1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557
|
// A C++ Implicit Surface Polygonizer
// Copyright 2002-2004, Romain Behar <romainbehar@yahoo.com>
//
// This program is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// General Public License for more details.
//
// You should have received a copy of the GNU General Public
// License along with this program; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
/** \file
\brief Implements surface_polygonizer, an implicit surface polygonizer
\author Romain Behar (romainbehar@yahoo.com)
*/
#include <k3dsdk/result.h>
#include "surface_polygonizer.h"
#include <iostream>
namespace libk3dmesh
{
namespace detail
{
// Number of iterations (convergence)
const int RES = 10;
// Directions
const enum_t L = 0; // left: -x, -i
const enum_t R = 1; // right: +x, +i
const enum_t B = 2; // bottom: -y, -j
const enum_t T = 3; // top: +y, +j
const enum_t N = 4; // near: -z, -k
const enum_t F = 5; // far: +z, +k
// Corners
const enum_t LBN = 0; // left bottom near
const enum_t LBF = 1; // left bottom far
const enum_t LTN = 2; // left top near
const enum_t LTF = 3; // left top far
const enum_t RBN = 4; // right bottom near
const enum_t RBF = 5; // right bottom far
const enum_t RTN = 6; // right top near
const enum_t RTF = 7; // right top far
surface_polygonizer::surface_polygonizer(
const polygonization_t polygonization_type,
const double voxel_size,
const double threshold,
const int xmin, const int xmax,
const int ymin, const int ymax,
const int zmin, const int zmax,
const vertex_t& origin,
implicit_functor& functor,
vertices_t& surface_vertices,
vertices_t& surface_normals,
polygons_t& surface_polygons) :
m_Decomposition(polygonization_type),
m_VoxelSize(voxel_size),
m_Threshold(threshold),
m_MinCorner(Location(xmin, ymin, zmin)),
m_MaxCorner(Location(xmax, ymax, zmax)),
m_GridOrigin(origin),
m_FieldFunctor(functor),
m_Vertices(surface_vertices),
m_normals(surface_normals),
m_Polygons(surface_polygons)
{
// Sanity checks ...
if(!(m_MinCorner <= nearest_location(m_GridOrigin) && nearest_location(m_GridOrigin) < m_MaxCorner))
{
std::cerr << "Surface Polygonizer: grid origin must be in grid, defaulting to min corner" << std::endl;
m_GridOrigin = location_vertex(m_MinCorner);
}
// Init polygonizing algorithm
if(m_Decomposition == MARCHINGCUBE)
MakeCubeTable();
}
surface_polygonizer::~surface_polygonizer()
{
// Delete corners
}
// Return the vertex_t corresponding to the Location
vertex_t surface_polygonizer::location_vertex(const Location& l)
{
return m_GridOrigin + m_VoxelSize * vertex_t((double)l.i, (double)l.j, (double)l.k);
}
// Return the nearest location corresponding to the vertex_t
Location surface_polygonizer::nearest_location(const vertex_t& point)
{
vertex_t vertex_position = (point - m_GridOrigin) / m_VoxelSize;
int i = static_cast<int>(vertex_position.n[0]);
int j = static_cast<int>(vertex_position.n[1]);
int k = static_cast<int>(vertex_position.n[2]);
return Location(i, j, k);
}
// Sample the whole grid and polygonize
void surface_polygonizer::polygonize_whole_grid()
{
for(Location x = m_MinCorner; x <= m_MaxCorner; x = x.Right())
for(Location y = x; y <= m_MaxCorner; y = y.Top())
for(Location z = y; z <= m_MaxCorner; z = z.Far())
{
Corner* corner = get_cached_corner(z);
if(corner->value < m_Threshold)
continue;
Location surface_location = z;
if(SurfaceLocation(surface_location))
PolygonizeSurface(surface_location);
}
}
// Find surface and polygonize from a known inside point
bool surface_polygonizer::polygonize_from_inside_point(const vertex_t& starting_point)
{
Location starting_location = nearest_location(starting_point);
// Make sure the point is inside a surface
Corner* corner = get_cached_corner(starting_location);
if(corner->value < m_Threshold)
return false;
// Get a Location enclosing surface
if(!SurfaceLocation(starting_location))
return false;
