* Point2, k3d::point* Point3)
{
assert_warning(Point1);
assert_warning(Point2);
assert_warning(Point3);
k3d::split_edge* edge1 = new k3d::split_edge(Point1);
k3d::split_edge* edge2 = new k3d::split_edge(Point2);
k3d::split_edge* edge3 = new k3d::split_edge(Point3);
Polyhedron.edges.push_back(edge1);
Polyhedron.edges.push_back(edge2);
Polyhedron.edges.push_back(edge3);
edge1->face_clockwise = edge3;
edge3->face_clockwise = edge2;
edge2->face_clockwise = edge1;
k3d::face* const face = new k3d::face(edge1);
return_val_if_fail(face, false);
Polyhedron.faces.push_back(face);
return true;
}
/////////////////////////////////////////////////////////////////////////////
// poly_terrain_fft_implementation
class poly_terrain_fft_implementation :
public k3d::material_collection<k3d::mesh_source<k3d::persistent<k3d::object> > >
{
typedef k3d::material_collection<k3d::mesh_source<k3d::persistent<k3d::object> > > base;
public:
poly_terrain_fft_implementation(k3d::idocument& Document) :
base(Document),
m_iterations(k3d::init_name("iterations") + k3d::init_description("Iterations [integer]") + k3d::init_value(4) + k3d::init_document(Document) + k3d::init_constraint(k3d::constraint::minimum(1UL)) + k3d::init_precision(0) + k3d::init_step_increment(1) + k3d::init_units(typeid(k3d::measurement::scalar))),
m_fractal_dimension(k3d::init_name("dimension") + k3d::init_description("Fractal dimension [number]") + k3d::init_document(Document) + k3d::init_value(0.5) + k3d::init_precision(2) + k3d::init_step_increment(0.1) + k3d::init_units(typeid(k3d::measurement::distance))),
m_random_seed(k3d::init_name("randomseed") + k3d::init_description("Random seed [integer]") + k3d::init_value(123) + k3d::init_constraint(k3d::constraint::minimum(1UL)) + k3d::init_precision(0) + k3d::init_step_increment(1) + k3d::init_units(typeid(k3d::measurement::scalar)) + k3d::init_document(Document))
{
enable_serialization(k3d::persistence::proxy(m_iterations));
enable_serialization(k3d::persistence::proxy(m_fractal_dimension));
enable_serialization(k3d::persistence::proxy(m_random_seed));
register_property(m_iterations);
register_property(m_fractal_dimension);
register_property(m_random_seed);
m_material.changed_signal().connect(SigC::slot(*this, &poly_terrain_fft_implementation::on_reset_geometry));
m_iterations.changed_signal().connect(SigC::slot(*this, &poly_terrain_fft_implementation::on_reset_geometry));
m_fractal_dimension.changed_signal().connect(SigC::slot(*this, &poly_terrain_fft_implementation::on_reset_geometry));
m_random_seed.changed_signal().connect(SigC::slot(*this, &poly_terrain_fft_implementation::on_reset_geometry));
m_output_mesh.need_data_signal().connect(SigC::slot(*this, &poly_terrain_fft_implementation::on_create_geometry));
}
void on_reset_geometry()
{
m_output_mesh.reset();
}
k3d::mesh* on_create_geometry()
{
std::auto_ptr<k3d::mesh> mesh(new k3d::mesh());
mesh->polyhedra.push_back(new k3d::polyhedron());
k3d::polyhedron& polyhedron = *mesh->polyhedra.back();
polyhedron.material = m_material.interface();
// Calculate standard terrain parameters ...
const unsigned long iterations = m_iterations.property_value();
const unsigned long points = static_cast<unsigned long>(pow(2, iterations));
const unsigned long segments = points - 1;
const double terrain_width = 20.0;
// Create points ...
const double terrain_step = terrain_width / static_cast<double>(segments);
double terrain_z = -terrain_width / 2;
for(unsigned long z = 0; z < points; z++)
{
double terrain_x = -terrain_width / 2;
for(unsigned long x = 0; x < points; x++)
{
mesh->points.push_back(new k3d::point(terrain_x, 0, terrain_z));
terrain_x += terrain_step;
}
terrain_z += terrain_step;
}
// Create triangle grid ...
for(unsigned long z = 0; z < segments; z++)
for(unsigned long x = 0; x < segments; x++)
{
create_fft_triangle(polyhedron, mesh->points[z*points + x], mesh->points[z*points + x+1], mesh->points[(z+1)*points + x+1]);
create_fft_triangle(polyhedron, mesh->points[z*points + x], mesh->points[(z+1)*points + x+1], mesh->points[(z+1)*points + x]);
}
// Random seeds for a fractal terrain (built using rules)
terrain_seeds_t terrain_seeds;
srand(m_random_seed.property_value());
terrain_seeds.resize(points);
for(unsigned long i = 0; i < points; i++)
{
terrain_seeds[i].resize(points);
for(unsigned long j = 0; j < points; j++)
terrain_seeds[i][j].Randomize();
}
// Calculate surface elevations ...
FFT_map* terrain = seeds_to_terrain(points, m_fractal_dimension.property_value(), terrain_seeds);
k3d::mesh::points_t::iterator point = mesh->points.begin();
for(unsigned long z = 0; z < points; z++)
{
for(unsigned long x = 0; x < points; x++)
{
// 5 is an arbitrary constant to keep same y-scale ratio as other terrain algorithms
const double elevation = terrain[z]->P[x].real() / 5;
//const double y = m_sea.property_value() && elevation < m_sea_level.property_value() ? m_sea_level.property_value() : elevation;
(*point)->position.n[1] = elevation;
point++;
}
}
return_val_if_fail(is_valid(polyhedron), 0);
return mesh.release();
}
k3d::iplugin_factory& factory()
{
return get_factory();
}
static k3d::iplugin_factory& get_factory()
{
static k3d::plugin_factory<k3d::document_plugin<poly_terrain_fft_implementation>, k3d::interface_list<k3d::imesh_source > > factory(
k3d::uuid(0x7646f5a1, 0x3f3640d6, 0x8d4c70af, 0x91bcb418),
"PolyTerrainFFT",
"Generates an FFT-based fractal terrain",
"Objects",
k3d::iplugin_factory::EXPERIMENTAL);
return factory;
}
private:
k3d_measurement_property(unsigned long, k3d::immutable_name, k3d::change_signal, k3d::with_undo, k3d::local_storage, k3d::with_constraint) m_iterations;
k3d_measurement_property(double, k3d::immutable_name, k3d::change_signal, k3d::with_undo, k3d::local_storage, k3d::no_constraint) m_fractal_dimension;
k3d_measurement_property(unsigned long, k3d::immutable_name, k3d::change_signal, k3d::with_undo, k3d::local_storage, k3d::with_constraint) m_random_seed;
};
/////////////////////////////////////////////////////////////////////////////
// poly_terrain_fft_factory
k3d::iplugin_factory& poly_terrain_fft_factory()
{
return poly_terrain_fft_implementation::get_factory();
}
} // namespace libk3dmesh
|