// Surface found, polygonize it
PolygonizeSurface(starting_location);
return true;
}
void surface_polygonizer::PolygonizeSurface(const Location& startinglocation)
{
// Create initial cube
mark_center(startinglocation);
Cube c(startinglocation);
for(int n = 0; n < 8; n++)
c.corners[n] = get_cached_corner(startinglocation + Location(bit_value(n, 2), bit_value(n, 1), bit_value(n, 0)));
// Push it on stack
m_active_cubes.push(c);
// Process active cubes till none left
while(!m_active_cubes.empty())
{
Cube c = m_active_cubes.top();
m_active_cubes.pop();
// Polygonize
switch(m_Decomposition)
{
case MARCHINGCUBE:
MarchingCube(c);
break;
case TETRAHEDRAL:
// Decompose into tetrahedra and polygonize
TriangulateTet(c, LBN, LTN, RBN, LBF);
TriangulateTet(c, RTN, LTN, LBF, RBN);
TriangulateTet(c, RTN, LTN, LTF, LBF);
TriangulateTet(c, RTN, RBN, LBF, RBF);
TriangulateTet(c, RTN, LBF, LTF, RBF);
TriangulateTet(c, RTN, LTF, RTF, RBF);
break;
default:
std::cerr << "decomposition error!" << std::endl;
}
// Test six face directions, maybe add to stack
TestFace(c.l.Left(), c, L, LBN, LBF, LTN, LTF);
TestFace(c.l.Right(), c, R, RBN, RBF, RTN, RTF);
TestFace(c.l.Bottom(), c, B, LBN, LBF, RBN, RBF);
TestFace(c.l.Top(), c, T, LTN, LTF, RTN, RTF);
TestFace(c.l.Near(), c, N, LBN, LTN, RBN, RTN);
TestFace(c.l.Far(), c, F, LBF, LTF, RBF, RTF);
}
}
// Find a location enclosing surface
bool surface_polygonizer::SurfaceLocation(Location& startinglocation)
{
Location loc2 = startinglocation;
double value2 = m_FieldFunctor.implicit_value(location_vertex(loc2)) - m_Threshold;
// Top
do
{
Location loc1 = loc2;
double value1 = value2;
loc2 = loc2.Top();
value2 = m_FieldFunctor.implicit_value(location_vertex(loc2)) - m_Threshold;
if((value1*value2 < 0) || ((value1 == 0) && (value2 < 0)) || ((value2 == 0) && (value1 < 0)))
{
startinglocation = loc1;
return true;
}
}
while(loc2 <= m_MaxCorner);
// We reached the grid boundary: check the whole grid
return false;
}
// Triangulate the tetrahedron (b, c, d should appear clockwise when viewed from a)
void surface_polygonizer::TriangulateTet(const Cube& cube1, int c1, int c2, int c3, int c4)
{
Corner *a = cube1.corners[c1];
Corner *b = cube1.corners[c2];
Corner *c = cube1.corners[c3];
Corner *d = cube1.corners[c4];
bool apos = (a->value >= m_Threshold);
bool bpos = (b->value >= m_Threshold);
bool cpos = (c->value >= m_Threshold);
bool dpos = (d->value >= m_Threshold);
int index = 0;
if(apos)
index += 8;
if(bpos)
index += 4;
if(cpos)
index += 2;
if(dpos)
index += 1;
// Index is now 4-bit number representing one of the 16 possible cases
int e1 = 0;
int e2 = 0;
int e3 = 0;
int e4 = 0;
int e5 = 0;
int e6 = 0;
if(apos != bpos)
e1 = VerticeId(a, b);
if(apos != cpos)
e2 = VerticeId(a, c);
if(apos != dpos)
e3 = VerticeId(a, d);
if(bpos != cpos)
e4 = VerticeId(b, c);
if(bpos != dpos)
e5 = VerticeId(b, d);
if(cpos != dpos)
e6 = VerticeId(c, d);
// 14 productive tetrahedral cases (0000 and 1111 do not yield polygons)
switch(index)
{
case 1: SaveTriangle(e5, e6, e3); break;
case 2: SaveTriangle(e2, e6, e4); break;
case 3: SaveTriangle(e3, e5, e4); SaveTriangle(e3, e4, e2); break;
case 4: SaveTriangle(e1, e4, e5); break;
case 5: SaveTriangle(e3, e1, e4); SaveTriangle(e3, e4, e6); break;
case 6: SaveTriangle(e1, e2, e6); SaveTriangle(e1, e6, e5); break;
case 7: SaveTriangle(e1, e2, e3); break;
case 8: SaveTriangle(e1, e3, e2); break;
case 9: SaveTriangle(e1, e5, e6); SaveTriangle(e1, e6, e2); break;
case 10: SaveTriangle(e1, e3, e6); SaveTriangle(e1, e6, e4); break;
case 11: SaveTriangle(e1, e5, e4); break;
case 12: SaveTriangle(e3, e2, e4); SaveTriangle(e3, e4, e5); break;
case 13: SaveTriangle(e6, e2, e4); break;
case 14: SaveTriangle(e5, e3, e6); break;
}
}
namespace mc
{
// Edges
const enum_t LB = 0; // left bottom
const enum_t LT = 1; // left top
const enum_t LN = 2; // left near
const enum_t LF = 3; // left far
const enum_t RB = 4; // right bottom
const enum_t RT = 5; // right top
const enum_t RN = 6; // right near
const enum_t RF = 7; // right far
const enum_t BN = 8; // bottom near
const enum_t BF = 9; // bottom far
const enum_t TN = 10; // top near
const enum_t TF = 11; // top far
// Face on left when going from corner1 to corner2
const enum_t leftface[12] = {B, L, L, F, R, T, N, R, N, B, T, F};
// Face on right when going from corner1 to corner2
const enum_t rightface[12] = {L, T, N, L, B, R, R, F, B, F, N, T};
// Return next clockwise edge from given edge around given face
enum_t next_edge(const enum_t edge, const enum_t face)
{
switch(edge)
{
case LB: return (face == L) ? LF : BN;
case LT: return (face == L) ? LN : TF;
case LN: return (face == L) ? LB : TN;
case LF: return (face == L) ? LT : BF;
case RB: return (face == R) ? RN : BF;
case RT: return (face == R) ? RF : TN;
case RN: return (face == R) ? RT : BN;
case RF: return (face == R) ? RB : TF;
case BN: return (face == B) ? RB : LN;
case BF: return (face == B) ? LB : RF;
case TN: return (face == T) ? LT : RN;
case TF: return (face == T) ? RT : LF;
default: std::cerr << "NextCW error!" << std::endl;
}
return LF;
}
// Corners
// edges: LB, LT, LN, LF, RB, RT, RN, RF, BN, BF, TN, TF
const enum_t corner1[12] = {LBN,LTN,LBN,LBF,RBN,RTN,RBN,RBF,LBN,LBF,LTN,LTF};
const enum_t corner2[12] = {LBF,LTF,LTN,LTF,RBF,RTF,RTN,RTF,RBN,RBF,RTN,RTF};
} // namespace mc
// Triangulate the cube directly, without decomposition
void surface_polygonizer::MarchingCube(const Cube& cube1)
{
table_item_t index = 0;
for(table_item_t i = 0; i < 8; i++)
if(cube1.corners[i]->value >= m_Threshold)
index += 1 << i;
std::vector< std::vector<table_item_t> > currentindex = m_CubeTable[index];
for(table_item_t i = 0; i < currentindex.size(); i++)
{
table_item_t a = 0;
table_item_t b = 0;
table_item_t count = 0;
for(table_item_t j = 0; j < currentindex[i].size(); j++)
{
Corner* c1 = cube1.corners[mc::corner1[currentindex[i][j]]];
Corner* c2 = cube1.corners[mc::corner2[currentindex[i][j]]];
table_item_t c = VerticeId(c1, c2);
if(++count > 2)
SaveTriangle(a, b, c);
if(count < 3)
a = b;
b = c;
}
}
}
// Create the 256 entry table for cubical polygonization
void surface_polygonizer::MakeCubeTable()
{
for(table_item_t configuration = 0; configuration < 256; configuration++)
{
std::vector< std::vector<table_item_t> > triangles;
table_item_t bits[8];
for(table_item_t c = 0; c < 8; c++)
bits[c] = bit_value(configuration, c);
bool done[12];
for(table_item_t edge = 0; edge < 12; edge++) done[edge] = false;
for(table_item_t edge = 0; edge < 12; edge++)
if(!done[edge] && (bits[mc::corner1[edge]] != bits[mc::corner2[edge]]))
{
std::vector<table_item_t> triangle;
// Get face that is to right of edge from pos to neg corner
table_item_t face = bits[mc::corner1[edge]] ? mc::rightface[edge] : mc::leftface[edge];
table_item_t startingedge = edge, currentedge = edge;
do
{
currentedge = mc::next_edge(currentedge, face);
done[currentedge] = true;
if(bits[mc::corner1[currentedge]] != bits[mc::corner2[currentedge]])
{
triangle.push_back(currentedge);
// face adjoining edge that is not the given face
if(face == mc::leftface[currentedge])
face = mc::rightface[currentedge];
else
face = mc::leftface[currentedge];
}
}
while(currentedge != startingedge);
triangles.push_back(triangle);
}
m_CubeTable.push_back(triangles);
}
for(table_item_t i = 0; i < m_CubeTable.size(); i++)
for(table_item_t j = 0; j < m_CubeTable[i].size(); j++)
reverse(m_CubeTable[i][j].begin(), m_CubeTable[i][j].end());
}
//**** Storage ****
// Given cube at lattice (i, j, k), and four corners of face,
// if surface crosses face, compute other four corners of adjacent cube
// and add new cube to cube stack
void surface_polygonizer::TestFace(const Location& facelocation, Cube& old, int face, int c1, int c2, int c3, int c4)
{
// No surface crossing?
bool pos = old.corners[c1]->value >= m_Threshold;
if(((old.corners[c2]->value >= m_Threshold) == pos) &&
((old.corners[c3]->value >= m_Threshold) == pos) &&
((old.corners[c4]->value >= m_Threshold) == pos))
return;
// Out of bounds?
if(!(m_MinCorner <= facelocation && facelocation < m_MaxCorner))
return;
// Already visited?
if(mark_center(facelocation))
return;
// Create new cube and add it to top of stack
Cube newc(facelocation);
const int facebit[6] = {2, 2, 1, 1, 0, 0};
int bit = facebit[face];
newc.corners[invert_bit(c1, bit)] = old.corners[c1];
newc.corners[invert_bit(c2, bit)] = old.corners[c2];
newc.corners[invert_bit(c3, bit)] = old.corners[c3];
newc.corners[invert_bit(c4, bit)] = old.corners[c4];
for(int n = 0; n < 8; n++)
if(!newc.corners[n])
newc.corners[n] = get_cached_corner(facelocation + Location(bit_value(n, 2), bit_value(n, 1), bit_value(n, 0)));
m_active_cubes.push(newc);
}
// Return the gradient at Location l
vertex_t surface_polygonizer::normal(const vertex_t& Point)
{
double delta = m_VoxelSize / static_cast<double>(RES*RES);
double f = m_FieldFunctor.implicit_value(Point);
double gx = m_FieldFunctor.implicit_value(Point + vertex_t(delta, 0, 0)) - f;
double gy = m_FieldFunctor.implicit_value(Point + vertex_t(0, delta, 0)) - f;
double gz = m_FieldFunctor.implicit_value(Point + vertex_t(0, 0, delta)) - f;
f = std::sqrt(gx*gx + gy*gy + gz*gz);
if(f != 0)
{
gx /= f;
gy /= f;
gz /= f;
}
return vertex_t(gx, gy, gz);
}
// Return cached corner with the given lattice Location
surface_polygonizer::Corner* surface_polygonizer::get_cached_corner(const Location& L)
{
Corner* c = get_corner(L);
if(!c)
{
c = new Corner(L);
c->p = location_vertex(L);
c->value = m_FieldFunctor.implicit_value(c->p);
m_Corners.insert(L, c);
}
return c;
}
// Save a triangle
void surface_polygonizer::SaveTriangle(unsigned long u, unsigned long v, unsigned long w)
{
polygon_t triangle;
triangle.push_back(u);
triangle.push_back(v);
triangle.push_back(w);
m_Polygons.push_back(triangle);
}
// Return index for vertex on edge
int surface_polygonizer::VerticeId(Corner *c1, Corner *c2)
// c1->value and c2->value are presumed one on each side of the equipotential surface
{
int vid = m_Edges.GetValue(Edge(c1->l, c2->l));
if(vid != -1)
{
// Has been previously computed, return saved index
return vid;
}
// Compute index, save and return it
vertex_t p;
Converge(c1->p, c2->p, c1->value, p);
m_Vertices.push_back(p);
m_normals.push_back(normal(p));
vid = m_Vertices.size() - 1;
m_Edges.push_back(Edge(c1->l, c2->l, vid));
return vid;
}
// From two points of differing sign, converge to zero crossing
void surface_polygonizer::Converge(const vertex_t& p1, const vertex_t& p2, double v, vertex_t& point)
{
vertex_t pos = p1;
vertex_t neg = p2;
if(v < m_Threshold)
std::swap(pos, neg);
point = 0.5 * (pos + neg);
for(int iter = 0; iter < RES; iter++)
{
if(m_FieldFunctor.implicit_value(point) >= m_Threshold)
pos = point;
else
neg = point;
point = 0.5 * (pos + neg);
}
}
} // namespace detail
} // namespace libk3dmesh
|